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Supplementary material

Appendix notations. We denote by Et the conditional expectation at iteration t, conditioned on all the past and by E a full
expectation. We denote by a tilde the values that come from the deterministic analysis of FW. Denote by rt = −∇f(xt).
For k ∈ N∗, denote by [k] all integer between 1 and k.

Appendix A. Proof of sub-linear convergence for Randomized Frank-Wolfe
In this section we provide a convergence proof for Algorithm 1. The proof is loosely inspired by that of (Locatello et al.,
2017, Appendix B.1), with the obvious difference that the result of the LMO is a random variable in our case.

Theorem 2.1�. Let f be a function with bounded curvature constant Cf , Algorithm 1 for η ∈ (0, 1], (with step-size chosen
by either variants) converges towards a solution of (OPT), satisfying

E(f(xT ))− f(x∗) ≤ 2(Cf + f(x0)− f(x∗))
ηT + 2

. (9)

Proof. By definition of the curvature constant, at iteration t we have

f(xt + γ(st − xt)) ≤ f(xt) + γ�∇f(xt), st − xt�+
γ2

2
Cf . (10)

By minimizing with respect to γ on [0, 1] we obtain

γt = clip[0,1]�−∇f(xt), st − xt�/Cf , (11)

which is the definition of γt in the algorithm with Variant 2. Hence, we have

f(xt+1) ≤ f(xt) + min
γ∈[0,1]

�
γ�∇f(xt), st − xt�+

γ2

2
Cf

�
,

an inequality which is also valid for Variant 1 since by the line search procedure the objective function at xt+1 is always
equal or smaller than that of Variant 1. Denote by ht = f(xt)− f(x∗),

ht+1 ≤ ht + min
γ∈[0,1]

�
γ�∇f(xt), st − xt�+

γ2

2
Cf

�
.

We write �st the FW atom if we had started the FW algorithm at xt, and Et the expectation conditionned on all the past
until xt, we have

Etht+1 ≤ ht +Et min
γ∈[0,1]

�
γ�∇f(xt), st − xt�+

γ2

2
Cf

�
(12)

≤ ht + P(st = �st) min
γ∈[0,1]

�
γ�∇f(xt),�st − xt�+

γ2

2
Cf

�
(13)

≤ ht + η min
γ∈[0,1]

�
− γh(xt) +

γ2

2
Cf

�
(14)

≤ ht + η
�
− γh(xt) +

γ2

2
Cf

�
(for any γ ∈ [0, 1], by definition of min) , (15)

where the second inequality follows from the definition of expectation and the fact that minimum is non-positive since it
is zero for γ = 0. The last inequality is a consequence of uniform sampling as well as it uses that the FW gap is an upper
bound on the dual gap, e.g. �−∇f(xt),�st − xt� ≥ h(xt).
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Induction. From (15) the following is true for any γ ∈ [0, 1]

Et(ht+1) ≤ ht(1− ηγ) +
γ2

2
ηCf . (16)

Taking unconditional expectation and writing Ht = E(ht), we get for any γ ∈ [0, 1]

Ht+1 ≤ Ht(1− ηγ) +
γ2

2
ηCf . (17)

With γt =
2

ηt+2 ∈ [0, 1], we get by induction

Ht ≤ 2
Cf + �0
ηt+ 2

= γt(Cf + �0), (18)

where �0 = f(x0)− f(x∗). Initialization follows the fact that the curvature constant is positive. For t > 0, from (17) and
the induction hypothesis

Ht+1 ≤ γt(Cf + �0)(1− ηγt) +
γ2
t

2
ηCf

≤ γt(Cf + �0)(1− ηγt) +
γ2
t

2
η(Cf + �0)

≤ γt(Cf + �0)(1− ηγt +
γt
2
η)

≤ (Cf + �0)(1−
γt
2
η)γt

≤ (Cf + �0)γt+1.

The last inequality comes from the fact that (1− γt

2 η)γt ≤ γt+1. Indeed, with γt =
2

ηt+2 , it is equivalent to

(1− η

ηt+ 2
)

2

ηt+ 2
≤ 2

η(t+ 1) + 2

⇔ (ηt+ 2)− η

ηt+ 2
≤ ηt+ 2

η(t+ 1) + 2

⇔ (ηt+ 2− η)(η(t+ 1) + 2) ≤ (ηt+ 2)2

⇔ η2t2 + 4ηt+ 4− η2 ≤ η2t2 + 4ηt+ 4.

The last being true, it concludes the proof.
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Appendix B. Proof of linear convergence for RAFW
Away curvature and geometric strong convexity. The away curvature constant is a modification of the curvature con-
stant described in the previous subsection, in which the FW direction s− x is replaced with an arbitrary direction s− v:

CA
f

def
= sup
x,s,v∈M
γ∈[0,1]

y=x+γ(s−v)

2

γ2

�
f(y)− f(x)− γ�∇f(x), s− v�

�
.

