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A. Continuous-Time Markov Chain
An r-state continuous-time Markov chain (CTMC) is specified by the initial state probability πi = P (X(0) = i) for
i = 1, . . . , r, and the transition rate matrix Q whose off-diagonal Qij (i 6= j) defines the probability rate of state change
from i to j, namely

Qij = lim
∆t→0

P (X(t+ ∆t) = j|X(t) = i)

∆t
. (1)

For convenience, we define the diagonal entries of Q such that Q has 0 row sums, i.e., Qii := −
∑
j 6=iQij . We often denote

the initial state probabilities as a row vector π (i.e., π = [π1, . . . , πr]).

Then, using the differential notations and denoting the infinitesimal time duration by dt, the following holds for all
i, j = 1, . . . , r,

P (X(t+ dt) = j|X(t) = i) = I{i=j} +Qijdt. (2)

Hence the marginal state distribution conforms to the first-order linear ODE. More specifically, letting v(t) be the r-dim row
vector of the state distribution at time t (i.e., [v(t)]i = p(X(t) = i)), we can rewrite (2) in a vector notation,

v̇(t) = v(t)Q. (3)

With the initial condition v(0) = π, the ODE (3) admits the closed-form solution v(t) = πetQ, where eA denotes the matrix
exponential of a square matrix A, that is, eA =

∑∞
k=0

Ak

k! with A0 = I , the (r × r) identity matrix. Hence the marginal
distribution can be written as:

P (X(t) = i) = [πetQ]i. (4)

Also, from (2) and (4), it is obvious that the joint distribution of two consecutive states having different states (j 6= i)
becomes:

P (X(t+ dt) = j,X(t) = i) = [πetQ]iQijdt. (5)

B. Integral of Matrix Exponentials and Derivatives

We describe how the integral of the matrix exponential JC =
∫ T

0
etCdt can be computed analytically once C is diagonalized.

It is required in Sec. 4.2 of the main manuscript when computing the KL divergence between the variational CTMC
distribution q(X) and the model’s prior P (X).

Suppose that C is diagonalized as C = UDU−1 for the diagonal matrix D (diagonal entries denoted by di for i = 1, . . . , r)
and the invertible U . From the definition of the matrix exponential, we have etC = UetDU−1 and etD is also a diagonal
matrix with diagonal entries etdi for i = 1, . . . , r. Applying the integration leads to:

JC =

∫ T

0

UetDU−1dt = U

∫ T

0

etDdt U−1 = UEU−1, (6)
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where E =
∫ T

0
etDdt is a (r × r) diagonal matrix whose (i, i) entry is (i = 1, . . . , r):

Eii =

{
(eTdi − 1)/di if di 6= 0
T if di = 0

. (7)

Note that (7) involves only scalar exponentials.

Next we derive the gradient of JC with respect to C, which is needed when taking derivatives of KL(q(X)||P (X)) in
Appendix C, one of the objectives in the variational inference. To do this, we use the technique in (Kalbfleisch & Lawless,
1985) where they derived the gradients of the matrix exponential functions. Therein, for a square matrix A whose elements
are functions of some parameters η, it is shown that the partial derivative of etA wrt each scalar element η ∈ η can be
written as:

∂etA

∂η
= UV U−1, (8)

where A = UDU−1 is the diagonalization of A (at current η), V is the (r × r) matrix defined as

Vij =

{
Gij

etdi−etdj
di−dj (i 6= j)

Giite
tdi (i = j)

, (9)

and G = U−1
(
∂A
∂η

)
U .

