Improved nearest neighbor search using auxiliary information and priority
functions

Omid Keivani! Kaushik Sinha !

Abstract

Nearest neighbor search using random projec-
tion trees has recently been shown to achieve su-
perior performance, in terms of better accuracy
while retrieving less number of data points, com-
pared to locality sensitive hashing based methods.
However, to achieve acceptable nearest neigh-
bor search accuracy for large scale applications,
where number of data points and/or number of
features can be very large, it requires users to
maintain, store and search through large num-
ber of such independent random projection trees,
which may be undesirable for many practical ap-
plications. To address this issue, in this paper we
present different search strategies to improve near-
est neighbor search performance of a single ran-
dom projection tree. Our approach exploits prop-
erties of single and multiple random projections,
which allows us to store meaningful auxiliary in-
formation at internal nodes of a random projection
tree as well as to design priority functions to guide
the search process that results in improved nearest
neighbor search performance. Empirical results
on multiple real world datasets show that our pro-
posed method improves the search accuracy of a
single tree compared to baseline methods.

1. Introduction

Nearest neighbor search is extensively used as a subroutine
for k-nn classifier and many complex graph based methods
in wide range of domains such as machine learning, com-
puter vision, pattern recognition and robotics. The basic
problem of nearest neighbor search is as follows: given a set
of n d-dimensional data points S = {x1, 22, ..., z,} C RY
and a query point ¢ € RY, one needs to build a data structure
using S, so that nearest point (when measured using appro-
priate distance metric) to g from S can be found quickly.

"Department of Electrical Engineering & Computer Science,
Wichita State University, KS, USA. Correspondence to: Kaushik
Sinha <kaushik.sinha@wichita.edu>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

The naive linear time solution, that scans through each data
point z; € S, often becomes impractical for large n and
d. Towards this end, in recent years there has been a con-
scious effort towards designing sub-linear time algorithms
for solving this problem. Most of these efforts can broadly
be classified into two groups, namely, (a) tree based meth-
ods ((Bentley, 1975; Uhlmann, 1991; Ciaccia et al., 1997;
Katayama & Satoh, 1997; Liu et al., 2004; Beygelzimer
et al., 2006; Dasgupta & Sinha, 2013; Sinha, 2015; Sinha &
Keivani, 2017; Babenko & Lempitsky, 2017)) and (b) meth-
ods based on hashing ((Gionis et al., 1999; Andoni & Indyk,
2008; Datar et al., 2004)). Basic principle for both these
approaches is to quickly retrieve a smaller subset S’ C S
and perform linear scan within S’ to answer a nearest neigh-
bor search query. Locality sensitive hashing (LSH) (Gionis
et al., 1999; Andoni & Indyk, 2008; Datar et al., 2004) is a
representative of these hashing based methods that provides
a sub-linear time solution for approximate nearest neigh-
bor search with some theoretical guarantee. Unfortunately,
many recent studies (Sinha, 2014; Muja & Lowe, 2009; Liu
et al., 2004) have reported that nearest neighbor search using
LSH is outperformed by tree based methods.

Nearest neighbor search methods that use space partition
trees hierarchically partition the search space into a large
number of regions corresponding to tree leaves, where each
leaf contains only a small subset of the database points.
Most of these partition trees thus constructed are binary in
nature. Using such partition tree, a nearest neighbor query is
answered by adopting either (a) a defeatist search strategy or
(b) a guided depth first search (DFS) strategy. In a defeatist
search strategy, a query is routed from the root node of the
tree to a leaf node, by applying a simple test function at each
internal node along the route that dictates whether to follow
left or right branch at that node. Once at leaf node, a linear
scan is performed within the points lying in the leaf node
to answer a nearest neighbor search query. If the partition
tree is (approximately) balanced, depth of such a tree is
O(logn) and therefore a query can reach a leaf node fairly
quickly and subsequently performing a liner scan within
a constant number of data points lying in that leaf node,
nearest neighbor query can be answered in sub-linear (in
n) time. Unfortunately, defeatist search strategy often fails
to find exact nearest neighbor of the query because the leaf

Improved nearest neighbor search using auxiliary information and priority functions

node where the query is routed to may not contain its nearest
neighbor. A remedy for this is to construct a forest of such
trees and defeatist search strategy is performed to each tree
in this forest. This improves search performance but comes
at the cost of memory overhead of storing the entire forest,
which for many large scale applications become unrealistic.
In comparison, a guided DFS search is often applied in met-
ric trees (Uhlmann, 1991; Ciaccia et al., 1997; Omohundro,
1990), where a single space partition tree is used but data
points are retrieved from multiple leaf nodes by following a
depth first search strategy. Typically, at each internal node,
one of the two child nodes is visited first, if it is more likely
(based on some heuristic) to contain the nearest neighbor,
before visiting the other child node. Moreover, additional
heuristics are often applied to prune out nodes (or subtrees)
from visiting, if they are unlikely to contain nearest neigh-
bors. While guided DFS search strategy works reasonably
well for low dimensional datasets (data dimension is less
than 30) (Liu et al., 2004), their performance degrades with
increasing data dimension and for high dimensional dataset
their performance often becomes no better than linear scan
of the entire database. In practice, often a budgeted version
of guided DFS search is used, where leaf nodes are still vis-
ited in a guided DFS manner, but only until data points from
a predefined fixed number of leaves are retrieved. However,
problem with such approach is that if a mistake is made at
the top level (near the root node), that is, say left subtree
at this level is not visited due to budget constraint and this
subtree contains the true nearest neighbor, then rest of the
search becomes useless. To avoid some of the shortcomings
of the above two search strategies, spill tree and virtual spill
tree (Liu et al., 2004) have also been proposed. A spill
tree still uses a defeatist search strategy, however, while
constructing a tree, each time an internal node is split, over-
lap is allowed between its two children nodes. With this
modification, search performance typically improves with
amount of allowed overlap. However, such improvement
comes at the cost of super-linear (as opposed to linear) space
complexity for a single tree, which may be unacceptable
for large scale applications. In comparison, in a virtual
spill tree no overlap is allowed(linear space complexity),
but the effect of spill tree is mimicked by visiting multiple
tree leaf nodes. In particular, at each internal nodes, if the
query point upon projection lies close to the split point (and
thus within a “virtual” overlapped region) both subtrees
rooted at this node are visited. While search performance
typically improves with allowed virtual overlap, enforcing
user defined control on how many leaf nodes to retrieve be-
comes problematic and often leaf nodes containing useless
information are retrieved.