The geometric strong convexity constant µf depends on both the function and the domain (in contrast to the standard strong
convexity definition) and is defined as (see “An Affine Invariant Notion of Strong Convexity” in (Lacoste-Julien & Jaggi,
2015) for more details)

µA
f = inf

x∈M
inf

x∗∈M
�∇f(x),x∗−x�<0

2

γA(x,x∗)2
Bf (x,x

∗)

where Bf (x,x
∗) = f(x∗)− f(x)− �∇f(x),x∗ − x� and γA(x,x∗) the positive step-size quantity:

γA(x,x∗) :=
�−∇f(x),x∗ − x�

�−∇f(x), sf (x)− vf (x)�
.

In particular sf (x) is the Frank Wolfe atom starting from x. vf (x) is the away atom when considering
all possible expansions of x as a convex combinations of atoms in A. Denote by Sx := {S | S ⊆
A such that x is a proper convex combination of all elements in S} and by vS(x) := argmaxv∈S�∇f(x),v�. vf (x) is
finally defined by

vf (x)
def
= argmin

{v=vS |S∈Sx}
�∇f(x),v� .

Following (Lacoste-Julien & Jaggi, 2015, Lemma 9 in Appendix F), the geometric µ̃-generally-strongly-convex constant
is defined as

µ̃f = inf
x∈M

inf
x∗∈χ∗

�∇f(x),x∗−x�<0

1

2γA(x,x∗)2
�
f(x∗)− f(x)− 2�∇f(x),x∗ − x�

�
,

where χ∗ represents the solution set of (OPT).

Notations. In the context of RAFW, A denotes the finite set of extremes atoms such that M = Conv(A). At iteration
t, At is a random subset of element of A \ St where St is the current support of the iterate. The Randomized LMO is

performed over Vt = St ∪At so that for Algorithm 2, st
def∈ argmaxv∈Vt

�−∇f(xt),v� is the FW atom at iteration t for
RAFW.

Note that when |A \ St| ≤ p, Algorithm 2 does exactly the same as AFW. For the sake of simplicity we will consider that
this is not the case. Indeed we would otherwise fall back into the deterministic setting and the proof would just be that of
(Lacoste-Julien & Jaggi, 2015).

We use tilde notation for quantities that are specific to the deterministic FW setting. For instance, �st
def∈

argmaxv∈A�−∇f(xt),v� is the FW atom for AFW starting at xt.

Similarly the Away atom is such that vt

def∈ argminv∈St
�−∇f(xt),v� and it does not depend on the sub-sampling at

iteration t. Here we do not use any tilde because it is a quantity that appears both in AFW and its Randomized counter-
part.

In AFW, �gt def
= �−∇f(xt),�st − vt� = maxs∈A�−∇f(xt), s − vt� is an upper-bound of the dual gap, named

the pair-wise dual gap (Lacoste-Julien & Jaggi, 2015). We consider the corresponding partial pair-wise dual gap
�gt def

= �−∇f(xt), st − vt� = max
s∈Vt

�−∇f(xt), s − vt�. It is partial is the sense that the maximum is computed on a

subset Vt of A which results in the fact that it is not guaranteed anymore to be an upper-bound on the dual-gap.
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Structure of the proof. The proof is structured around a main part that uses Lemmas 1 and 3. Lemma 2 is only used to
prove Lemma 3.

The main proof follows the scheme of the deterministic one of AFW in (Lacoste-Julien & Jaggi, 2015, Theorem 8). It is
divided in three parts. The first part consists in upper bounding ht

def
= f(xt) − f(x∗) with g̃t. It does not depend on the

specific construction of the iterates xt and thus remains the same as that in (Lacoste-Julien & Jaggi, 2015). The second
part provides a lower bound on the progress on the algorithm, namely

ht+1 ≤ (1− ρf
�gt
�gt
�2
)ht, (19)

with ρf =
µA
f

4CA
f

, when it is not doing a bad drop step (defined above). As a proxy for this event, we use the binary variable

zt that equals 0 for bad drop steps and 1 otherwise.

The difficulty lies in that we guarantee a geometrical decrease only when gt = �gt and zt = 1. Because of the sub-sampling
and unlike in the deterministic setting, zt is a random variable. Lemma 3 provides a lower bound on the probability of
interest, P(�gt = gt | zt = 1), for the last part of the main proof.

Finally, the last part of the proof constructs a bound on the number of times we can expect both zt = 1 and gt = �gt subject
to the constraint that at least half of the iterates satisfy zt = 1. It is done by recurrence.

