
Supplementary material for improved nearest neighbor search using auxiliary
information and priority functions

Omid Keivani 1 Kaushik Sinha 1

1. Introduction
This supplementary material is organized as follows. Algo-
rithms for query processing for defeatist search with aux-
iliary information as well as guided prioritized search are
presented in section 2. In section 3, we provide proofs of
theorems presented in the paper. Additional experiments
are presented in section 4.

2. Query processing
In this section we presents algorithm for query processing
for defeatist search with auxiliary information, guided prior-
itized search and the combined approach. These algorithms
are presented in Algorithm 2, 3 and 4. For easy reference
we provide RPT construction algorithm with auxiliary infor-
mation as well.

3. Proof of theorems
Proofs of all theorems presented in submitted manuscript
are provided below.

3.1. Proof of theorem 1

Proof. For any x(i) ∈ S, using lemma 1 of (Li & Malik,
2016), we get, Pr

(
|U>(q − x(i))| ≤ |U>(q − x(1))|

)
≤

1 − 2
π arccos

(
‖q−x(1)‖2
‖q−x(i)‖2

)
. Noting that for any

z, arccos(z) = π
2 − arcsin(z), and the inequality

θ ≥ sin θ ≥ 2θ
π , for 0 ≤ θ ≤ π

2 , we get

Pr
(
|U>(q − x(i))| ≤ |U>(q − x(1))|

)
≤ ‖q−x(1)‖2
‖q−x(i)‖2

. Let

Zi be indicator variable that takes value 1 if |U>(q −
x(i))| ≤ |U>(q − x(1))|, and 0 otherwise. Then E(Zi) ≤
‖q−x(1)‖2
‖q−x(i)‖2

. Let Z=

∑|S|
i=1 Zi. Then Z indicates the num-

ber of points in S whose distance from q upon projec-
tion is smaller than |U>(q − x(1))|. Using Markov’s

1Department of Electrical Engineering & Computer Science,
Wichita State University, KS, USA. Correspondence to: Kaushik
Sinha <kaushik.sinha@wichita.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Algorithm 1 RPT construction with auxiliary information
Input : data S = {x1, . . . , xn} ⊂ Rd, maximum number of
data points in leaf node n0, auxiliary index size c, m independent
random vectors {V1, . . . , Vm} sampled uniformly from Sd−1.
Output : tree data structure
function MakeTree(S, n0)

1: if |S| ≤ n0 then
2: return leaf containing S
3: else
4: Pick U uniformly at random from Sd−1

5: Let v be the median of projection of S onto U
6: Set ail be the set of indices of c points in S so that upon

projection onto U , they are the c closest points to v from
the left.

7: Set air be the set of indices of c points in S so that upon
projection onto U , they are the c closest points to v from
the right.

8: Construct a c×m matrix Lcnn whose ith row is the vector
(V >1 xail(i), V

>
2 xail(i), . . . , V

>
m xail(i)).

9: Construct a c×m matrix Rcnn whose ith row is the vector
(V >1 xair(i), V

>
2 xair(i), . . . , V

>
m xair(i)).

10: Rule(x) = (x>U ≤ v)
11: LSTree = MakeTree({x ∈ S : Rule(x) = true}, n0)
12: RSTree = MakeTree({x ∈ S : Rule(x) = false}, n0)
13: return (Rule, LSTree, RSTree)
14: end if

inequality, Pr(Z > k) ≤ E(Z)
k =

∑|S|
i=1 E(Zi)
k ≤

1
k

∑|S|
i=1

‖q−x(1)‖2
‖q−x(i)‖2

.