To address these issues, in this paper we propose various
strategies to improve nearest neighbor search performance
of a single space partition tree by using auxiliary informa-

tion and priority functions. We use properties of random
projection to choose auxiliary information. We use random
projection tree (RPT) as our base tree construct due to its
proven theoretical guarantees in solving exact nearest neigh-
bor search problem (Dasgupta & Sinha, 2013; 2015) and
its superior performance over LSH based methods (Sinha,
2014). Our proposed auxiliary information based prioritized
guided search improves nearest search performance of a sin-
gle RPT significantly. We make the following contributions
in this paper.

e Using properties of random projection, we show how
to store auxiliary information of additional space com-
plexity O(n + d) at the internal nodes of an RPT to
improve nearest neighbor search performance using
defeatist search strategy.

e We propose two priority functions to retrieve data
points from multiple leaf nodes of a single RPT and
thus extend the usability of RPT beyond defeatist
search. Such priority functions can be used to per-
form nearest neighbor search under a computational
budget, where to goal is to retrieve data points from
most informative leaf nodes of a single RPT specified
by the computational budget.

e We combine the above two approaches to present an
effective methodology to improve nearest neighbor
search performance of a single RPT and perform exten-
sive experiments on six real world datasets to demon-
strate the effectiveness of our proposed method.

Rest of the paper is organized as follows. We discuss related
work in section 2 and present our proposed method in sec-
tion 3. We present our experimental evaluations in section 4
and conclude in section 5.

2. Related work

In this section we review related work. A space partition
tree hierarchically partitions the input data space into non-
overlapping subsets in the form of a binary tree, where root
node corresponds to the original dataset and the leaf nodes
correspond to non-overlapping subsets. At each internal
node of such a tree, all points lying in that node are split
into two disjoint subsets (left and right child nodes) based
on stored information at that node. Once a query comes, it
is routed from the root node to a leaf node, following the
stored information at internal nodes to guide its routing, and
linear scan is performed within the data-points lying in that
leaf node. Space partition trees differ from one another in
how they perform split at the internal nodes. In metric trees
(Ciaccia et al., 1997; Omohundro, 1990; Uhlmann, 1991)
two pivot points are chosen at each internal node and all
data points corresponding to that internal node are projected
on the line joining these two pivot points and are partitioned
based on the median of the projected points. In KD tree
(Bentley, 1975), axis aligned partitions are allowed where at

Improved nearest neighbor search using auxiliary information and priority functions

each internal node, the space is partitioned based on a par-
ticular coordinate ¢ and a threshold b. In PCA tree (Sproull,
1991), projection direction at each internal node is chosen to
be the largest principal component direction. In random pro-
jection tree, projection directions are chosen randomly from
a unit sphere (Dasgupta & Sinha, 2015). In product split tree
(Babenko & Lempitsky, 2017) product quantization idea is
used to make an effective codebook to choose projection di-
rection. In max-margin tree (Ram et al., 2012), a hyperplane
that separates data points of an internal node by a large mar-
gin is used to perform the split. In addition, spill tree (Liu
et al., 2004; Dasgupta & Sinha, 2013) is a variant of space
partition tree where children of a node can “spill over” on
to one another and share common data points. A different
class of tree based algorithms performs search in a coarse-
to-fine manner, including navigating nets (Krauthgamer &
Leel, 2004), cover trees (Beygelzimer et al., 2006) and rank
cover trees (Houle & Nett, 2015). They maintain sets of
sub-sampled data points at different levels of granularity
and descend through the hierarchy of neighborhoods of
decreasing radii around the query.

Another class of algorithms called Locality Sensitive Hash-
ing (LSH) based methods (Gionis et al., 1999; Datar et al.,
2004; Andoni & Indyk, 2008) partitions the space into regu-
lar cells, whose shapes are implicitly defined by the choice
of the hash function. Roughly speaking, a locality sensi-
tive hashing function has the property that if two points are
“close”, then they hash to same bucket with “high” prob-
ability, whereas if they are “far apart”, then they hash to
same bucket with “low” probability. Once a query comes,
same hash functions are applied to identify a hash bucket
and a linear scan is performed among the data points lying
in that bucket. While LSH based methods have been quite
popular in practical applications for solving approximate
nearest neighbor methods, they are often outperformed by
tree based methods (Sinha, 2014; Muja & Lowe, 2009; Liu
et al., 2004). A different class of algorithms that avoids
partitioning the input space altogether has recently been pro-
posed (Li & Malik, 2016; 2017). Instead of partitioning the
space into discrete cells, these methods construct continuous
indices, each of which imposes an ordering on data points
such that closeness in position serves as an approximate
indicator of proximity in the vector space.

