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Abstract
We present a framework to compose artificial neu-
ral networks in cases where the data cannot be
treated as independent events, our particular mo-
tivation is star galaxy classification for ground
based optical surveys. Due to a turbulent atmo-
sphere and imperfect instruments, a single image
of an astronomical object is not enough to defini-
tively classify it as a star or galaxy. Instead the
context of the surrounding objects imaged at the
same time need to be considered in order to make
an optimal classification. The model we present
is divided into three distinct ANNs: one designed
to capture local features about each object, the
second to compare these features across all ob-
jects in an image, and the third to make a final
prediction for each object based on the local and
compared features. By exploiting the ability to
replicate the weights of an ANN, the model can
handle an arbitrary and variable number of indi-
vidual objects embedded in a larger exposure. We
train and test our model on simulations of a large
up and coming ground based survey, the Large
Synoptic Survey Telescope (LSST) and compare
to the state of the art approach, showing improved
overall performance as well as better performance
for a specific class of objects that are important
for the LSST.

1. Introduction
The Large Synoptic Survey Telescope (LSST) is a ground
based photometric survey that will commence in early 2022
and will observe for 10 years. It will image the entire avail-
able sky every three nights and produce over one petabyte of
data a year. The science goals of the survey are vast, ranging
from the detection of dark energy and dark matter signa-
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tures to mapping small objects in the Solar System such
as near-Earth asteroids (LSST Science Collaboration et al.,
2009). The scale of the data and the types of measurements
require sophisticated data analysis methods and present a
great opportunity for machine learning scientists to work
with domain scientists on fundamental science questions.
Conversely, the astronomical data that is collected creates
new challenges for the machine learning community and
promotes the development of new methods. Collaborations
between machine learning scientists and astronomers have
been steadily growing and diverse in methods and appli-
cations, including a deep learning approach for analyzing
strongly lensed systems (Hezaveh et al., 2017), a proba-
bilistic graphical model for processing astronomical images
(Regier et al., 2015), an ensemble approach for classification
of supernova (Lochner et al., 2016), and many others. These
projects have contributed to both fields, which is also the
aim for our work. In this paper we present the specific ap-
plication of star galaxy classification, for which we develop
a novel framework for composing neural network models in
order to make advances in the field of astronomy.

Star galaxy classification is one of the first processing steps
in the data analysis pipeline of any astronomical survey;
its foundational nature means that it affects almost every
subsequent step of the pipeline (Jurić et al., 2015). The
inputs to star galaxy classification are a collection of small,
cutout images of detected sources in a single exposure, and
the outputs are the predictions for each detected source in
that exposure. A single exposure records the photon counts
of each pixel of a CCD exposed for a short period of time.
For LSST, each exposure is a 16 megapixel grid with an
exposure time of 15 seconds. The entire telescope is made
up of 189 of these CCD detectors (Kahn et al., 2010). It is
expected that approximately 1200 sources will be detected
and thus need to be classified for each exposure. Figure 1
shows a single exposure on a log scale with 16 representative
cutouts to the right. Note that this exposure contains 1273
detected objects.

In an ideal world for astronomers (one without an atmo-
sphere), this is a rather simple problem. Stars can be thought
of as point sources of light, while galaxies have some spatial
distribution. Thus in order to make an accurate prediction
all one has to do is measure the size of a source and, if it
is greater than a certain threshold, it can be safely classi-
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Figure 1. Left: an example of a single exposure with pixel values plotted on a log scale. Right: 16 cutout images of detected sources in
this exposure. The entire exposure has 1273 detected sources.

fied as a galaxy. However with a turbulent atmosphere and
imperfect optics, light is spread out before it reaches the
detector. This spreading function is often called a point
spread function and it changes both spatially and temporally.
Thus one cannot make predictions assuming that the sources
are IID across exposures. Instead one must use a model that
is capable of handling the confounding factor of the point
spread function (PSF) in order to make accurate predictions.
Figure 2 shows an example star and an example galaxy with
and without the PSF.

In the last several years there have been tremendous ad-
vances in computer vision, especially regarding the use of
convolutional networks for classification (Krizhevsky et al.,
2012). One of the main motivators of this work is to take
advantage of this progress by applying it to the field of as-
tronomy. However this cannot be done without significant
modification. Section 2 will show how this problem is cur-
rently being solved by astronomers and why current vision
models from machine learning need to be extended in order
to tackle this problem. Section 3 details the framework we
have developed for composing neural network models to
predict on non IID instances and to predict simultaneously
for a variable number of instances. Our empirical studies
are presented in Section 4, showing how our model is able
to achieve better results than what is currently used in as-
tronomy. We present our results on simulations of LSST
observations using the GalSim image simulation package

(Rowe et al., 2015), which was designed and developed by
a large group of domain scientists. GalSim is designed to
meet the stringent requirements of high precision image
analysis applications such as weak gravitational lensing, for
current datasets and for future astronomical surveys includ-
ing LSST. In Section 5 we discuss future work, focusing on
how our compositional framework can be further general-
ized to handle even greater diversity in inputs.

