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Abstract

The Cox process is a flexible event model that
can account for uncertainty of the intensity func-
tion in the Poisson process. However, previous
approaches make strong assumptions in terms of
time stationarity, potentially failing to generalize
when the data do not conform to the assumed sta-
tionarity conditions. In this paper we bring up two
most popular Cox models representing two ex-
tremes, and propose a novel semi-stationary Cox
process model that can take benefits from both
models. Our model has a set of Gaussian process
latent functions governed by a latent stationary
Markov process where we provide analytic deriva-
tions for the variational inference. Empirical eval-
uations on several synthetic and real-world events
data including the football shot attempts and daily
earthquakes, demonstrate that the proposed model
is promising, can yield improved generalization
performance over existing approaches.

1. Introduction

Accurately modeling the underlying generative process of
complex events is an important problem in statistical ma-
chine leaning and many related areas. Although events could
be spatial and/or high-dimensional, in this paper we exclu-
sively focus on event modeling in the temporal setup due to
its dominance in real-world applications. The Poisson pro-
cess is a de facto standard for its simplicity in mathematical
analysis and flexibility in representing the intensity function
(i.e., the event occurring rate) A(¢). Unlike traditional treat-
ments via adopting a fixed parametric form of \(¢) (e.g.,
piecewise constant or the Weibull), several extensions have
been introduced. The nonparametric modeling of A(t) (e.g.,
the recent RKHS formulation (Flaxman et al., 2017)) can
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reduce the burden of deciding an appropriate form of A(t).
Another is to regard \(¢) as a random process, known as the
Cox process (Cox, 1955), which is useful for accounting for
uncertainty in the intensity function.

In this paper, we are particularly interested in the Cox pro-
cess where two most popular ones are: the Markov mod-
ulated Poisson process (MMPP) and the Gaussian process
modulated Cox process (GPCox). Popular in statistics, the
MMPP considers A(t) as a random sample (trajectory) from
a continuous-time Markov chain. The model has a finite
set of intensity levels where the latent state at each time
determines which intensity level is used at that moment.
The GPCox is a nonparametric Bayesian model formed by
placing a Gaussian process (GP) prior on A\(t). The GPCox
has received significant attention in the machine learning
community for the last decade for its flexible nonparametric
modeling with principled uncertainty treatment.

The MMPP is good at modeling highly different intensity
phases: bursty events for some intervals and rare events
for others. However, there can be abrupt intensity changes
between these regimes which may be unnatural in certain
situations. Furthermore, for the interval under a given la-
tent state, the model follows a constant intensity (i.e., a
homogeneous process), which may limit its representational
capacity. On the other hand, the GPCox encourages smooth
intensity changes over time. However, the disadvantage is
that the drastic intensity changes are not properly dealt with
unless a highly non-smooth kernel is adopted, which can
usually happen when a large amount of data is available.

So the main idea in this paper is to devise a novel model
that takes benefits from both models. Similar to the MMPP,
we consider an underlying continuous-time Markov chain
(CTMCO) that generates a latent state trajectory (taking say,
r different states). We incorporate r latent functions with
their own GP priors, each of which serves as the intensity
responsible for each of the r states. This model is thus able
to model major intensity regime (possibly abrupt) changes
via the CTMC dynamics, and at the same time, it also enjoys
the GP’s smooth intensity modeling, non-constant within
the interval under a given latent state. Our model, referred to
as the Markov modulated Gaussian Cox Process (MMGCP),
has richer representational power than previous two models.
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Indeed, it subsumes both models as special cases: 1) if the
GP priors put all their masses to constant functions, then we
end up with the MMPP, and ii) if » = 1 (single-state), then
the model reduces to the GPCox.