Appendix B.1. Lemmas

This lemma ensures the chosen direction dt in RAFW is a good descent direction, and links it with gt which may be equal
to �gt.
Lemma 1. Let st,vt and dt be as defined in Algorithm 2. Then for gt

def
= �−∇f(xt), st − vt�, we have

�−∇f(xt),dt� ≥
1

2
gt ≥ 0 . (20)

Proof. The first inequality appeared already in the convergence proof of Lacoste-Julien & Jaggi (2015, Eq. (6)), which we
repeat here for completeness. By the definition of dt we have:

2�−∇f(xt),dt� ≥ �−∇f(xt),d
A
t �+ �−∇f(xt),d

FW
t �

= �−∇f(xt), st − vt� = gt (21)

We only need to prove that gt is non-negative. In line 3 of algorithm 2, st is the output of LMO performs of the set of
atoms St ∪At

def
= Vt,

st = argmax
s∈Vt

�−∇f(xt), s� ,

so that we have �−∇f(xt), st� ≥ �−∇f(xt),vt�. By definition of gt, it implies gt ≥ 0 .

Lemma 2 is just a simple combinatorial result needed in Lemma 3. Consider a sequence of m numbers, we lower bound
the probability for the maximum of a subset of size greater than p to be equal to the maximum of the sequence.

Lemma 2. Consider any sequence (ri)i∈I in R with I = {1, · · · ,m}, and a subset Ip ⊆ I of size p. We have

P(max
i∈Ip

ri = max
i∈I

ri) ≥
p

m
. (22)

Proof. Consider M = {i ∈ I | ri = max
j∈I

rj}. We have max
i∈Ip

ri = max
i∈I

ri if and only if at least one element of Ip belongs

to M :

P(max
i∈Ip

ri = max
i∈I

ri) = P(|Ip ∩M | ≥ 1) . (23)
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By definition M has at least one element i0. Since {i0 ∈ Ip} ⊂ {|Ip ∩M | ≥ 1}
P(|Ip ∩M | ≥ 1) ≥ P({i0 ∈ Ip}) . (24)

All subsets are taken uniformly at random, we just have to count the number of subset Ip of I of size p with i0 ∈ Ip

P({i0 ∈ Ip}) =
�
m−1
p−1

�
�
m
p

� =
p

m
(25)

P(max
i∈Ip

ri = max
i∈I

ri) ≥
p

m
. (26)

In the second part of the main proof we ensure a geometric decrease when both gt = �gt and zt = 1, i.e. outside of bad
drop steps. The following lemma helps quantifying the probability of gt = �gt holding when zt = 1.
Lemma 3. Consider gt (defined in Lemma 1) to be the partial pair-wise (PW) dual gap of RAFW at iteration t with
sub-sampling parameter p on the constrained polytope M = conv(A), where A is a finite set of extremes points of M.

�gt
def
= max

s∈A
�−∇f(xt), s−vt� is the pairwise dual gap of AFW starting at xt on this same polytope. Denote by zt the binary

random variable that equals 0 when the tth iteration of RAFW makes an away step that is a drop step with γmax < 1 (a
bad drop step), and 1 otherwise. Then we have the following bound

P(gt = �gt | xt, zt = 1) ≥
� p

|A|
�2

. (PROB)

Proof. Recall that gAt
def
= �rt,dA

t �. By definition {zt = 0} = {gt < gAt , γmax < 1, γ∗
t = γmax}, where

γ∗
t

def
= argminγ∈[0,γmax] f(xt + γdA

t ). Its complementary {zt = 1} can thus be expressed as the partition A1 ∪ A2 ∪ A3

where the Ai are defined by

A1 = {gt ≥ gAt } (performs a FW step) (27)
A2 = {gt < gAt , α(t)

vt
/(1− α(t)

vt
) ≥ 1} (performs away step with γmax ≥ 1) (28)

A3 = {gt < gAt , α(t)
vt
/(1− α(t)

vt
) < 1 , γ∗

t < α(t)
vt
/(1− α(t)

vt
)}. (29)

First note that in the case of A2 and A3, γmax = α
(t)
vt /(1− α

(t)
vt ). Though the right hand side formulation highlights that it

is entirely determined by xt, recalling that α(t)
vt is the mass along the atom vt in the decomposition of xt in §3.

From a higher level perspective, these cases are those for which we can guarantee a geometrical decrease of ht = f(xt)−
f(x∗) (see second part of main proof). By definition, the Ai are disjoints. A1 represents a choice of a FW step in RAFW
contrary to A2 and A3 which stands for an away step choice in RAFW. A2 is an away step for which there is enough
potential mass (γmax > 1) to move along the away direction and to ensure sufficient objective decreasing. A3 encompasses
the situations where there is not a lot of mass along the away direction (γmax < 1) but which is not a drop step, e.g. the
amount of mass is not a limit to the descent.