3. Proposed method

In this section we present various strategies to improve
nearest neighr search performance using a single tree. As
mentioned earlier, we use RPT a base tree construct for near-
est neighbor search. Each internal node of an RPT stores a
random projection direction and a scalar split point. Once
query reaches an internal node, it is first projected onto the
random projection direction stored at this internal node, and
depending on whether the resulting 1-d projection lies to the

left or right side of the stored split point, the corresponding
branch (left or right) is taken. Space complexity of such an
RPT is O(nd). It is shown in (Dasgupta & Sinha, 2015) that
the probability that an RPT fails to find exact nearest neigh-
bors of a query can be restricted to an arbitrary constant,
if the following sufficient conditions are met: (a) the leaf
nodes contain number of data points exponential in the in-
trinsic dimension of the dataset and (b) data points are drawn
from a underlying probability distribution that satisfies dou-
bling measure condition. While the intrinsic dimension of
real world datasets is often much smaller than its ambient
dimension, accurately estimating intrinsic data dimension
is often an extremely difficult task. In addition, due to its
exponential dependence, unless intrinsic data dimension is
really low, sufficient leaf node size (to ensure small failure
probability) can be very high yielding a large number of
retrieve points. Moreover, the doubling measure condition
may not be satisfied for real world datasets. As a result, in
practical applications, tree based nearest neighbor search us-
ing defeatist strategy often results in high failure probability.
To compensate for this, often a forest of independent RPTs
are used to increase overall success probability, requiring
O(nd) space complexity overhead for each additional RPT
in the forest. In the following, we present two approaches
to boost success probability of nearest neighbor search of
an individual RPT and then present a combination of both
approaches.

3.1. Defeatist search with auxiliary information

In our first approach, we introduce a modified defeatist
search strategy, where, at each internal node we store aux-
iliary information to compensate for the fact that while
routing a query from root node to a leaf node, only one
of the two branches is chosen at each internal node. The
stored auxiliary information at any internal node aims to
compensate for the unvisited subtree rooted at this node
by identifying a small set of candidate nearest neighbors
that lie in this unvisited subtree. Note that this small set of
candidate nearest neighbor points otherwise would not be
considered had we adopted the traditional defeatist search
strategy. Now, to answer a nearest neighbor query, a linear
scan is performed among the points lying in the leaf node
(where the query is routed to) and union of the set of identi-
fied candidate nearest neighbor points at each internal node
along the query routing path as shown in Figure 1. A natural

Figure 1. Defeatist query processing using auxiliary information.
Blue node is where a query is routed to. Red rectangles indicates
auxiliary information stored on the opposite side of the split point
from which candidate nearest neighbors for the unvisited subtree
are selected.

Improved nearest neighbor search using auxiliary information and priority functions

question that arises is, what kind of auxiliary information
can we store to achieve this? On one hand, we would like
to ensure that auxiliary information does not increase space
complexity of the data structure significantly, while on the
other hand, we would like the candidate nearest neighbors
identified at each internal node along the query routing path
to be query dependent (so that not the same candidate near-
est neighbors are used for every query), and therefore, this
additional query dependent computation (for each query)
needs to be performed quickly without significantly increas-
ing overall query processing time. We argue next that we

Algorithm 1 RPT construction with auxiliary information

Input : data S = {z1,...,2,} C R? maximum number of
data points in leaf node no, auxiliary index size ¢, m independent
random vectors {V4, ..., Vi, } sampled uniformly from S~
Output : tree data structure

function MakeTree(S, no)

1: if |S| < no then

2 return leaf containing S

3: else

4: Pick U uniformly at random from S%~!

5: Let v be the median of projection of .S onto U

6 Set ail be the set of indices of ¢ points in S so that upon
projection onto U, they are the c closest points to v from
the left.

7: Set air be the set of indices of ¢ points in S so that upon
projection onto U, they are the c closest points to v from
the right.

8: Construct a ¢ X m matrix Lens whose 7" row is the vector
(%Tmail(i% V2T$a11(i)7 ceey Vylwanm).

9: Construct a ¢ X m matrix Rexn whose it row is the vector
(‘/lTrair(i)7 VZTxair(i)7 [ERX] Vn—zrxair(i))-

10: Rule(z) = (z'U <)

11: LSTree=MakeTree({z € S:Rule(x)=true},nog)
12: RSTree=MakeTree({z € S:Rule(x)=false},no)
13: return (Rule, LSTree, RSTree)

14: end if

can exploit properties of random projection to store auxiliary
information that helps us achieves the above goals. Note
that if we have an ordering of the distances of points from S
to query g, then any one dimensional random projection has
the property that upon projection, this ordering (of projected
points) is perturbed locally near projected q but is preserved
globally with high probability as shown below.