In our case, we note that the elements of the CTMC rate matrix C have certain constraints: Ckl > 0 for all k 6= l, and
Ckk = −

∑
l 6=k Ckl. To facilitate unconstrained gradient descent optimization, we rather employ a set of unconstrained

parameters for C instead of directly working with it. More specifically, we define C = {Ckl}k 6=l to be the unconstrained
parameters, from which C can be recovered as Ckl = exp(Ckl) for k 6= l, and Ckk’s accordingly. Then it is easy to see that
∂C
∂Ckl

for k 6= l, is the all-zero matrix except for two entries:[
∂C

∂Ckl

]
kl

= Ckl,

[
∂C

∂Ckl

]
kk

= −Ckl. (10)

This lets us express the partial derivative of JC wrt η = Ckl (k 6= l) as:

∂JC

∂Ckl
=

∫ T

0

∂etC

∂Ckl
dt = UHU−1, (11)

where C = UDU−1 is the diagonalization of C, and H =
∫ T

0
V dt (with V from (9)) is a (r × r) matrix whose (i, j) entry

(i, j = 1, . . . , r) is defined as

Hij =


Gij

di−dj

(
eTdi−1
di

− eTdj−1
dj

)
(i 6= j)

Gii
(Tdi−1)eTdi+1

d2i
(i = j)

(12)

Note that from (10) we have G in (9) now defined as:

G = Ckl
[
U−1

]
:k

([
U
]
l:
−
[
U
]
k:

)
, (13)

where
[
A
]
k:

and
[
A
]
:k

indicate the k-th row and column vectors of the matrix A, respectively.

C. Gradient Derivations for ELBO
As shown in (12) of the main manuscript, the ELBO objective is comprised of three terms. We derive gradients for each
term in the subsequent sections. To recap, the parameters with which the objectives are differentiated are: i) Θ = {θm =
{θim}ri=1,θk = {θik}ri=1} is the parameters of the r mean and covariance functions of the prior GP, ii) Ω = {Q, π} is the
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CTMC parameters for the prior state trajectory distribution, and iii) Λ := {C,α,µ := {µi}ri=1,Σ := {Σi}ri=1} is the
variational parameters for the posterior where the former two are the parameters for the CTMC q(X), and the rest for q(f).

Some of these parameters are constrained, including the CTMC transition rate matrices C and Q as discussed in the previous
section. For instance, the initial state distributions α and π have to lie in the probability simplex, while the covariance
matrices Σi’s should be positive definite. Since the unconstrained re-parametrization to reflect these constraints are relatively
well known and straightforward1, we provide derivatives with the original parameters directly, unlike C (and Q) for which
we take derivatives wrt the unconstrained parameters C (and Q).

C.1. Gradients of KL
(
q(FZ)||P (FZ)

)
This objective is the sum of the KL divergence between Gaussians, more specifically,

KL
(
q(fZ)||P (fZ)

)
=

r∑
i=1

1

2

[
log

∣∣Ki
Zi,Zi

∣∣∣∣Σi∣∣ −Mi+Tr
((
Ki
Zi,Zi

)−1
Σi
)

+(µi−mi
Zi)>

(
Ki
Zi,Zi

)−1
(µi−mi

Zi)

]
(14)

It is obvious that the i-th (i = 1, . . . , r) summand of the objective is dependent solely on (θim, θ
i
k, µ

i,Σi). The derivatives
of each term of the i-th summand in (14) can be derived as follows. Here, we use the notation [·]j for the parameters θim and
θik to indicate individual scalar element. For simplicity, we also drop the dependency on Zi in notation (e.g., Ki

Zi,Zi and
mi
Zi simply written as Ki and mi, respectively).

∂ log
∣∣Ki

∣∣
∂[θik]j

= Tr
((
Ki
)−1 ∂Ki

∂[θik]j

)
(15)

∂ log
∣∣Σi∣∣

∂Σi
=

(
Σi
)−1

(16)

∂Tr
((
Ki
)−1

Σi
)

∂[θik]j
= −Tr

((
Ki
)−1

Σi
(
Ki
)−1 ∂Ki

∂[θik]j

)
(17)

∂Tr
((
Ki
)−1

Σi
)

∂Σi
=

(
Ki
)−1

(18)

∂(µi −mi)>
(
Ki
)−1

(µi −mi)

∂[θik]j
= −(µi −mi)>

(
Ki
)−1 ∂Ki

∂[θik]j

(
Ki
)−1

(µi −mi) (19)