Our goal is to lower bound P = P(gt = �gt | xt, zt = 1). The following probabilities will be with respect to the tth

sub-sampling only. Notice that gAt , �gt and αvt are known given {xt, zt = 1}. Using Bayes’ rule, and because the Ai are
disjoints, we have

P = P(gt = �gt | xt, {zt = 1})

=

�3
i=1 P(gt = �gt | xt, Ai)P(Ai | xt)�3

i=1 P(Ai | xt)
. (30)

By definition of gt and �gt, gt ≤ �gt, so that measuring the probability of an event like {gt = �gt} conditionally on {gt ≤ gAt }
will naturally depend on whether or not, the deterministic condition �gt ≥ gAt is satisfied. Hence the following case
distinction.
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Recall Vt = St ∪At.

Case �gt < gAt .

P =

�3
i=1 P(gt = �gt | xt, Ai, �gt < gAt )P(Ai | xt, �gt < gAt )�3

i=1 P(Ai | xt, �gt < gAt )
. (31)

Recall that A1 = {gt ≥ gAt }. Since by definition gt ≤ �gt, conditionally on {�gt < gAt }, the probability of A1 is zero.
Consequently the above reduces to

P =

�3
i=2 P(gt = �gt | xt, Ai, �gt < gAt )P(Ai | xt, �gt < gAt )�3

i=2 P(Ai | xt, �gt < gAt )

≥ p

|A|

�3
i=2 P(Ai | xt, �gt < gAt )�3
i=2 P(Ai | xt, �gt ≤ gAt )

=
p

|A| . (32)

Where the last inequality is because for i = 2, 3 we have P(gt = �gt | xt, Ai, �gt < gAt ) ≥ p
|A| . Indeed for A3 (case A2 is

similar) denote

P1 = P(gt = �gt | xt, A3, �gt < gAt ) (33)
= P(max

s∈Vt

�rt, s� = max
s∈A

�rt, s� | xt,max
s∈Vt

�rt, s� < C0,max
s∈A

�rt, s� < C0,α
(t)
vt
/(1− α(t)

vt
) < 1, γ∗

t < α(t)
vt
/(1− α(t)

vt
)) .

with C0
def
= gAt + �rt,vt� and rt = −∇f(xt) not depending on the tth sub-sampling. Also the event {max

s∈Vt

�rt, s� < C0}
is a consequence of {max

s∈A
�rt, s� < C0} so that P1 simplifies to

P1 = P(max
s∈Vt

�rt, s� = max
s∈A

�rt, s� | xt,max
s∈A

�rt, s� < C0,α
(t)
vt
/(1− α(t)

vt
) < 1, γ∗

t < α(t)
vt
/(1− α(t)

vt
)) . (34)

By definition

γ∗
t ∈ argmin

γ∈[0,
α
(t)
vt

1−α
(t)
vt

]

f(xt + γdA
t ) , (35)

so that γ∗
t does not depend on the tth sub-sampling. Finally all the conditioning in the probability of (34) do not depend on

this tth sub-sampling. Hence we are in the position of using Lemma 2 for the sequence (�rt, s�)s∈A. Also by definition of
Vt = St ∪At, we have |Vt| ≥ p so that we finally get

P(gt = �gt | xt, A3, �gt < gAt ) ≥
p

|A| . (36)

This was what was needed to conclude (32).

Case �gt ≥ gAt . In such a case, P from (30) rewrites as

P =

�3
i=1 P(gt = �gt | xt, Ai, �gt ≥ gAt )P(Ai | xt, �gt ≥ gAt )�3

i=1 P(Ai | xt, �gt ≥ gAt )
. (37)

Here P(gt = �gt | xt, Ai, �gt ≥ gAt ) = 0 for i = 2, 3 because Ai implies gt < gAt . So that when �gt ≥ gAt it is then
impossible for gt to equal �gt.

P =
P(gt = �gt | xt, A1, �gt ≥ gAt )P(A1 | xt, �gt ≥ gAt )�3

i=1 P(Ai | xt, �gt ≥ gAt )
.

Here also we use, and prove later on (see §below the conclusion of the proof of the Lemma), the lower bound

P(gt = �gt | xt, A1, �gt ≥ gAt ) ≥
p

|A| , (38)
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that implies

P ≥ p

|A|
P(A1 | xt, �gt ≥ gAt )�3
i=1 P(Ai | xt, �gt ≥ gAt )

.

Because the Ai are disjoint,
�3

i=1 P(Ai | xt, �gt ≥ gAt ) ≤ 1 we have

P ≥ p

|A|P(A1 | xt, �gt ≥ gAt ) .

Using a similar lower bound as (38), namely

P(A1 | xt, �gt ≥ gAt ) ≥
p

|A| , (39)

we finally get

P ≥
� p

|A|
�2

. (40)

Since it is hard to precisely count the occurrences of {�gt ≥ gAt } and {�gt < gAt }, we use a conservative bound in (40)

P(gt = �gt | xt, zt = 1) ≥
� p

|A|
�2

. (41)

This will of course make our bound on the rate of convergence very conservative.

Justification for (38) and (39).