Theorem 1. Pick any query ¢ € R? and set of database
points S = {z1,...,x,} C R and let (1), 3(3), . .. de-
note the re-ordering of the points by increasing distance
Jfrom q, so that x 1y is nearest neighbor of q in S. Consider
any internal node of RPT that contains a subset S C S
containing x(1y and q. If q and points from S are projected
onto a direction U chosen at random from a unit sphere,
then for any 1 < k < |S|, the probability that there ex-
ists a subset of k points from S that are all not more than
U (q— x(1y)| distance away from U T q upon projection is

1 [S| lla—z(yll2
m T . — -
atmost 1351 o=z T

Roughly speaking, this means that upon projection, those
points that are far away from projected ¢ are unlikely to
be close to ¢ in original high dimension (thus unlikely to
be its nearest neighbors). On the other hand, the projected
points that are close to projected g, may or may not be its
true nearest neighbors in original high dimension. In other
words, with high probability, true nearest neighbor of any
query will remain close to the query even after projection,
since distance between two points does not increase upon
projection, however points which were far away from query
in original high dimension may come closer to the query
upon projection. Therefore, among the points which are
close to the projected g will definitely contain ¢’s true near-
est neighbor but will also contain points which are not ¢’s
true nearest neighbors (we call such points nearest neigh-
bor false positives). We utilize this important property to
guide us choose auxiliary information as follows. At any
internal node of an RPT, suppose the projected g lies on left
side of the split point (so that left child node falls on the
query routing path). From the above discussion, it is clear
that if ¢’s nearest neighbor lie on the right subtree rooted
at this node, then their 1-d projections will be very close
to the split point on the right side. Therefore, to identify
q’s true nearest neighbor, one possibility is to store actual
c high dimensional points (where c is some pre-defined
fixed number) which are closest ¢ points (upon projection)
to the right side of the split point as auxiliary information
for this node. There are two potential problems with this
approach. First, additional space complexity due to such
auxiliary information is O(nd) which may be prohibitive
for large scale applications. Second, because of 1-d random
projection property (local ordering perturbation), we may
have nearest neighbor false positives within these ¢ points.
To prune out these nearest neighbor false positives for each
query, if we attempt to compute actual distance from g to
these ¢ points in original high dimensions and keep only
closest points based on actual distance as candidate near-
est neighbors, this extra computation, will increase query
time for large d. To alleviate this, we rely on celebrated
Johnson Lindenstrauss lemma (Johnson & Lindenstrauss,

1984) which says that if we use m = O (log(e%l» random

projections then pairwise distance between c points and ¢
are preserved in R™ within a multiplicative factor of (1 + ¢)
of the original high dimensional distance in R?. Equipped
with this result, at each internal node of an RPT we store two
matrices of size ¢ X m (one for left subtree, one for right)
as auxiliary information, that is for each of these ¢ points,
we store their m dimensional representation as a proxy for
their original high dimensional representation. For all our
experiments, we set m to be 20. Algorithm 1 provides de-
tails of an RPT construction with this modification and the
following theorem shows that additional space complexity
due to auxiliary information is is O(n + d), where we hide

Improved nearest neighbor search using auxiliary information and priority functions

the log log(n/ng) factor.

Theorem 2. Consider a modified version of RPT where,
at each internal node of the RPT, auxiliary information is
stored in the form of two matrices, each of size ¢ X m (one
for left subtree, one for right). If we choose ¢ < 10ny,
additional space complexity of this modified version of RPT
due to auxiliary information is O(n + d).

Here ng is user defined maximum leaf node size of an RPT
and for all practical purpose log log(n/ng) can be treated as
a constant. Therefore, additional space complexity is merely
O(n+ d). While processing a query ¢ using this strategy, to
prune out the nearest neighbor false positives at any internal
node of an RPT, we project g onto m random projection
directions to have ¢’s m dimensional representation q. At
each internal node along the query routing path, we use
¢ to add ¢/, where ¢ < ¢ and ¢’ is a pre-defined fixed
number, candidate nearest neighbors to the set of retrieved
points (by computing distances from ¢ to ¢ data points in
m dimensional representation and keeping the ¢’ closest
ones) to compensate for the unvisited subtree rooted at this
node. We use ¢/ = 10 for all our experiments. Details of
query processing using this approach is presented in the
supplementary material. Note that due to this modification,
time to reach leaf node increases from O(dlog(n/ng)) to
O ((d+ em + clog(c)) log(n/ng) + md) and the number
of retrieved points that require a linear scan increases from
ng to (ng + ¢’ log(n/np)). We also note that using spill tree
for defeatist search yields a super-linear space complexity
as shown by the following theorem (a similar result was
shown in (Dasgupta & Sinha, 2013)).

Theorem 3. Space complexity for a spill tree with o per-
centile overlap, where a € (0,1), on each side of the me-

1
dian at each internal node is O (dn(1-loga (1+2a)))
3.2. Guided prioritized search

In our second approach, we seek to retrieve data points from
multiple leaf nodes, as opposed to a single leaf node, of
an RPT as candidate nearest neighbors. We can specify a
constant number of leaf nodes (say, [) a-priori from which
points will be retrieved and a linear scan will be performed.
In order to identify [such appropriate leaf nodes, we present
a guided search strategy based on priority functions. The
general strategy is as follows. First, the query is routed
to the appropriate leaf node as usual. Next, we compute
a priority score for all the internal nodes along the query
routing path. These priority scores along with their node
locations are stored in a priority queue sorted by priority
scores in decreasing order. Now we choose the node with
highest priority score, remove it from priority queue, and
route the query from this node to its child node that is not
visited earlier. Once reached at this child node, standard
query routing is followed to reach to a different leaf node.
Next, priority scores are computed for all internal nodes

along this new query routing path and are inserted to the
priority queue. This process is repeated until [different
leaf nodes are visited (see Figure 2). This search process
is guided by the current highest priority score where high
priority score of an internal node indicates that there is a
high likelihood that nearest neighbors of the query lies in
unexplored subtree rooted at this node and must be visited
to improve nearest neighbor search performance. In this
paper, we use local perturbation property of 1-d random
projection to define a priority score. At any internal node
(with stored projection direction U and split point v) of an
RPT, we define priority score at this node to be

fprl(U;v;q) = (1)

lv—UTq|
Here the intuition is that if the projected query lies very close
to the split point and since distance ordering is perturbed
locally (Theorem 1), there is a very good chance that true
nearest neighbor of the query, upon projection is located on
the other side of the split point. Therefore, this node should
be assigned a high priority score.