2. Related Work
In this section we describe how astronomers currently solve
star galaxy classification, and why machine learning models
that assume independence between cutouts are inadequate.

2.1. Measuring Extendedness

When classifying a cutout as a star or galaxy, the most im-
portant signal is whether the object is “extended” or not.
Objects that are unextended are thought to be stars (point-
like sources of light), while objects that are extended are
galaxies. Astronomers have several different methods of
measuring extendedness, but as shown by Garmilla (2016),
they all achieve similar performance and are closely related.
Thus we focus on only one of these related techniques. To
measure the extendedness astronomers fit two models to
each cutout object, one fitting a point spread function, and
the second of which also includes a galaxy model. Both of
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Figure 2. Example images of a star and galaxy with and without
the PSF. The first row shows a star and the second row shows a
galaxy. The first column is the object without a PSF applied and
the second column shows the object with the PSF applied. As
we can see without the PSF a star is a point like source of light
but becomes spatially distributed when the PSF is applied. Thus
making the problem of discriminating between stars and galaxies
more challenging. Note the difference in noise level between
the star and galaxy has to do with the galaxy being sampled at a
dimmer magnitude. Stars at similar magnitude will have a similar
noise level.

these fits are based on selecting from a discrete set of tem-
plates and parameterized profiles, using a chi-squared test
to identify the best-fitting template for each model. From
the two models, we then separately measure Magpsf , the
magnitude of the object weighted by the fitted model of
the point spread function, and Maggmodel

, the magnitude
measured from the galaxy fitted model. Note that the mag-
nitude of an object is a log measure of the brightness of
the object: smaller magnitudes mean brighter objects and
larger magnitudes mean dimmer objects (inverse scale). We
can then measure the extendedness of a single object as
Magpsf −Maggmodel

. Typical numbers for magnitudes in
modern sky surveys are 15-25. Intuitively, a star being a
point-like source of light, the only process responsible for
spreading out its light as it travels through the atmosphere
is the PSF. Thus the PSF will be the best fitted model and
Magpsf −Maggmodel

should measure zero for a star. On
the other hand, for galaxies, Magpsf −Maggmodel

should
differ from zero, since galaxies have an inherent size and
the best fitted model will not be Magpsf (Garmilla, 2016).

Figure 3. A size magnitude plot for a single exposure. In this figure
we illustrate how star galaxy classification is typically solved by
measuring the size and magnitude of each object in an exposure
and making a classification cut on the size. The blue dots indicate
galaxies and the red dots stars. We use a popular method used
by the Dark Energy Survey (Jarvis et al., 2016) to measure size,
originally developed by Hirata & Seljak (2003) and improved by
Mandelbaum et al. (2012). A representative classification cut is
shown by the black horizontal line. As we can see, this method
achieves strong performance for bright objects, but the perfor-
mance degrades for dim objects.

An example of a typical size magnitude plot for a single ex-
posure can be seen in Figure 3. As this example shows, this
method does very well for bright objects (low magnitude),
but the star predictions are highly contaminated by galaxies
for lower magnitudes.

Astronomers have used the preceding argument to create
classifiers based on thresholds of extendedness to determine
if an object is a star or galaxy. This method was used for
the Sloan Digital Sky Survey (SDSS) (Lupton et al., 2001)
and has also been adopted by subsequent surveys including
Hyper Suprime-CAM (HSC) (Bosch et al., 2018), Dark
Energy Survey (DES) (Jarvis et al., 2016) and is intended
to be used for LSST (Jurić et al., 2015). However as sky
surveys push deeper into space, gathering data on dimmer
objects, this method becomes less effective and is unable to
distinguish dimmer objects (Garmilla, 2016). Thus there is
a significant need for new methods that are not just better
overall, but well suited to dimmer objects. The method
we will discuss in Section 3 achieves better performance
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both overall and specifically on dimmer objects, as shown
in Section 4.

2.2. Non-IID Data and the Role of Context

Deep learning has prompted rapid progress in computer vi-
sion especially in regards to object classification and object
detection (Krizhevsky et al., 2012; Girshick et al., 2014).
This progress provides ample motivation to apply deep learn-
ing methods to star galaxy classification. However, it turns
out that these methods cannot be applied effectively without
significant modification.