Lets denote the left hand side of(38) by P2. By definition of gt and �gt, with rt = −∇f(xt), we have:

P2 = P(max
s∈Vt

�rt, s− vt� = max
s∈A

�rt, s− vt� | xt,max
s∈Vt

�rt, s− vt� ≥ gAt ,max
s∈A

�rt, s− vt� ≥ gAt ) (42)

= P(max
s∈Vt

�rt, s� = max
s∈A

�rt, s� | xt,max
s∈Vt

�rt, s� ≥ C0,max
s∈A

�rt, s� ≥ C0) , (43)

where C0
def
= gAt + �rt, vt� and rt does not depend on the random sampling at iteration t. Bayes formula leads to

P2 =
P({max

s∈Vt

�rt, s� = max
s∈A

�rt, s�} ∩ {max
s∈Vt

�rt, s� ≥ C0} | xt,max
s∈A

�rt, s� ≥ C0)

P(max
s∈Vt

�rt, s� ≥ C0 | xt,max
s∈A

�rt, s� ≥ C0)
. (44)

Conditionally on {max
s∈A

�rt, s� ≥ C0}, the event {max
s∈Vt

�rt, s� = max
s∈A

�rt, s�} implies{max
s∈Vt

�rt, s� ≥ C0} which leads to

P2 =
P(max

s∈Vt

�rt, s� = max
s∈A

�rt, s� | xt,max
s∈A

�rt, s� ≥ C0)

P(max
s∈Vt

�rt, s� ≥ C0 | xt,max
s∈A

�rt, s� ≥ C0)

≥ P(max
s∈Vt

�rt, s� = max
s∈A

�rt, s� | xt,max
s∈A

�rt, s� ≥ C0) ≥
p

|A| ,

where the last inequality is a consequence of applying Lemma 2 on the sequence (�rt, s�)s∈A

Similarly let’s denote the left hand side of (39) by P3. The first inequality is justified because conditionally on {�gt ≥ gAt },
{gt = �gt} ⊂ {gt ≥ gAt } and the last by applying, similarly as for (38), Lemma 2 on the sequence (�rt, s�)s∈A.

P3 = P(gt ≥ gAt | xt, �gt ≥ gAt )

≥ P(gt = �gt | xt, �gt ≥ gAt ),

≥ P(max
s∈Vt

�rt, s� = max
s∈A

�rt, s� | xt,max
s∈A

�rt, s� ≥ C0)

≥ p

|A| .



Frank-Wolfe with Subsampling Oracle

Appendix B.2. Main proof

Theorem 3.1�. Consider the set M = conv(A), with A a finite set of extreme atoms, after T iterations of Algorithm 2
(RAFW) we have the following linear convergence rate

E
�
h(xT+1)

�
≤

�
1− η2ρf

�max{0,�(T−s)/2�}
h(x0) , (45)

with ρf =
µA
f

4CA
f

, η = p
|A| and s = |S0|.

Proof. The classical curvature constant used in proofs related to non-Away Frank-Wolfe is

Cf := sup
x,s∈M,γ∈[0,1]
y=x+γ(s−v)

2

γ2

�
f(y)− f(x)− �∇f(x),y − x�

�
. (46)

It is tailored for algorithms in which the update is of the form xt+1 = (1 − γ)xt + γvt, but this is not the shape of all
updates in away versions of FW. In (Lacoste-Julien & Jaggi, 2015) they introduced a modification of the above curvature
constant that we also use to analyze RAFW. It is defined in (Lacoste-Julien & Jaggi, 2015, equation (26)) as

CA
f := sup

x,s,v∈M,γ∈[0,1]
y=x+γ(s−v)

2

γ2

�
f(y)− f(x)− γ�∇f(x), s− v�

�
. (47)

It differs from Cf (46) because it allows to move outside of the domain M. We thus require L-lipschitz continuous function
on any compact set for that quantity to be upper-bounded. We refer to §curvature constants on (Lacoste-Julien & Jaggi,
2015, Appendix D) for thorough details. The first part of the proof reuses the scheme of (Lacoste-Julien & Jaggi, 2015,
Theorem 8).

First part. Upper bounding ht: Considering an iterate xt that is not optimal (e.g. xt �= x∗), from (Lacoste-Julien & Jaggi,
2015, Eq. (28)), we have

f(xt)− f(x∗) = ht ≤
�g2t
2µA

f

, (48)

where �gt is the pair-wise dual gap defined by �gt = ��st − vt,−∇f(xt)�. �st and vt are respectively the FW atom and the
away atom in the classical Away step algorithm (conditionally on xt, the away atom of the randomized variant coincides
with the away atom of the non-randomized variant). The result is still valid here as it only uses the definition of the
affine invariant version of the strong convexity parameter and does not depend on the way xt are constructed (see upper
bounding ht in (Lacoste-Julien & Jaggi, 2015, Proof for AFW in Theorem 8)).

Note that this implicitly assumes the away atom to be defined, e.g. the support of the iterate xt never to be zero. This is
ensured by the algorithm simply because it always does convex updates.