Just because a query upon projection lies close to the split
point at any internal node of an RPT does not necessarily
mean that nearest neighbor of the query lies on the opposite
side of the split point (unvisited subtree rooted at this node).
However, at any internal node of an RPT, if the minimum
distance (original distance in R%) between the query and the
set of points lying on the same side of the split point as the
query is larger than the minimum distance between the query
and the set of points lying on the opposite side of the split
point, then visiting the unvisited child node rooted at this
node will make more sense. We use this idea to design our
next priority function. Since computing actual distance is in
R? will increase query time, we use auxiliary information
for this purpose. Note that at each internal node, on each side
of the split point, we store m dimensional representation of
c closest points from the split point upon 1-d projection as
auxiliary information. For any query, once at any internal
node of an RPT, using m dimensional representation of g,
we first compute the closest point (in R™) among these ¢
points that lie on the same side of the split point as the query
upon 1-d projection and call it d337°. In a similar manner we
compute dy5. Due to JL lemma, d52® and d;:* are good
proxy for original minimum distance between and ¢ and
those c points in R? on both sides of the split point. Ideally,
if d;5F < d53me the priority score should increase and vice
versa because one of the ¢ points on the unexplored side is
closer to the query compared to the ¢ points on the same
side of the query. To take this into account, we propose a
new priority function defined as,

1 same
T Ua s Y, dOPP, d33ne) = . H:)ln 2
fP 2(Uy, Qyips Qyipn) ‘U — UTq| (dmgg > ()

Note that at each internal node, while the first priority func-
tion can be computed in O(1) time, the second priority

Improved nearest neighbor search using auxiliary information and priority functions

15t iteration

2nd jteration

3vd jteration

Figure 2. Query processing for three iterations (visiting three different leaf nodes) using priority function. The three retrieved leaf nodes
are colored blue. At each internal node an integer represents the priority score ordering. Lower the value, higher the priority. After visiting
each new leaf node ordering of priority scores is updated. Note that if a mistake is made at the root level and true nearest neighbor lie on
the left subtree rooted at root node, with three iterations, DFS will never visit this left subtree and fails to find true nearest neighbor.

Figure 3. Query processing using combined approach. Blue circles
indicate retrieved leaf nodes. Red rectangles indicate auxiliary
information stored on the opposite side of the split point at each
internal node, from which candidate nearest neighbors are selected,
along query processing path for which only one subtree rooted at
that node is explored. This figure should be interpreted as a result
of applying ideas from section 3.1 to Figure 2 after 3rd iteration.

function takes time O(mc) plus an additional O(md) time
to compute m dimensional representation q. We note that,
while a priority function similar to fyr1 has been proposed
recently (Babenko & Lempitsky, 2017), foro is new. In all
our experiments, prioritized search based on f,ro outper-
forms fyr1. Algorithm for query processing using priority
function is presented in the supplementary material.

3.3. Combined approach

Integrating ideas from section 3.1 and 3.2, we present a com-
bined strategy for effective nearest neighbor search using
RPT, where data points are retrieved from multiple informa-
tive leaf nodes based on priority function (as described in
section 3.2) and also from from internal nodes along these
query processing routes as described in section 3.1. Note
that while accessing multiple leaf nodes using priority func-
tion, if at any internal node of an RPT both its subtrees are
visited then there is no need to use auxiliary information at
that node. This combined approach is shown in Figure 3
and algorithm for query processing is presented in the sup-
plementary material. Due to space limitation, proofs of all
theorems are also presented in the supplementary material.

4. Empirical Evaluation

In this section we present empirical evaluations of our
proposed method and compare them with baseline meth-
ods'. We use six real world datasets of varied size
and dimension as shown in Table 1. Among these,
MNIST, SIFT and SVHN are image datasets, JESTER
is a recommender systems dataset and 20Newsgroup

and SIAMO7 are text mining datasets. Both SIAMO7

"We do not compare with LSH, since earlier study demon-
strated that that RPT performs better than LSH (Sinha, 2014).

and 20Newsgroup have very large data dimensions (d),
while SIFT has very large number of instances (n).