∂(µi −mi)>
(
Ki
)−1

(µi −mi)

∂[θim]j
= −2(µi −mi)>

(
Ki
)−1 ∂mi

∂[θim]j
(20)

∂(µi −mi)>
(
Ki
)−1

(µi −mi)

∂µi
= 2

(
Ki
)−1

(µi −mi) (21)

Note that ∂Ki

∂[θik]j
and ∂mi

∂[θim]j
indicate the derivatives of the kernel matrix Ki and the mean vector mi, which are of the same

dimensions as Ki and mi, respectively, obtained by differentiating each element.

C.2. Gradients of KL
(
q(X)||P (X)

)
The objective, as written below, is dependent only on the CTMC parameters of the prior and the variational distributions on
the state trajectory X(·).

KL
(
q(X)||P (X)

)
=

r∑
i=1

{
αi log

αi
πi

+ [αJC ]i

(
Cii −Qii +

∑
j 6=i

Cij log
Cij
Qij

)}
(22)

We take derivate of the objective with respect to individual scalar parameters, namely αk (and πk) for k = 1, . . . , r, and Ckl
(and Qkl) for k, l = 1, . . . , r with k 6= l. For notational simplicity, we denote the objective in (22) by KLX .

1For the positive definite constraints, for instance, one can use the Cholesky decomposition, optionally with exponentiation of diagonal
elements (Pinheiro & Bates, 1996).
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∂KLX
∂αk

= 1 + log
αk
πk

+

r∑
i=1

[JC ]ki

(
Cii −Qii +

∑
j 6=i

Cij log
Cij
Qij

)
(23)

∂KLX
∂πk

= −αk
πk

(24)

∂KLX

∂Ckl
=

r∑
i=1

{ [
α
∂JC

∂Ckl

]
i

(
Cii −Qii +

∑
j 6=i

Cij log
Cij
Qij

)
+ [αJC ]i

(
∂Cii

∂Ckl
+
∑
j 6=i

∂Cij

∂Ckl

(
1 + log

Cij
Qij

))}
(25)

∂KLX

∂Qkl
= −

r∑
i=1

[αJC ]i

(
∂Qii

∂Qkl
+
∑
j 6=i

∂Qij

∂Qkl

Cij
Qij

)
(26)

Here, the derivatives ∂Cij

∂Ckl
(similarly ∂Qij

∂Qkl

) and ∂JC
∂Ckl

follow (10) and (11), respectively, as described in Appendix B.

C.3. Gradients of Eq(X,f)
[

logP (D|X, f)
]

Recall from Sec. 4.3 in the main article that this objective can be approximated as:

Eq(X,f)
[

logP (D|X, f)
]

=

r∑
i=1

(
ELLi − ENOi

)
≈

r∑
i=1

(
ÊLLi − ÊNOi

)
. (27)

Here ÊLLi is the Monte-Carlo estimate of ELLi =
∑N
n=1[αetnC ]iEq(fi(tn))

[
log (f i(tn))2

]
for i = 1, . . . , r, that is,

ÊLLi =

N∑
n=1

[αetnC ]i
S

S∑
s=1

log
(
f in

(s))2
(28)

where ε(s)in (s = 1, . . . , S) are iid random samples from standard normal for each (i, n), and f in
(s)

= µ̃i(tn)+(σ̃2
i (tn))1/2ε

(s)
in

with

µ̃i(t) = mi(t) +Ki
t,Zi(Ki

Zi,Zi)−1(µi −mi
Zi), (29)

σ̃2
i (t) = Ki

t,t −Ki
t,Zi(Ki

Zi,Zi)−1Ki
Zi,t +Ki

t,Zi(Ki
Zi,Zi)−1Σi(Ki

Zi,Zi)−1Ki
Zi,t. (30)

Also, ÊNOi is the grid-based numerical integration of ENOi =
∫ T

0
[αetC ]iEq(fi(t))