Second part. Lower bounding progress ht − ht+1. Consider xt a non-optimal iterate. At step t, the update in Algorithm
2 writes xt+1(γ) = xt + γdt. γ is optimized by line-search in the segment [0, γmax]. Because in either cases dt is a
difference between two elements of M, from the definition of CA

f and because of the exact line search, we have

f(xt+1) ≤ min
γ∈[0,γmax]

�
f(xt) + γ�∇f(xt),dt�+

γ2

2
CA

f

�
,

so that for any γ ∈ [0; γmax]

f(xt+1)− f(xt) ≤ γ�∇f(xt),dt�+
γ2

2
CA

f

or again

γ
gt
2

− γ2

2
CA

f ≤ f(xt)− f(xt+1), (49)
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where the last inequality is a consequence of Lemma 1. We write γB
t

def
= gt

2CA
f

≥ 0, the minimizer of the left hand side of

(49).

Case γmax ≥ 1 and γB
t ≤ γmax. (49) evaluated on γ = γB

t gives

g2t
4CA

f

− g2t
8CA

f

≤ f(xt)− f(xt+1)

=⇒
�gt
�gt
�2 �g2t

8CA
f

≤ ht − ht+1. (50)

Indeed, xt is assumed not to be optimal, so that �gt �= 0. Combining (50) with (48) gives

ht+1 ≤ ht −
�gt
�gt
�2 �g2t

8CA
f

(51)

≤ ht −
�gt
�gt
�2 µA

f

4CA
f

ht (52)

=
�
1− ρf

�gt
�gt
�2�

ht . (53)

Case γmax ≥ 1 and γB
t > γmax. γB

t = gt
2CA

f

implies gt ≥ 2CA
f . (49) transforms into

gt
2

�
γ − γ2

2

�
≤ f(xt)− f(xt+1)

gt
�gt

�gt
2

�
γ − γ2

2

�
≤ f(xt)− f(xt+1) .

Using �gt ≥ ht and evaluating at γ = 1, leaves us with

ht+1 ≤
�
1− 1

4

gt
�gt
�
ht. (54)

Because µA
f ≤ CA

f (Lacoste-Julien & Jaggi, 2015, Remark 7.) and ρf =
µA
f

4CA
f

, the two previous cases resolve in the

following inequality

ht+1 ≤
�
1− ρf

�gt
�gt
�2�

ht . (55)

Case γmax < 1 and γ∗
t < γmax. By definition

γ∗
t = argmin

γ∈[0,γmax]

f(xt + γdt) = F (γ) . (56)

f is convex and its minimum on [0; γmax] is not reached at γmax. It is then also a minimum on the interval [0; +∞], and in
particular we have

γ∗
t = argmin

γ∈[0,1]

f(xt + γdt) = F (γ) . (57)

(49) can then be written with γ ∈ [0, 1] which leads to the previous case result (55).

Case γmax < 1 and γ∗
t = γmax. This corresponds to a particular drop step for which we only guarantee ht+1 ≤ ht (exact

line-search). We call this case a bad drop step (indeed γmax > 1 and γ∗
t = γmax also corresponds to a drop step, but for

which we can prove a bound of the form ht+1 ≤ ht(1− ρf
�
gt
�gt
�2
)).

We use the binary indicator zt to distinguish between the step where (55) is guaranteed or not. Denote by zt = 0 when
doing a bad drop step and zt = 1 otherwise. The second part can be summed-up in

ht+1 ≤ ht(1− ρf
�gt
�gt
�2
)zt . (58)
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Last part. Consider starting RAFW (Algorithm 2) for T iterations at x0 ∈ conv(V), with s = |S0| ≥ 0. We will now
prove there are at most

�
T+s
2

�
drop steps. Let DT be the number of drop steps after iteration T and FT the number of

FW step adding a new atom until iteration T . By definition, a FW step is not a drop step so that DT + FT ≤ T . Also
|ST | = |S0|+ |FT |− |DT |, hence |ST | ≤ |S0|− 2|DT |+T so that |DT | ≤ T+s−|ST |

2 . Finally because |ST | ≥ 0, we have
|DT | ≤

�
T+s
2

�
.

From the first two parts of the main proof, we have that

hT ≤ h0

T−1�

t=0

�
1− ρf

�gt
�gt
�2�zt

, (59)

where (gt, zt)t∈[0:T−1] are defined along RAFW starting at x0. For i < j, we write Ei:j the expectation with respect to all
sub-sampling between the ith iteration and the jth iteration included. When taking expectation only over sub-sampling i,
we write it Ei.

We will now prove by recurrence on T ∈ N∗ that

E0:T−1(

T−1�

t=0

�
1− ρf

�gt
�gt
�2�zt

) ≤ (1− ρfη
2)max{0,T−�T+s

2 �} = F (T, s) ∀s ∈ N ∀x0 ∈ Rd with |S0| = s , (60)

where x0 =
�

v∈A α
(0)
v v and S0 = {v ∈ A s.t. α(0)

v > 0}.