In terms of time-stationarity', the previous two models ex-
hibit extreme characteristics. The MMPP makes A(t) fully
stationary (i.e., time independent) since the CTMC is sta-
tionary and the intensity under a given state is a constant,
invariant of ¢. On the other hand, the GPCox builds a fully
non-stationary (time-variant) A(¢) on top of the kernel func-
tion defined over t. Our MMGCP somehow aims to model
a so-called semi-stationary intensity function in that the
macro-scale intensity regime change is governed by the sta-
tionary CTMC dynamics, while within each regime, the in-
tensity is modeled as a smooth time-variant function. In this
sense, an ideal scenario for our model is as follows: there
are r underlying candidate intensity functions {\*(¢)}7_;
where at a given time ¢, which of these candidates is active is
determined by the stationary r-state Markov process X (t),
that is, AX()(¢). Our model further imposes the GP prior
on these candidate functions to account for uncertainty and
grant more modeling flexibility. In the evaluations, we not
only implement this scenario as a synthetic setup, but we
also demonstrate on some real datasets that our MMGCP
significantly outperforms the previous models.

We provide an efficient variational inference for the model
which is also analytic by adopting the squared link function
for the intensity, similar to that of (Lloyd et al., 2015). How-
ever, the posterior expectation over the latent state trajectory
required in the variational inference, is carefully analyzed
within our model to derive closed-form formulas. The paper
is organized as follows. After briefly discussing some back-
ground and reviewing previous two models in Sec. 2, our
model is introduced in Sec. 3 with the variational inference
fully described in Sec. 4. The empirical evaluation on some
synthetic and real-world event datasets follows in Sec. 5.

2. Background

We are interested in modeling events that can occur over
the fixed time horizon [0, T']. We basically assume that the
events are generated by the (inhomogeneous) Poisson pro-
cess, which is fully specified by the non-negative intensity
function A : [0, 7] — Ry. It defines the event occurring rate
(i.e., the probability of event occurring during the infinitesi-
mal interval [¢, ¢ + dt) is A(¢)dt). Then the log-likelihood of
observing the event data D = {t1,...,tx} (C [0,7]) can

"For clarity, the term stationarity is used in the following sense:
if there is no time dependency in the data generating model (eg,
MMPP), we say that it is stationary; if the data generation process
is solely dependent on the time index (eg, a non-constant determin-
istic intensity function), then it is non-stationary. As our model
contains both components, we call it semi-stationary.

be written as:

N T
10gP(D|A(-))zZlog/\(tn)—/o At) dt. (1)

It is common in statistics to assume a specific parametric
form for \(¢), then estimate it by the maximum likelihood
criterion with (1). Instead, the Cox process further regards
A(t) as arandom process. Two most popular ones are briefly
described below.

2.1. Markov Modulated Poisson Process (MMPP)

This model basically forms piecewise constant \(¢). Specif-
ically there are r constant intensity levels {1, ..., A}, but
which level is used at a given moment is determined by
the latent Markov process X : [0,7] — {1,...,r} gov-
erned by a continuous-time Markov chain (CTMC). An
r-state CTMC is specified by the initial state probability
m; = P(X(0) = 4) fori = 1,...,r, and the transition
rate matrix ¢) whose off-diagonal );; (¢ # j) defines the
probability rate of state change from ¢ to j, namely

P(X(t+A8) = jIX(t) = i)

@y = fim At @
Defining diagonal entries as Q;; == — > ki Q; lets the

probability of staying at state i for duration h be €@, Note
that the model has no time-variant component, thus adequate
for modeling stationary event data. There are well-known
EM learning algorithms (Asmussen et al., 1996; Ryden,
1996) for estimating the parameters of the model.

2.2. Gaussian Cox Process (GPCox)

The GPCox model has a latent function f(¢) distributed by
a Gaussian process a priori, which determines the intensity
function as A\(¢) = p(f(t)) where p(-) is a non-negative
link function, for instance, sigmoid, exponential or square
function. The posterior inference P(f(-)|D) is challenging
mainly due to the integration in the likelihood function
(1). Let alone the computational overhead of evaluating
the integral, one has to deal with latent function values at
all inputs t € [0,T], not just those t,’s in the data D as
in most conventional GP models (Rasmussen & Williams,
2006). Accordingly some previous approaches had to resort
to discretizing the time domain (Rathbun & Cressie, 1994;
Mgller et al., 1998; Cunningham et al., 2008).