[
(f i(t))2

]
dt. Specifically, with the G

uniform grid points {t̃g}Gg=1 over [0, T ], we have (dropping the dependency on Zi in notation for simplicity):

ÊNOi = (µi −mi)>
(
Ki
)−1

Ψi
0

(
Ki
)−1

(µi −mi) + 2Ψi
1

(
Ki
)−1

(µi −mi)− Tr
((
Ki
)−1

Ψi
0

)
+

Tr
((
Ki
)−1

Σi
(
Ki
)−1

Ψi
0

)
+ Ψi

2 + Ψi
3, (31)

where the Ψ’s are defined as follows (by denoting wig = [αet̃gC ]i∆t with ∆t = t̃g+1 − t̃g),

Ψi
0 =

G∑
g=1

wigK
i
Zi,t̃g

Ki
t̃g,Zi , Ψi

1 =

G∑
g=1

wigm
i(t̃g)K

i
t̃g,Zi , Ψi

2 =

G∑
g=1

wig(m
i(t̃g))

2, Ψi
3 =

G∑
g=1

wigK
i
t̃g,t̃g

(32)

For the gradients of ÊLLi in (28), letting win = [αetnC ]i, we see that win is dependent only on (α,C), while the latter
summation term (over s) is a function of the GP mean, covariance, and the variational parameters. Hence the gradients of
ÊLLi wrt (α,C) can be derived as:

∂ÊLLi
∂αk

=

N∑
n=1

[etnC ]ki
S

S∑
s=1

log
(
f in

(s))2
(33)

∂ÊLLi
∂Ckl

=

N∑
n=1

1

S

[
α
∂etnC

∂Ckl

]
i

S∑
s=1

log
(
f in

(s))2
(34)
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where ∂etnC

∂Ckl
can be computed from (8) with G from (13). The gradients of ÊLLi wrt η ∈ {θim, θik, µi,Σi} are as follows:

∂ÊLLi
∂η

=

N∑
n=1

win
S

S∑
s=1

{
∂µ̃i(tn)

∂η

2

f in
(s)

+
∂σ̃2

i (tn)

∂η

ε
(s)
in

f in
(s)

(σ̃2
i (tn))1/2

}
(35)

where the partial derivatives of µ̃i(tn) and σ̃2
i (tn) wrt specific parameters can be obtained as:

∂µ̃i(tn)

∂[θik]j
=

∂Ki
n

∂[θik]j

(
Ki
)−1

(µi −mi)−Ki
n

(
Ki
)−1 ∂Ki

∂[θik]j

(
Ki
)−1

(µi −mi) (36)

∂µ̃i(tn)

∂[θim]j
=

∂mi
n

∂[θim]j
−Ki

n

(
Ki
)−1 ∂mi

∂[θim]j
(37)

∂µ̃i(tn)

∂µi
=

(
Ki
)−1(

Ki
n

)>
(38)

∂σ̃2
i (tn)

∂[θik]j
=

∂Ki
nn

∂[θik]j
− 2

∂Ki
n

∂[θik]j

(
Ki
)−1(

Ki
n

)>
+Ki

n

(
Ki
)−1 ∂Ki

∂[θik]j

(
Ki
)−1(

Ki
n

)>
+

2

(
∂Ki

n

∂[θik]j
−Ki

n

(
Ki
)−1 ∂Ki

∂[θik]j

)(
Ki
)−1

Σi
(
Ki
)−1(

Ki
n

)>
(39)

∂σ̃2
i (tn)

∂Σi
=

(
Ki
)−1(

Ki
n

)>
Ki
n

(
Ki
)−1

(40)

where we have several short-cut notations: Ki
n = Ki

tn,Zi , Ki
nn = Ki

tn,tn , mi
n = mi(tn), and as usual Ki = Ki

Zi,Zi ,
mi = mi

Zi .