The rate quantity max{0, T −
�
T+s
2

�
} represents the number of steps (between iteration 0 and T − 1) in which zt = 1,

e.g. the steps in which there is a possibility of having geometrical decrease. Note that the geometrical decrease happens
only when gt = �gt.
The key insight in the global bound is to recall (from section 3) that if the support is a singleton, i.e. |St| = 1, RAFW does
a FW step hence zt = 1. We consequently distinguish whether or not the first iterate has an initial support of size 1. We
then use the recurrence property starting the algorithm at x1 and running T − 1 iterations.

Initialization. We will now prove the recurrence property (60) for T = 1. If s ≥ 2, max{0, T −
�
T+s
2

�
} = 0 and (60) is

true because (1 − ρf
�
g0
�g0
�2� ≤ 1. If s = 1, this implies that the first step needs to be a Frank-Wolfe step. We necessarily

have z0 = 1 and so

E0(
�
1− ρf

�g0
�g0

�2�z0
) = E0(

�
1− ρf

�g0
�g0

�2� | z0 = 1) (61)

≤ 1− ρfP(g0 = �g0 | z0 = 1) (62)
≤ 1− ρfη

2 ≤ 1 ≤ F (1, 1) , (63)

with η = p
|A| where F is defined in (60) and where the last inequality follows from (PROB) in Lemma 3.

Recurrence. Consider the property (60) when running T − 1 iteration. By the tower property of conditional expectations

E0:T−1(

T−1�

t=0

�
1− ρf

�gt
�gt
�2�zt

) = E0:T−1

��
1− ρf

�g0
�g0

�2�z0E1:T−1(

T−1�

t=1

�
1− ρf

�gt
�gt
�2�zt

)
�
. (64)

We can apply the recurrence property with T − 1 iterations and starting point x1 on E1:T−1(
�T−1

t=1

�
1− ρf

�
gt
�gt
�2�zt

) so
that

E0:T−1(

T−1�

t=0

�
1− ρf

�gt
�gt
�2�zt

) ≤ E0

��
1− ρf

�g0
�g0

�2�z0
F (T − 1, |S1|)

�
, (65)

where |S1|, the support of x1, depends on z0. Indeed z0 = 0 implies a drop step and as such it decreases the support of the
iterate. Thus we have to distinguish the case according to the size of the support of x0.
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Case |S0| = 1. With x0 = 0, RAFW starts with a FW step and as such z0 = 1 as well as 2 ≥ |S1| ≥ 1 so that

E0:T−1(

T−1�

t=0

�
1− ρf

�gt
�gt
�2�zt

) = E0

��
1− ρf

�g0
�g0

�2� | z0 = 1
�
F (T − 1, |S1|) (66)

≤ (1− ρfη
2)F (T − 1, 2) ≤ F (T, 1) , (67)

by applying (PROB) in Lemma 3. The last equality concludes the heredity in that case.

Case |S0| ≥ 2. Here it is possible for z0 to equal 0 or 1. If z0 = 1, then |S1| ≤ |S0|+ 1, while if z0 = 0, it implies a drop
step, we have |S1| = |S0|− 1. If we decompose the expectation according to the value of z0 we obtain

E0:T−1(

T−1�

t=0

�
1− ρf

�gt
�gt
�2�zt

) ≤ P(z0 = 1)E0

��
1− ρf

�g0
�g0

�2� | z0 = 1
�
F (T − 1, |S1|) (68)

+P(z0 = 0)F (T − 1, |S0|− 1) (69)
≤ P(z0 = 1)

�
1− ρfη

2
�
F (T − 1, |S0|+ 1) + P(z0 = 0)F (T − 1, |S0|− 1) (70)

≤ P(z0 = 1)
�
1− ρfη

2
�
F (T − 1, s+ 1) + P(z0 = 0)F (T − 1, s− 1) . (71)

We used the fact that F (T, |S1|) ≤ F (T − 1, |S0| + 1). Since we do not have access to the values of P(z0 = 0) and
P(z0 = 1), we bound it in the following manner

E0:T−1(

T−1�

t=0

�
1− ρf

�gt
�gt
�2�zt

) ≤ max
�
(1− ρfη

2)F (T − 1, s+ 1), F (T − 1, s− 1)
�
≤ F (T, s) , (72)

where the last inequality is just about writing the definition of F . It concludes the heredity result.