Recently, several sophisticated inference methods have been
proposed to address this difficulty. (Adams et al., 2009)
formed a tractable MCMC dynamics by exploiting the idea
of thinning-based sampling in the Poisson process. How-
ever, its time complexity is cubic in the data size, which
is often prohibitive for large-scale problems. To deal with
the scalability, (Gunter et al., 2014) proposed an alternative
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thinning strategy by sampling from a non-uniform intensity
process, while (Samo & Roberts, 2015) introduced inducing
points within the MCMC sampler. (Lasko, 2014) used a pos-
itively transformed intensity function for direct numerical
integration and interpolation. In parallel, (Lloyd et al., 2015)
derived analytic formulation for the scalable variational in-
ference using the square link function and the pseudo input
treatment (Titsias, 2009; Dezfouli & Bonilla, 2015).

3. Markov Modulated Gaussian Cox Process

In this section we describe our model that can take benefits
from previous models in Sec. 2. We consider that there
are r underlying latent functions devoted for representing
different characteristics of the intensity function. Denoted
by £() := {f%(-)}7_,, they are assumed to be independently
GP distributed a priori. That is,

P(£() = P(f*()s-- o, 17() = T[] P(F°() 3)
i=1
where  fi(-) ~ GP(m'(-),k'(,"), i=1,...,7

To determine which of these r functions is responsible for
the intensity at each time, we introduce a latent Markov pro-
cess X (t), similarly as the MMPP, generated from a r-state
CTMC (Q, ). The intensity at time ¢ is then determined
by fX(®), and we use the square link function similarly
as (Lloyd et al., 2015), which leads to:

M) [£(), X () = (f¥9) “
The full joint distribution of the model can be written as:

P(£(-)[©) x P(X(-)[) x P(D|X().£(-)),

where © = {0,,,0}} is the parameters of the mean and
covariance functions of the prior GP (e.g., 0 = {01 }7_;
with 0 denoting the parameters of the covariance function
ki(-,-) for fi(-)). The CTMC parameters are denoted by
0 = {Q,7}. Thus O and {2 constitute the model parame-
ters of the MMGCP. The last two terms in the RHS of (5)
correspond to the likelihood of the state trajectory under the
CTMC and the data likelihood given the state trajectory and
the latent functions. To formally derive these likelihoods,
it is convenient to partition the horizon [0, T'] according to
a realized state trajectory X (-). Suppose that a realization
X (-) undergoes (L — 1) state changes during [0, T]. We
denote by u; the time epoch when the [-th state change
occurs (I = 1,...,L — 1) with ug = 0 and uy, = T for
convenience. We let s; € {1,...,r} be the state during the
interval [u;_1,u;), and Aw; be the length of the interval (i.e.,
Awu; = u; — u;—1). Note that these variables {uw;, s;, Au }y
are determined by the realization X (-), and vice versa, in a
one-to-one manner.

Looking into the likelihood of X restricted to each interval
(ui—1,wy], it is composed of two steps: i) no state change
during (u;—1,u;) and ii) state change from s; to s;11 right at
the moment ;. For the last interval (I = L), it only involves
the step i). From the well-known theorems of the CTMC?,
the probability of the first step is exp(Awu;Qs, s, ), while the
likelihood of the second step is @y, s,.., - Combining these
over! =1,..., L and including the initial state probability
P(X(0) = s1) = ms,, we have the likelihood of the state
trajectory as follows.