In particular, the point spread function acts as a confounding
factor on the input data, creating a significant and correlated
source of uncertainty. The high variation of the PSF makes
it entirely possible, even common, for a star in one exposure
with a large PSF to appear bigger (be more extended) than a
galaxy in another exposure with a smaller PSF; this situation
can be seen in the example in Figure 2. The PSF can vary
both across exposures and within different spatial regions
of the same exposure. However, the only available evidence
of the PSF is its effect on this and nearby objects in the
exposure (particularly stars).

Thus, the nearby objects in an exposure provide “context”
that is necessary to the prediction task: here, information
about the possible magnitude and shape of the PSF. How-
ever, this information is entangled with the information of
interest, i.e., whether the objects are stars or galaxies. We
contend that extracting and sharing this contextual informa-
tion is critical to effective star galaxy classification.

This assertion is borne out empirically: when we evaluate
the performance of a standard classifier framework modeled
after AlexNet (Krizhevsky et al., 2012), except using only
one output neuron for a binary classifier, on the datasets
described in Section 4 we find that the PSF has a major
and deleterious effect. The results are reported in Table
1. If we apply a fixed PSF to all objects, the deep convolu-
tional model achieves a strong performance; this is degraded
slightly if we allow the PSF to vary over the exposure (“spa-
tial variation”) but keep it constant across exposures (“tem-
poral variation”). However, if we move to the more realistic
setting of a PSF that varies both spatially in a single expo-
sure and across different exposures, we see performance
degrade to random guessing, with little improvement even
as the data set size grows.

In our initial work we also tested an R-CNN model (Girshick
et al., 2014), which solves the slightly more general problem
of simultaneously detecting and classifying objects in an
image. In star galaxy classification, detection is typically
done by an earlier processing step in the pipeline. And
star galaxy detection is a much easier problem than general
object detection. Unfortunately the R-CNN achieved poor

performance on both detection and classification, perhaps
because of the low signal to noise ratio in the data, which
is characteristic of the problem. In addition, images are
quite large and the vast majority of pixels view empty space
(background), suggesting there may be issues due to class
imbalance.

These impediments of standard classifier frameworks moti-
vate us to develop a framework for composing neural net-
work models to capture non-IID data effects while also
allowing for varying number of objects in a given exposure.

3. ContextNet
The question we are trying to solve is thus not a straightfor-
ward classification question, but what we call a contextual
classification question: the classification of one object can-
not be determined without taking into account the context of
the surrounding objects. We address this problem by divid-
ing up the modeling procedure into three consecutive steps:
local modeling, global modeling and predicting. Each of
these steps is associated with its own neural network. The lo-
cal network is designed to capture local features about each
individual object in a single exposure, independent from all
other objects in the exposure. It is then replicated for how-
ever many objects exist in an exposure. The global network
is designed to take in all of the local features and produce
global features that describe the exposure as a whole. Fi-
nally, the prediction network takes in the local and global
features to produce a class prediction; like the local network,
it is replicated as many times as there are objects and applied
independently to each. A pictorial overview of the model
can be seen in Figure 4.

We define a cutout of a single object X = (x1, x2, ..., xn)
where xi is the value of a single pixel. We define an expo-
sure E = {Xj}mj=1 as collection of cutout images where
there are m cutouts in each exposure. (In the sequel we
show how our architecture can be extended to exposures
containing more than m cutouts.) A single input to our
model corresponds to one exposure.

The local network LN is a neural network that takes in a
single object (cutout image) and outputs a vector of local
features:

Yj = (y1, y2, ..., yk) = LN(Xj) (1)

Note that, for our specific application, we also include the
two coordinates representing the position of the object in the
sky as a local feature in Y . The local network is replicated
and applied m times to each cutout in the exposure.

The input to the global network, GN , are the concatenated
outputs of the local network:

G = GN(Y1, . . . , Ym) (2)
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Table 1. Models like AlexNet achieve excellent performance on standard image classification datasets. However, these models are not
well suited to handle non-IID data. This table shows the performance of an AlexNet-like architecture for star galaxy classification. If all
objects are blurred with the same PSF, the model does remarkably well, and only degrades slightly when the PSF changes spatially but is
held constant across exposures (temporal variation). However, if the PSF varies between exposures the model fails completely, even when
the amount of training data is doubled.