For each dataset, Dataset # instances | #queries | #dimensions
MNIST 65000 5000 768
we I:andomly SIFT 400000 10000 128
ChOOSC nstances SVHN 68257 5000 3072
(as ShOWH in JESTER 68421 5000 101
20Newsgroup 15846 3000 26214
2nd column of SIAMO07 23596 5000 30438

Table 1). to build Table 1. Datasets details)
appropriate data structure and randomly choose queries

(as shown in 3rd column of Table 1) to report nearest
neighbor search performance of various methods. We
design three different experiments. For the first two
experiments, we present our results for 1-NN search
problem, whereas for the third experiment, we present
results for 10-NN search problem. We use accuracy to
measure the effectiveness of various methods. For 1-NN
search, accuracy is simply calculated as the fraction of the
query points for which its true nearest neighbor is within
the retrieved set of points returned by respective methods.
For 10-NN search problem, accuracy of a query ¢ is defined
as | AL (k) N AR (k)| /| AL (k)|, where AT (k) is the set of
true k nearest neighbors and .AqR(k) be the set of k-nearest
neighbors reported by a nearest neighbor search algorithm.
We report accuracy averaged over number of queries listed
in third column of Table 1. NN-search accuracy is plotted
against the ratio of the number of retrieved points (for
which we need to perform a linear scan) to the total number
instances. For all our experiments, we set ngy to be 100
and use median split while constructing an RPT. We set
m = 20, ¢ = 500 and ¢/ = 10 for all our experiments>

4.1. Experiment 1

In the first experiment, we empirically show how auxiliary
information stored at internal nodes of an RPT improves
1-NN search accuracy using defeatist search. We compare
our proposed method (which we call RPT1) with vanilla
RPT without any stored information (which we call Normal
RPT) and spill tree with different percentile of overlap® (a).

2We experimentally observed that across datasets the ratio of
accuracy to actual query time as a function of c increases first
and after on and around c=500 it starts to decrease indicating that
beyond c=500 increase in accuracy comes at the cost of slower
query time and may not worth it.

3Note that, when we split an internal node of a spill tree with
overlap « on both sides of the median, left and right child nodes

Improved nearest neighbor search using auxiliary information and priority functions

As can be seen from Table 2, RPT1 outperforms all other
methods by a significant margin. With increasing «, search
accuracy of spill tree increases but so does space complexity.
For example, when o = 0.1, space complexity of spill tree
is O (dn'-3%), which is super-linear in n (see Theorem 3).

Dataset RPT1 | Normal RPT | ST,—0.025 | STa—0.05 | STa=0.1
MNIST 44% 12% 12% 16% 21%
SIFT 47% 23% 26% 30% 38%
SVHN 39% 8% 8% 12% 15%
JESTER 48% 13% 13% 19% 23%
20Newsgroup | 33% 7% 9% 9% 13%
SIAMO07 12% 5% 5% 6% 7%

Table 2. Comparison of 1-NN search accuracy using defeatist
search strategy with auxiliary information with baseline methods.

4.2. Experiment 2

In the second experiment we empirically evaluate how two
priority functions fpr4 and fpro help in improving guided
1-NN search accuracy by retrieving multiple leaf nodes of a
single RPT. A natural competitor of our approach is depth
first search (DFS) strategy and virtual spill tree. Note that
a virtual spill tree is same as vanilla RPT, except at each
internal node, in addition to a random projection direction
U and a split point v, two points corresponding to (3 —)
percentile point upon projection onto U (call it {) and (5 +a)
percentile point upon projection onto U (call it r) are stored.
While processing

a quer at an MNIST
. ! Yy a ,y (ler,a) | (2,0025) | (5,0.05) | (10,0.075) | (15,0.1) | (20,0.15)
internal node, if Fez | 19% | 3% | 1% | 5% | 61%
T Fort 19% 2% % 51% 56%
U q € [Z,T] then DFS 15% 2% 28% 30% 34%
. Virtual | 15% 20% 25% 30% 2%
both left and right ST
. (ler,a) | (2,0025) | (5,0.05) | (10,0.075) | (15,0.1) | (20,0.15)
child nodes are Toez 34% 1% 57% 61% 65%
.. . or 2% 3% 52% 58% 61%
visited otherwise, DES 7% 2% 36% 37% 0%
imilar to defeatist Virtual | 29% 35% 3% % 58%
siumilar to aereatis S
: (iler,a) | (2,0.025) | (5,0.05) | (10,0.075) | (150.1) | (20,0.15)
query proceSSIHg [12% 23% 34% 42% 48%
e 3 3% 2% 2
3 1 Spr1 13% 24% 34% 41% 7%
n RPT, a Slngle DFS 10% 6% 22% 25% 29%
child node is Virtual | 10% 4% 8% 21% 34%
. JESTER
visited. Empirlcal (iter, a) | (2,0.025) | (5,0.05) | (10,0.075) | (15,0.1) | (20,0.15)
. Torz 21% 34% 46% 54% 60%
comparison of Jort 20% 2% 3% 50% 55%
DFS 6% 2% 28% 30% 35%
Virtual | 17% 2% 26% 3% 3%
e€se Tour methods
. . 20Newsgroup
are pI‘OVIded n Giter, @) | (2,0.025) | (5,0.05) [(10,0.075) | (150.) | (20,0.15)
Table 3 I Toez 1% 20% 29% 34% 30%
able 5. n case Fort 1% 19% 28% 33% 36%
DFS 9% 4% 8% 21% 26%
of fprl, fpr2 and Virtual | 9% 11% 13% 15% 22%
. . SIAMO7
DFS, iter is used Gler,a) | (2,0025) | (5,005 | (10,0.075) [(150.1) | (20,0.15)
: : fpr2 3% 14% 19% 22% 25%
to indicate how g TS
: : DFS 6% 9% 13% 15% 18%
many distinct leaf Virtual | 6% 7% 9% 1% 4%

nodes are accessed,
while « is used
to indicate virtual
spill amount in
case of a virtual spill tree. As can be seen from Table
3, 1-NN search accuracy of all methods improve with
increasing iter and «.. Observe that f,1 outperforms both

Table 3. Comparisons of 1-NN accuracy
of prioritized search with baseline meth-
ods.

represent data points corresponding to 0 to (% +a) %100 percentile
and (% — a) % 100 to 100 percentile upon projection.