3.2. Proof of theorem 2

Proof. Let c = kn0. Since we are using median split, it
is easy to see that exactly dk2 e levels from the leaf node
level (and excluding leaf node level) will have less than c
points on each side of the median. Note that at the leaf
node level, we have at most d nn0

e nodes. Now consider the
level just above the leaf node level. Total number of nodes
at this level is at most 1

2 · d
n
n0
e and on each side of the

median we have at most n0 points. Since n0 < c, on each
side of the median, for each node at this level, will store
a matrix of size n0 × (m + 1) matrix (n0 ×m matrix for
m dimensional representation of n0 points and additional
n0 × 1 space for storing index of these n0 points). If we
further go one level up, maximum number of nodes at this

Supplementary material for improved nearest neighbor search using auxiliary information and priority functions

Algorithm 2 Query processing using defeatist search with
auxiliary information
Input : RP tree constructed using Algorithm 1 from
main paper, m independent random vectors {V1, . . . , Vm}
sampled uniformly from Sd−1, query q, number of
candidate neighbors at each node c′.
Output : Candidate nearest neighbors

1: Set Cq = ∅.
2: Set q̃ = (V >1 q, V

>
2 q, . . . , V

>
m q)

3: Set current node to be root node of the input tree.
4: while current node 6= leaf node do
5: if U>q < v then
6: A = Rcnn
7: ai = air

8: current node = current node.left
9: else

10: A = Lcnn
11: ai = ail

12: current node = current node.right
13: end if
14: Sort the rows of A in increasing order according to

their distance from q̃ and let array a contains these
sorted indices.

15: Cq = Cq ∪ {ai(a(1)), ai(a(2)), . . . , ai(a(c′))}
16: end while
17: Set leafq to be the indices of points in S that lie in

leaf node.
18: Cq = Cq ∪ leafq
19: return Cq

level is 1
4 · d

n
n0
e and on each side of the median we have at

most 2n0 points and so on. Therefore total additional space
complexity for storing auxiliary information at dk2 e levels
from the leaf node level is,

2(m+ 1)

d k2 e∑
i=1

1

2i
· d n
n0
e · (2i−1n0) ≤ 2(m+ 1)n

d k2 e∑
i=1

1

2

= (m+ 1)ndk
2
e

For the remaining levels, we store c×(m+1) matrix on each
side of the median at each internal node. Total additional

Algorithm 3 Query processing using prioritized guided
search
Input : RP tree constructed using Algorithm 1 from main
paper, query q, number of iterations t
Output : Candidate nearest neighbors

1: Set Cq = ∅.
2: Set P to be an empty priority queue.
3: Set current node to be root node of the input tree.
4: if t > 0 then
5: while current node 6= leaf node do
6: if U>q < v then
7: current node = current node.left
8: else
9: current node = current node.right

10: end if
11: Compute priority value
12: P.insert(current node, priority value).
13: end while
14: Set leafq to be the indices of points in S that lie in

leaf node.
15: Cq = Cq ∪ leafq
16: Set t = t− 1
17: Set current node = P.extract max

18: end if
19: return Cq

space required to store this auxiliary information is,

2(m+ 1)c

logd nn0
e−(d k2 e+1)∑
i=0

2i


= 2(m+ 1)c

(
2logd

n
n0
e−d k2 e − 1

2− 1

)

≤ 2(m+ 1)c
1

2d
k
2 e
d n
n0
e

≤ 2(m+ 1)n
k

2d
k
2 e

Summing these two terms, additional space requirement is,

(m+ 1)n

(
dk
2
e+ 2k

2d
k
2 e

)
≤ 6(m+ 1)n

where the last inequality follows from the fact that dk2 e +
2k

2d
k
2
e
≤ 6 for all k ≤ 10. In addition, we also need to

store m random projection directions for the entire tree
requiring extra md space. Therefore, total additional space
requirement for storing auxiliary information is at most
6(m+ 1)n+md ≤ (m+ 1)(6n+ d).