Conclusion: Starting RAFW at x0, after T iterations, we have

hT ≤ h0

T−1�

t=0

�
1− ρf

�gt
�gt
�2�zt

. (73)

Applying (60) we get

E0:T−1(hT ) ≤ h0(1− ρfη
2)max{0,T−�T+s

2 �}

≤ h0(1− ρfη
2)max{0,�T−s

2 �} . (74)

Generalized strongly convex.
Theorem 3.2�. Suppose f has bounded smoothness constant CA

f and is µ̃-generally-strongly convex. Consider the set
M = conv(A), with A a finite set of extreme atoms. Then after T iterations of Algorithm 2, with s = |S0| and a p
parameter of sub-sampling, we have

E
�
h(xT+1)

�
≤

�
1− η2ρ̃f

�max{0,�T−s
2 �}

h(x0) , (75)

with ρ̃f = µ̃
4CA

f

and η = p
|A| .

Proof. The conclusion of proof of (Lacoste-Julien & Jaggi, 2015, Th. 11) is that we have similarly as equation (48) by:

f(xt)− f(x∗) = ht ≤
g2t
2µ̃f

, (76)

where µ̃f > 0 is a similar measure of the affine invariant strong convexity constant but for generalized strongly convex
function.
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We can thus write the twin of equation (58)

ht+1 ≤ ht

�
1− ρ̃f

�gt
�gt
�2�zt

, (77)

with ρ̃f =
µ̃f

4CA
f

. The rest of the proof follows is the same as that of Theorem 3.1.
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Appendix C. Technical issues of previous work
In this section we highlight some technical issues present in previous work.

Appendix C.1. Randomized Frank-Wolfe in Frandi et al. (2016)

Frandi et al. (2016) present a Randomized FW algorithm for the case of the �1 ball in Rd. Denote by A = {±ei ∀i ∈ [d]},
where ei is the canonical basis (i.e., the vector that is zero everywhere except on the i-th coordinate, where it equals
one) the extremes atoms of the �1 ball. Up to the iterative explicit implementation of the residuals, (Frandi et al., 2016,
Algorithm 2) with the sampling size p ∈ [n] and our RFW (Algorithm 1) are equivalent for the following choice of At in
RFW

At = {±ei ∀i ∈ Ip} , where Ip is random subset of [d] of size p. (78)

Convergence result. In this case, (Frandi et al., 2016, Proposition 2) gives the following convergence bound in expecta-
tion after t iterations:

E(f(xt))− f(x∗) ≤ 4Cf

t+ 2
. (79)

First, it is rather surprising that, unlike in our Theorem 2.1, the sub-sampling size p does not appear in the convergence
bound. A closer inspection at their Lemma 2 reveals some errors in their proof. For the remainder of this section we will
use the notation in (Frandi et al., 2016).

The point of interest. The proof of their Proposition 2 starts with the following inequality derived from the curvature
constant:

f(α
(k+1)
λ ) ≤ f(α(k)) + λ

�
u(k) − α(k)

�T∇f(α(k)) + λ2Cf . (80)

Then it is claimed that the following equation, Eq. (24) in their paper, is a direct consequence “after some algebraic
manipulations”

ES(k)

�
f(α

(k+1)
λ )

�
≤ f(α(k)) + λES(k)

��
u(k) − α(k)

�T �∇S(k)f(α(k))
�
+ λ2Cf . (81)

which is not clear unless u(k) is independent of the sampling set, something that is not verified given that it is chosen
precisely from the sampling set.

Technical details. λ being positive, for Eq. (81) to be true, we should necessarily have the following

ES(k)

��
u(k) − α(k)

�T∇f(α(k))
�
≤ ES(k)

��
u(k) − α(k)

�T �∇S(k)f(α(k))
�
. (82)

α(k) as well as ∇f(α(k)) are deterministic with respect to the S(k) sampling set so the previous equation is equivalent to

ES(k)

��
u(k)

�T∇f(α(k))
�
−
�
α(k)

�T∇f(α(k)) ≤ ES(k)

��
u(k)

�T �∇S(k)f(α(k))
�
−

�
α(k)

�TES(k)

��∇S(k)f(α(k))
�

(83)

Since the sub-sampling of S(k) is uniform and by definition of �∇S(k)f(α(k)) in (Frandi et al., 2016, equation (14)) we have
ES(k)

��∇S(k)f(α(k))
�
= ∇f(α(k)). Then (82) is equivalent to

ES(k)

��
u(k)

�T∇f(α(k))
�

≤ ES(k)

��
u(k)

�T �∇S(k)f(α(k))
�
. (84)

Also by definition in (Frandi et al., 2016, equation (22)), u(k) the FW atom has its support on S(k) as well as from (Frandi
et al., 2016, equation (6)) we have that

�
u(k)

�T∇f(α(k)) < 0 . So that
�
u(k)

�T∇f(α(k)) =
�
u(k)

�T∇S(k)f(α(k)) and
finally (82) is equivalent to

|S(k)|
p

ES(k)

��
u(k)

�T �∇S(k)f(α(k))
�

≤ ES(k)

��
u(k)

�T �∇S(k)f(α(k))
�
, (85)

this last inequality being false in general because |S(k)|
p < 1 and ES(k)

��
u(k)

�T �∇S(k)f(α(k))
�
≤ 0.