DFS and Virtual spill tree. Moreover, fpro always performs
better than fyr1. One observation that we make from
Table 3 is that, for for1 or fpr2, as we increase number of
iterations, initially accuracy increases at a much faster rate
but with increasing iterations, it slows down. This indicates
that later iterations are not as useful as initial iterations. One
of the possible reason for this could be that in a single tree,
amount of randomness is limited. Therefore, to increase
accuracy further, we possibly need to use multiple trees
and use fewer number of iterations per tree. But note that
using multiple trees increases space complexity. A natural
question that arises is what is the right trade-off? We
explore this in the next experiment.

4.3. Experiment 3

In this experiment, we aim to empirically find a trade-off
between number of trees and number of iterations per tree.
All results presented in this section are for 10-NN search
problem. Since the previous two experiments demonstrate
that both auxiliary information and guided prioritized search
help in improving NN search accuracy, in this section we use
a combination of both methods as described in section 3.3,
where we use fpro as our priority function. To address the
issue of number of trees vs number of iterations per tree, we
design our experiment as follows. We first consider 10-NN
search problem with budgeted query, where, we are allowed
to access only 20 leaf nodes using combined approach. This
can be done in multiple ways, such as, 20 iterations in a
single tree, 10 iterations each in two trees, etc. While using
three trees, number of iterations per tree will be roughly 7.
We call this search strategy ‘Multi-Combined’, as we are
using multiple trees and using combined search strategy in
each tree. The results are listed in Table 4.

As can be seen from Table 4, increasing number of trees
increases search accuracy (of course, at the cost of addi-
tional space complexity). The biggest increasing in accu-
racy occurs when we use two trees instead of one. This
happens not only because we are introducing additional
randomness by adding an extra tree, but also because we
are reducing later iterations in each tree which we already
observed are not very useful in increasing accuracy. We
see from Table 4 that beyond three trees, accuracy increases
very slowly, and due to additional space complexity over-
head, adding more than three trees is probably not worth it.
Equipped with this observation, next we compare how does
normal RPT fare with Multi-Combined method and com-
bined method, if we are allowed to create multiple normal
RPTs. To ensure a fair comparison we set the number of
iterations (for combined and multi-combined method) equal
to number of trees in Normal RPT, which we select from
the set {2, 5, 10, 15, 20}. In this experiment, we choose
to use 3 trees for multi-combined method, although this
depends on the user and how much space she wants to use.

Ranked_error

Improved nearest neighbor search using auxiliary information and priority functions

10

10 oo

oo o8
os o

Accuracy

o8
o6 oo

o6
os
os
0.4
0.4
os 0z
0z o 02
02,
60

EXE S G005

(a) MNIST

G610

(b) SIFT

(c) SVHN

Accuracy

(d) JESTER

(e) 20NEWSGROUP

() SIAMO7

Figure 4. 10-NN accuracy for six datasets. The x-axis represents ratio of # of retrieved points to the total number of instances. The markers
from left to right corresponding to 2, 5, 10, 15 and 20 iterations (for combined and Multi-Combined method) / trees (for normal RPT).

(a) MNIST

(h) STFT

(c) SVHAN

©0.0020

'0.0015

o.0010

©0.0005

0.020

o.010

©o.000g
8.

(d) JESTER

(e) 20NEWSGROUP

(f) SIAMO7

Figure 5. Rank error for six datasets. The x-axis represents ratio of # of retrieved points to the total number of instances. The markers
from left to right corresponding to 2, 5, 10, 15 and 20 iterations (for combined and Multi-Combined method) / trees (for normal RPT).

Note that each addi- Liter) [(1,200 [2,10 [3D [@5) [GA)
. MNIST 72% | 84% | 89% | 91% | 93%
tional normal RPT re- SIFT 55% | 66% | 14% | 11% | 80%

. SVHAN 63% | 71% | 84% | 81% | 89%
quires O(nd) space, JESTER | 72% | 82% | 87% | 89% | 90%

] 111 20Newsgroup | 39% 47% | 52% | 54% | 56%
while additional space STAMO7 19% | 21% | 24% | 24% | 25%

requirement for each
Multi-combined tree is
O(n + d). We present
our results in Figure 4.
Our base line is normal
RPT, where we use multiple {2,5,10,15,20} RPTs accessing
one leaf node per tree using defeatist search (red curve).
We compare it against our proposed combined approach
(one tree) but using different iterations {2,5,10,15,20} (blue
curve). Finally we compare multi-combined approach
(green curve) which is same as blue curve but we use
3 trees. Form Figure 4, we see that using only three
(Multi-Combined) trees we can achieve higher accuracy
while requiring less space compared to normal RPT. In
addition, we also report another natural metric known as
rank-error (Ram et al., 2012) to evaluate effectiveness of
our proposed method. For a query ¢ and a returned near-
est neighbor candidate p € S, rank error 7 is defined as
T=NreS:|g—rlz < llg—0pl2}/IS|. For 10-NN

Table 4. 10-NN search accuracy us-
ing Mult-Combined method with
different # of trees (L) and # of iter-
ations per tree (iter).

search problem, we use average rank-error of closest 10 re-
trieved points. We present the results in Figure 5. As can be
seen from Figure 5, combined approach always yields lower
rank-error compared to normal RPT, and Multi-Combined
tree always yields lower rank-error compared to combined
method (using a single tree).