L L—-1
P(X()|Q) = 7, x HeAulelsz X H Qssin- (6)

=1 =1

To derive the likelihood of observing D given X (-) and f(-),
we let {t4,. ..t} } be the event times in D that fall into the
interval Z; := [u;—1,u;). Within Z;, the intensity is fixed as
Ast(t) == (f*(t))?, and applying the Poisson process like-
lihood gives: A (t}) - -- A (¢} ) exp(— Jz, A%t (t)dt). Mul-
tiplying them over [ = 1, ..., L yields:

POIX,£) = [ (7 (ta)? x e Ja" O )

1<I<L,
nitn, €Ly

4. Variational Inference and Learning

In this section we provide inference for the posterior distri-
bution in our MMGCP model, specifically

P(X(')7f(')|D’@’Q)' 3

This inference is analytically intractable, however, we do
it approximately using the recent scalable variational infer-
ence technique3 (Titsias, 2009; Dezfouli & Bonilla, 2015;
Lloyd et al., 2015; Matthews et al., 2016). It is based on
the pseudo inputs which especially plays a crucial role of
making inference tractable even if one has to deal with func-
tion values for all inputs ¢ € [0,7T]. So we begin with the
introduction of our GP notations regarding pseudo inputs.

We often use the superscript for indicating a specific func-
tion among the r latent functions, while the subscript for
a specific time epoch or a set of time epochs at which
the functions are evaluated. For instance, for a set of p
inputs 7 = {t1,...,%,} C [0,T], we denote by fi =
[f(t1),..., f(t,)] ", the p-dim vector of the i-th function

The full derivation can be found in standard textbooks on
Markov chains or stochastic ODEs such as (Anderson, 2011).
We also provide some brief derivations in Appendix A in the
supplemental materials.

*We specifically follow the variational free energy approach.
But we would like to note that there exist other approximation
techniques where the readers are encouraged to refer to the recent
work on comparison of different approaches (Bauer et al., 2016)
and some unified view (Bui et al., 2017).
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values. The boldfaced f7 indicates the collection of the func-
tion values for all r functions, that is, f7 = {fF,..., f7}.
For the GP prior mean and covariance functions (3), we fol-
low the similar convention: m- = [m‘(ty),...,m!(t,)] "
is the p-dim vector of the i-th mean function values on 7.
For two input sets 7 and S, K- s denotes the (|7 x |S])
kernel matrix by applying k°(-,-) on (T x S).

Foreachi-thGP (¢ = 1,...,r), we assume that there are M;
(< N) pseudo inputs denoted by Z* = {z,..., 2}, } C
[0, T]. We also let Z = | J;_, Z". These pseudo inputs can
be thought of as representative points in that knowing the
function values at Z has significant impacts on inferring
function values at the other input points. But further insights
can be found in the nice survey (Quifionero-Candela &
Rasmussen, 2005). The pseudo inputs can also be learned
from data along with the model parameters, but for the time
being we assume that they are fixed*.

We denote the whole state trajectory and the function values
of all r latent functions for the entire set [0, 7] as (infinite
dimensional) X and f, respectively. We define a tractable
form of the variational density ¢(X, f), and optimize it to
approximate the true posterior (8) as much as possible. In
defining ¢(-), we impose independence between X and f for
computational tractability. First, we let the posterior distri-
bution of X follows a CTMC, which allows analytic deriva-
tions feasible as will be shown below. Also the posterior of
the latent functions f are assumed to be Gaussians factorized
over ¢ = 1,...,r. Furthermore, we force the conditional
density ¢(f|fz) to coincide with the prior P(f|fz) exactly,
which is crucial to have some difficult terms canceled out
in the KL divergence objective, making the inference scal-
able (Titsias, 2009; Lloyd et al., 2015). In summary, our
variational density is defined as:

q(X,f) =q(X;C,a) x /q(fz)P(fle) dfz  (9)

where C is the (r X ) transition rate matrix and « is the
(1 x r) initial state probabilities for the CTMC ¢(X). Also,

q(fz) = [[N(fois0, 59, (10)
=1

Here y* is the M;-dim mean vector and X* is the (M; x M;
covariance matrix. The variational parameters are denote

as A = (C, o, p = {p'}r_, 2 = {Z_)).
We aim to minimize the KL divergence between ¢(-) and

the posterior (8), which can be written as:

KL (q(X, £)||[P(X,£|D)) = log P(D) — ELBO(6, 0, A),
(11)

where the ELBO (evidence lower-bound) is defined as:
ELBO(O,Q, A) = Ey(x 1) [log P(D|X, )] —
KL(q¢(X)[|P(X)) — KL(g(f2)[|P(fz)). (12)

*We often use the uniformly sampled points from [0,T].