PSF SPATIAL VARIATION PSF TEMPORAL VARIATION TRAINING SIZE ACCURACY

CONSTANT CONSTANT 5000 EXPOSURES 0.97
VARYING CONSTANT 5000 EXPOSURES 0.92
VARYING VARYING 5000 EXPOSURES 0.49
VARYING VARYING 10000 EXPOSURES 0.51

       Cutouts

star / galaxy?

local

global

local

Figure 4. High level overview of the ContextNet architecture. Each
color represent a different network and a different step in the
modeling process. Blue is the local network that takes in cutouts
and produces local features for each object. It is replicated as many
times as there are objects in the exposure. Yellow is the global
model that takes in all the local features and distills that into global
features corresponding to the entire exposure. Red is the prediction
network that takes in both the local and global features and makes
the final prediction for each object. It is also replicated as many
times as there are objects.

The output of GN is a single vector representing the con-
textual information in the exposure.

Finally, the prediction network, PN , takes in a single ob-
ject’s local feature vector and the global context vector, and
is replicated and applied m times for each cutout image in
the exposure:

Pi = PN(Yi, G) (3)

This results in m predictions, one for each object in the
exposure. All three models are trained simultaneously using
a binary cross entropy loss for each prediction and propa-
gating the gradients through all three networks. Figure 4
shows a high level layout of the model.

Varying numbers of objects. In practice, the number of
objects (cutout images) varies by exposure. While our basic

model assumes a fixed number of objects per exposure, it
is easily extended to predict on exposures with N > m
objects. Intuitively, we need enough objects to accurately
estimate the effect of the PSF in the vicinity, but expect
performance to saturate as m increases. In practice, we use
a simple ensembeleing technique akin to bagging (Breiman,
1996). First, we define a minimum number of predictions np

to make on each cutout, We then create Sn = dnp ∗N/me
sets of size m, filling each set randomly with cutouts, while
ensuring that there are no duplicates in any single set and
that each cutout appears in at least np sets. Finally, we
predict on each set as previously described, and average
over the predictions produced for each cutout. We can select
m to be large enough to accurately assess the PSF effect,
while small enough to be confident that at least m objects
will appear in every exposure. We then expect most sets of
size m to be sufficient to estimate the context, and averaging
over np such sets provides a degree of robustness against
unlucky set selections.

Another important point is that the architectures of the three
different neural networks are quite flexible and can be mixed
and matched. For our application, for example, we can use
a convolutional network for the local network, and fully
connected networks for the global and prediction network.
It is also possible to include multiple types of local networks
– for example, if the input could consist of differently sized
cutouts, we could train a local network for each size, as long
as the local features, Yj , produced had the same dimensions
for all local networks. Thus our ContextNet framework is
not only capable of handling non-IID data, but also a vari-
able number of inputs, and inputs of different dimensions or
types.

4. Experiments
As the start of the LSST survey approaches simulations are
being produced by a variety of teams and collaborations
in order to test and calibrate all components of the data
management (DM) pipeline. This includes the current star



Submission and Formatting Instructions for ICML 2018

Table 2. Overall comparison of ContextNet with the size magni-
tude based classifier in the DM stack. ContextNet does signifi-
cantly better on accuracy, precision and recall. Note that achieving
a high precision sample of stars is important for downstream pro-
cessing tasks.

MODEL RECALL PRECISION ACCURACY

CONTEXTNET 0.96 0.88 0.93
DM CLASSIFIER 0.92 0.82 0.85

galaxy classifier within the DM stack. It is this simulated
data that we test on and a classifier based on the DM stack
that we compare with. With respect to the domain science,
this is the most important comparison since the DM based
classifier is what will be used if no superior method is pro-
duced. The DM classifier has been inherited and modified
from the one used in SDSS and is of the form discussed
in section 2. The use of simulated data, while not ideal, is
necessary since ground truth on real astronomical data is
not possible to obtain.

The architecture of our model is as follows: The lo-
cal network takes in a cutout of dimension (28, 28) and
the layers are Conv(Filters=64, kernel=(3, 3)→ Elu →
Conv(Filters=128, kernel=(3, 3) → Elu → Flatten →
Dense(20)→ Elu. We chose only 20 local features because
cutouts of galaxies are not complex images as seen by figure
1 they are essentially noisy elliptical objects positioned in
the center of the image. The global network takes in the
concatenation of the local features from 1000 objects in the
exposure with layers Dense(1000)→ Elu→ Dense(1000)
→ Elu→ Dense(1000)→ Elu. We chose 1000 objects as
the minimum number per exposure which is approximate
for LSST. Each exposure will have anywhere from 1200 -
2200 detected sources and anything less than 1000 means
something most likely went catastrophically wrong with the
instruments. The prediction network takes in the local fea-
tures for a single object and the global features and has the
following architecture Dense(100) → Elu → Dense(100)
→ Elu → Dense(1) → Sigmoid. The final output is the
probability that the object is a galaxy and we use binary
cross entropy to train.