Now, note that we want to choose number of projection
directions m in such a way that for all auxiliary data points

Supplementary material for improved nearest neighbor search using auxiliary information and priority functions

Algorithm 4 Query processing using combined approach
with auxiliary information
Input : RP tree constructed using Algorithm 1, m independent ran-
dom vectors {V1, . . . , Vm} sampled uniformly from Sd−1, query
q, number of iterations t, number of candidate neighbors at each
node c′.
Output : Candidate nearest neighbors
1: Set Cq = ∅, set B to be an empty binary search tree
2: Set P to be an empty priority queue, set count = 0
3: Set q̃ = (V >1 q, V >2 q, . . . , V >m q)
4: Set current node to be root node of the input tree.
5: if t > 0 then
6: while current node 6= leaf node do
7: if U>q < v then
8: A = Rcnn, ai = air
9: current node = current node.left

10: else
11: A = Lcnn, ai = ail
12: current node = current node.right
13: end if
14: Compute priority value, set count = count+ 1
15: Sort the rows of A in increasing order according to their

distance from q̃ and let array a contains these sorted
indices.

16: Insert {ai(a(1)), . . . , ai(a(c′))} into B with value
count

17: Set struct = (count, current node)
18: P.insert(struct, priority value).
19: end while
20: Set leafq to be the indices of points in S that lie in

leaf node.
21: Set Cq = Cq ∪ leafq, t = t− 1
22: Set current node = (P.extract max).current node
23: Delete from B candidate set with value

(P.extract max).count
24: end if
25: return Cq ∪ {all candidate set from B}

stored at the internal nodes along a query routing path (from
root node to leaf node) and for the query, pairwise dis-
tances are preserved up to a multiplicative error (1 ± ε)
compared to the respective original distances. Total number
of such points is n′ = 2c

(
logd nn0

e − 1
)
+1 ≤ 2c logd nn0

e,
considering all levels except leaf node level. JL lemma
tells us that m = O

(
logn′

ε2

)
= O

(
log c+log log(n/n0)

ε2

)
=

O (log log(n/n0)) would suffice, where the last inequality
follows if we fix ε and since c is a fixed quantity. therefore
total additional space complexity for storing auxiliary in-
formation is O ((n+ d) log log(n/n0)), which we write as
Õ(n+ d) hiding the log log(n/n0) factor.

3.3. Proof of theorem 3

Proof. Due to overlap, at each successive level size of the in-
ternal node reduces by factor of (12 +α). Simple calculation
shows that depth of the tree is at most k = log 2

1+2α
(n/n0).

Total number of nodes is,

2k−1 =
1

2
· 2

log 2
1+2α

(n/n0)

=
1

2
· 2

log2(n/n0)·log 2
1+2α

2

=
1

2
·
(
n

n0

)log 2
1+2α

2

=
1

2
·
(
n

n0

) 1

log2
2

1+2α

=
1

2
·
(
n

n0

) 1
1−log2(1+2α)

Due to median split, total number of internal nodes will be
exactly one less than the number of leaf nodes, moreover, we
need to store a random projection direction at each of these
internal nodes. Therefore, for fixed n0, space complexity of

spill tree is O
(
dn

(
1

1−log2(1+2α)

))
.

4. Additional experiments
4.1. 1-NN search experiments

In the following we present experimental evaluations for Ex-
periment 3 of the submitted manuscript. Here, we presents
for 1-NN search results in Figure 1 and 2. We note that we
observe similar trend that we observed for 10-NN search in
the submitted manuscript.

References
Li, K. and Malik, J. Fast k-nearest neighbor search via

dynamic continuous indexing. In 33rd International Con-
ference on Machine Learning (ICML), 2016.

Supplementary material for improved nearest neighbor search using auxiliary information and priority functions

(a) MNIST (b) SIFT (c) SVHN

(d) JESTER (e) 20NEWSGROUP (f) SIAM07
Figure 1. 1-NN accuracy for all six datasets. The x-axis represents the ratio of # of retrieved points to the total number of instances. The
markers from left to right corresponding to 2, 5, 10, 15 and 20 iterations (for combined and Multi-Combined method) / trees (for normal
RPT).

(a) MNIST (b) SIFT (c) SVHN

(d) JESTER (e) 20NEWSGROUP (f) SIAM07
Figure 2. Rank error (1-NN) for all six datasets. The x-axis represents the ratio of # of retrieved points to the total number of instances.
The markers from left to right corresponding to 2, 5, 10, 15 and 20 iterations (for combined and Multi-Combined method) / trees (for
normal RPT).