From (11) and the fact that KL divergence is non-negative,
the ELBO is the lower bound of the log-evidence, namely

log P(D|©, Q) > ELBO(©,, A). (13)

Note that the bounding gap in (13) is exactly the KL di-
vergence between ¢(-) and the posterior. Thus increasing
ELBO(O, 2, A) wrt A leads to a better variational density
(closer to the posterior), whereas increasing it wrt the model
parameters (O, ()) can potentially’ improve the data evi-
dence score of the model. Hence, maximizing the ELBO
wrt all the parameters can achieve both variational inference
(i.e., ¢(-) optimization) and model selection (i.e, learning
prior model parameters) simultaneously.

In what follows, we provide full derivations for evaluating
each term comprising (12). The gradients are also required
for the optimization of the ELBO, and can be found in
Appendix C in the supplemental material.

4.1. KL(q(f2)||P(f2))

It is not difficult to see that due to the fully factorized ¢(fz)
and P(fz) over individual latent functions ¢ = 1,. .., r, the
KL divergence is the sum of the individual Gaussian KL
divergences. More specifically,

KL(q(fz)|| P(fz)) =
- 1 |Kg’i,2i’ i —1wy

+ (=) T (KL z0) (= mi) ] (14)

The gradients with respect to the related parameters are
derived in Appendix C.1.

4.2. KL(q(X)||P(X))

This term involves computing the expectations of the log-
likelihoods of the CTMC models (both the prior log P(X)
and the variational posterior log¢(X)) with respect to
q(X). We describe how to compute Eyx)[P(X)] analyt-
ically (Ey(x)[q(X)] done similarly). For this purpose, we
rephrase the CTMC likelihood in (6) using some total statis-
tics from the realization X (-). With X (-) fixed, let n;; be
the number of transitions from state i to j where j # ¢, and
A; be the sojourn time at state 4, thatis, A; = >, Au.
Note that (n;;, A;) are the functions of X (-). Then we have:

log P(X) = (15)
Z <H{X(0)—i} log T + AZQM + Z Nij log Qij)a
i=1 JFi

SHowever, this does not guarantee to improve the evidence
log P(D) since the inequality (13) is not tight.
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where H{p} is 1 (0) if the predicate p is true (false).

Thus the expectation of (15) requires: Eq[n;;] and Eq[A;].
For the latter, we ﬁrst note that A; = fo I x(t)=iydt. Using
q(X (t) = i) = [aet“]; from the CTMC theorems (see (4)
in Appendix A), we have:

E,x)[Ai] = [adcli, (16)
where Jo = fOT e'Cdt, is the (r x r) matrix by integrating
the matrix exponential over [0, 7], and [v]; indicates the
i-th element of the vector v. As the number of transitions

Nij = fo I x(t)=i AND X(t+dt) —j}» and using ¢(X(t) =
i, X (t + dt) = j) = [e!€];Cy;dt ((5) in Appendix A),

Eq(X)[nij} = [aJC]iCij. (17)
By applying these to (15), we finally have:
T al
KL (q(X)|[P(X)) :Z{ailogw + (18)
i=1 '

g}

J#i

The remaining thing is how to compute J¢. It can be done
analytically once the matrix C'is diagonalized. The details
are found in Appendix B of the supplemental material. Since
r is usually small (e.g., 2 or 3), diagonalization must not
incur any computational or numerical issues. When we
compute the gradients of (18) with respect to C, special
techniques of taking derivatives of matrix exponentials such
as (Kalbfleisch & Lawless, 1985) can be used. The technical
details are described in Appendix B and Appendix C.2.