Our training set consists of 5000 exposures each contain-
ing 1000 sources. The test set consists of 1000 exposures
and each contain anywhere from 1200-2200 objects1. The
results are presented in table 2.

As can be seen from Table 2 and Figure 5, ContextNet
achieves much better overall performance; perhaps more
importantly, most of this boost comes from significantly bet-

1Our code and information for data access can be found at
https://github.com/NobleKennamer/ContextNet.

Figure 5. Left: The magnitude distribution for the DESC simula-
tion data set used for testing. Blue indicates the distribution for
all objects, red the distribution for galaxies only, and green for
stars only. As we can see, galaxies tend to be dimmer than stars.
Right: Accuracy of the two models, binned by magnitude, with
ContextNet in blue and the DM stack classifier in green. The two
models are competitive on brighter objects, but ContextNet gives
much better performance for dimmer objects. Performance in this
dim region is becoming increasingly important as ground-based
astronomical surveys image deeper into the sky.

ter performance for dim objects. Dim objects are especially
important for LSST and future surveys as they image deeper
into the sky, capturing dimmer objects than have previously
been measured.

Even though it is not ideal to use simulated data, one of its
advantages is that we can use the parameters that defined
the objects in the simulation to better understand the pre-
dictions being made. This is especially important for deep
models where interpretability is hard and often not possible.
It is also necessary to develop a strong understanding of our
model to convince domain scientists to adopt this approach.
The main parameters used in the simulation to define stars
and galaxies are their brightness or magnitude, size, eccen-
tricity and the amount it is rotated. Stars are modeled as
perfectly round objects with negligible size. Galaxies on the
other had have distributions over each of these parameters.
Figure 6 shows the parameters plotted against the probabil-
ity of being predicted a galaxy by ContextNet. Intuitively
the size of the object is the biggest signal for being predicted
a galaxy. This is expected when considering that state of the
art models for this problem only use the size of the object
to make a prediction. We can also see that the amount the
object is rotated or stretched (eccentricity) seems to play
a very little role in the prediction. This is somewhat sur-
prising considering that galaxies are the only objects that
are rotated and stretched. However this is due to the fact
that the PSF can cause stars to appear rotated or stretched
making this a much weaker signal. From these plots we can
see that the magnitude of the object also appears to be a
strong signal for the predictions of ContextNet. This is also
a reasonable result given that stars and galaxies have very
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Figure 6. In these four plots galaxies are colored purple and stars are pink. The y-axis is the probability of classifying the object as a
galaxy. From left to right: the first figure compares the probability of detecting a galaxy with the size of each object, the second with the
magnitude, the third with the eccentricity and the last with the amount it was rotated from -90 to 90. Using the simulation parameters can
help us interpret the predictions of the model.

Figure 7. The top figure shows the size on each object on the x axis and the probability of classifying the object as a galaxy on the y-axis
and each object is colored by its magnitude. The yellow-red colors are galaxies and the blue-green colors are stars. The bottom figure is a
zoomed in figure of the top focusing on smaller objects and with the stars removed.
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different magnitude distributions, as seen in Figure 5.

We examine the relationship between predictions and mag-
nitudes further in Figure 7. Here we plot the probability
of being classified as a galaxy on the y-axis and the size
of each object on the x-axis. We color each object by its
magnitude. The top figure shows all objects and the bottom
plot zooms in on just the smaller objects. From this we can
see an interesting relationship where small bright galaxies
can be classified correctly as galaxies or incorrectly as stars.
The incorrect classification of these small bright objects
makes sense physically given that small bright galaxies do
look very much like stars. But the fact that not all of these
objects are classified incorrectly tells us that the model is
making classifications based on more than just the size and
magnitude of the object.

5. Conclusion
In this paper we presented ContextNet a framework for com-
posing neural network models to make predictions for non
IID data as well as being able to take in variable number of
inputs and possible different types of data. We showed our
model achieved better performance for an important prob-
lem in astronomy obtaining superior performance to a model
that LSST intends to use. The model does particularly better
for dim objects, which are becoming increasingly important.
We also were able to partially interpret our results by re-
lating parameters of the simulated objects with predictions
made by the model. This is a necessary analysis when try-
ing to convince domain scientists to adopt new models. In
addition we discussed why standard computer vision tech-
niques failed at this problem and needed to be extended for
contextual classification. We intend to extend this model by
not just having one type of local network, but several for
various cutout sizes. We also intend to extend this work to
measure properties about stars and galaxies in addition to
classifying them.
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