5. Conclusion

In this paper we presented various strategies to improve
nearest neighbor search performance using a single space
partition tree, where basic tree construct was an RPT. Ex-
ploiting proprieties of random projection, we demonstrated
how to store auxiliary information of additional space com-
plexity O(n+d) at the internal nodes of an RPT that helps to
improve nearest search performance using defeatist search
and guided prioritized search. Empirical results on six real
world demonstrated that our proposed method indeed im-
prove the search accuracy of a single RPT compared to
baseline methods. Our proposed method can also be used
for efficiently solving related search problems that can be
reduced to an equivalent nearest neighbor search problem
and solved using RPT, for example, maximum inner product
search problems (Keivani et al., 2017; 2018).

Improved nearest neighbor search using auxiliary information and priority functions

References

Andoni, A. and Indyk, P. Near-Optimal Hashing Algorithms
for Approximate Nearest Neighbor in High Dimensions.
Communications of the ACM, 51(1):117-122, 2008.

Babenko, A. and Lempitsky, V. Product split trees. In
International Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Bentley, J. L. Multidimensional binary search trees used
for associative searching. Communications of the ACM,
18(9):509-517, 1975.

Beygelzimer, A., Kakade, S., and Langford, J. Cover Trees
for Nearest Neighbor. In 23rd International Conference
on Machine Learning (ICML), 2006.

Ciaccia, P., Patella, M., and Zezula, P. M-tree : An Efficient
Access Method for Similarity Search in Metric Spaces.
In 23rd VLDB International Conference, 1997.

Dasgupta, S. and Sinha, K. Randomized partition trees for
exact nearest-neighbor search. In 26th Annual Conference
on Learning Theory (COLT), 2013.

Dasgupta, S. and Sinha, K. Randomized Partition Trees for
Nearest Neighbor Search. Algorithmica, 72(1):237 — 263,
2015.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, C. S.
Locality-Sensitive Hashing Based on p-Stable Dis. In
The 20th ACM Symposium on Computational Geometry,
2004.

Gionis, A., Indyk, P., and Motwani, R. Similarity search
in high dimensions via hashing. In 25th International
Conference on Very Large Databases (VLDB), 1999.

Houle, M. E. and Nett, M. Rank based similarity search:
Reducing the dimensional dependence. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 37(1):
136-150, 2015.

Johnson, W. B. and Lindenstrauss, J. Extensions of Lips-
chitz Mapping into Hilbert Space. Contemporary Mathe-
matics, 26:189 — 206, 1984.

Katayama, N. and Satoh, S. The ST-tree : An Index Struc-
ture for High-dimensional Nearest Neighbor Queries. In
Annual SIGMOD Conference, 1997.

Keivani, O., Sinha, K., and Ram, P. Improved maxium
inner product search with better theoretical guarantee.
In International Joint Conference on Neural Networks
(IJCNN), 2017.

Keivani, O., Sinha, K., and Ram, P. Improved maximum
inner product search with better theoretical guarantee
using randomized partition trees. Machine Learning,
107(6):1069-1094, 2018.

Krauthgamer, R. and Leel, J. Navigating Nets : Simple
Algorithms for Proximity Search. In 15th Annual Sympo-
sium on Discrete Algorithms (SODA), 2004.

Li, K. and Malik, J. Fast k-nearest neighbor search via
dynamic continuous indexing. In 33rd International Con-
ference on Machine Learning (ICML), 2016.

Li, K. and Malik, J. Fast k-nearest neighbor search via
prioritized DCI. In 34th International Conference on
Machine Learning (ICML), 2017.

Liu, T., Moore, A. W., Gray, A., and Yang, K. An In-
vestigation of Practical Approximate Nearest Neighbor
Algorithms. In 18th Annual Conference on Neural Infor-
mation Processing Systems (NIPS), 2004.

Muja, M. and Lowe, D. G. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In 4th In-
ternational Conference on Computer Vision Theory and
Applications, 2009.

Omohundro, S. M. Bumptrees for Efficient Function, Con-
straint and Classification Learning. In 4¢th Annual Confer-
ence on Neural Information Processing Systems (NIPS),

1990.

Ram, P, Lee, D., and Gray, A. G. Nearest neighbor search
on a time budget via max margin trees. In SIAM Interna-
tional Conference on Data Mining (SDM), 2012.

Sinha, K. LSH vs Randomized Partition Trees : Which One
to Use for Nearest Neighbor Search? In 13th Interna-
tional Conference on Machine Learning and Applications

(ICMLA), 2014.

Sinha, K. Fast 11-norm nearest neighbor search using a
simple variant of randomized partition tree. Procedia
Computer Science, 53:64-73, 2015.

Sinha, K. and Keivani, O. Sparse randomized partition trees
for nearest neighbor search. In 20th International Confer-
ence on Artificial Intelligence and Statistics (AISTATS),
2017.

Sproull, R. F. Refinements to nearest neighbor searching in
k-dimensional trees. Algorithmica, 6:579 — 589, 1991.

Uhlmann, J. K. Satisfying General Proximity/Similarity
Queries with Mteric Trees. Information Processing Let-
ters, 40:175-179, 1991.