For the gradients of ÊNOi, we first compute the derivatives of the Ψ terms in (32). Note that (α,C) affects the Ψ terms only
through wig = [αet̃gC ]i∆t, and it is sufficient to derive:

∂wig
∂αk

= [et̃gC ]ki∆t,
∂wig

∂Ckl
=

[
α
∂et̃gC

∂Ckl

]
i

∆t. (41)

The gradients of the Ψ terms wrt (θm,θk) can be evaluated as follows, where for notational simplicity, the GP mean vectors
and kernel matrices on the grid points are denoted as: Ki

g = Ki
t̃g,Zi , Ki

gg = Ki
t̃g,t̃g

, and mi
g = mi(t̃g).

∂Ψi
0

∂[θik]j
=

G∑
g=1

wig

{(
∂Ki

g

∂[θik]j

)>
Ki
g +

(
Ki
g

)> ∂Ki
g

∂[θik]j

}
(42)

∂Ψi
1

∂[θik]j
=

G∑
g=1

wigm
i
g

∂Ki
g

∂[θik]j
,

∂Ψi
1

∂[θim]j
=

G∑
g=1

wig
∂mi

g

∂[θim]j
Ki
g (43)

∂Ψi
2

∂[θim]j
= 2

G∑
g=1

wigm
i
g

∂mi
g

∂[θim]j
,

∂Ψi
3

∂[θik]j
=

G∑
g=1

wig
∂Ki

gg

∂[θik]j
(44)

Next, we tackle gradients of each term in (31). The first term, TERM1 = (µi −mi)>
(
Ki
)−1

Ψi
0

(
Ki
)−1

(µi −mi) has:

∂TERM1

∂[θik]j
= (µi −mi)>

(
Ki
)−1 ∂Ψi

0

∂[θik]j

(
Ki
)−1

(µi −mi) −

2(µi −mi)>
(
Ki
)−1 ∂Ki

∂[θik]j

(
Ki
)−1

Ψi
0

(
Ki
)−1

(µi −mi) (45)

∂TERM1

∂[θim]j
= −2

(
∂mi

∂[θim]j

)>(
Ki
)−1

Ψi
0

(
Ki
)−1

(µi −mi) (46)

∂TERM1

∂µi
= 2

(
Ki
)−1

Ψi
0

(
Ki
)−1

(µi −mi) (47)



Supplemental Material: Markov Modulated Gaussian Cox Processes

The second term, TERM2 = Ψi
1

(
Ki
)−1

(µi −mi) admits:

∂TERM2

∂[θik]j
=

∂Ψi
1

∂[θik]j

(
Ki
)−1

(µi −mi)−Ψi
1

(
Ki
)−1 ∂Ki

∂[θik]j

(
Ki
)−1

(µi −mi) (48)

∂TERM2

∂[θim]j
=

∂Ψi
1

∂[θim]j

(
Ki
)−1

(µi −mi)−Ψi
1

(
Ki
)−1 ∂mi

∂[θim]j
(49)

∂TERM2

∂µi
=

(
Ki
)−1(

Ψi
1

)>
(50)

The third term, TERM3 = Tr
((
Ki
)−1

Ψi
0

)
has:

∂TERM3

∂[θik]j
= Tr

((
Ki
)−1 ∂Ψi

0

∂[θik]j

)
− Tr

((
Ki
)−1 ∂Ki

∂[θik]j

(
Ki
)−1

Ψi
0

)
(51)

The fourth term, TERM4 = Tr
((
Ki
)−1

Σi
(
Ki
)−1

Ψi
0

)
admits:

∂TERM4

∂[θik]j
= Tr

((
Ki
)−1

Σi
(
Ki
)−1 ∂Ψi

0

∂[θik]j

)
− 2Tr

((
Ki
)−1 ∂Ki

∂[θik]j

(
Ki
)−1

Σi
(
Ki
)−1

Ψi
0

)
(52)

∂TERM4

∂Σi
=

(
Ki
)−1

Ψi
0

(
Ki
)−1

(53)

The remaining Ψi
2 and Ψi

3 have been done already.
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