Fljc]i( i

4.3. ]Eq(X,f) [log P(D|X, f)]

This is the conditional log-likelihood given the state trajec-
tory and the latent functions, expected with respect to the
variational posterior ¢(X, f). From (7), after slight rephras-
ing, the conditional log-likelihood can be written as:

T N
DD Lix(en)=iy log (F1(ta))?

i=1n=1

T T
> / Lix@=n (f/(D)dt. (19)
i=170

Exploiting the factorization ¢(X, f) = ¢(X)q(f), we take
the expectation of (19) wrt ¢(X) first, followed by ¢(f).
Using ¢(X (t) = i) = [ae!“]; from the previous section,

log P(D| X, f)

T

= (ELL; — ENO;) where (20)

i=1

a(Fi(t)) 108 (F'(tn)?],

Eq(X,f) [log P(D|X, f)]

N

ELL; = Z[aet"c JiE

/ [aet®

ey

ENO; arien [(FE(2))?]dt. (22)

Note that (21) and (22) are very similar to those in the vari-
ational inference of the GPCox model proposed in (Lloyd
et al., 2015). However, we have the weighted expected
log-likelihood by the weights [aetC]; overi = 1,...,r, de-
termined by the latent state posterior probabilities ¢( X (t)).
Computing these weights for each ¢ can be done analytically
when we have a diagonalization of C' (See Appendix B in the
supplemental material). The expectations in (21) and (22)
are with respect to Gaussians, more specifically, ¢(f(t))) =

Jalfz)P(fi ()| f5)df 50 = N (fii(t), 67 (t)) where
Nz(t) = m’(t) + K;Zi (Kizi7zz‘)71(ﬂi - mZZ7), 23)
Gi(t) = Kj,— Kz,zi(K%i,Zi)ilKj’s’i,t +

KZ.,Zi(Kzzi,zi)_lzl(Klzi,zi)_1Klzi,t- (24)
Then the expectation in (22) equals (f;(t))? + 2 (¢), which
allows us to compute the integral analytically for a certain
kernel form (e.g., squared exponential or polynomial kernel)
as shown in (Lloyd et al., 2015). With the additional weight
term [oe’]; multiplied to the integrand in our model, by
rewriting the weight as a sum of scalar exponentials af-
ter diagonalization of C, we can still derive a closed-form
expression for ENO;. However, it is highly complicated,
which becomes even worse when evaluating its gradients
(e.g., wrt C). For the expectation of the log-squared term
of ELL; in (21), some confluent hyper-geometric function
was adopted in (Lloyd et al., 2015), however, it is either
numerically unstable or based on certain interpolation.

Instead, we employ fairly straightforward strategies for com-
puting ELL; and ENO,. First, the expectation of the log-
squared term in (21) is done by the Monte-Carlo estimation.
This must not incur much computational overhead since it
is univariate sampling. Considering that we have to take
derivatives of ELL; wrt the parameters related to q(f(t,)),
we also adopt the re-parametrized Gaussian sampling tech-
nique as suggested in (Kingma & Welling, 2014). The idea
is to express the random samples from ¢(f*(t,)), denoted

byfl()fors—l ., 8, as:
i(s) _ - ~ s
£ = Baltn)+ (G ) 2el) )~

(s)

n

Z log (uf

~N(0,1). (25)

After sampling €, ’, we fix them, and ELL, is estimated as:

5t

As it separates randomness (eg,‘?) from the parameters, the
gradient of (26) can be computed straightforwardly while
yielding an unbiased estimate of the gradient of the original
(21). See Appendix C.3 for the full derivations. Further-
more, to reduce the variance of the estimate, one can use the
Rao-Blackwellization technique (Casella & Robert, 1996).

t

FE)PE) 0o
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For the integration in (22), we do this numerically by uni-
form grid sampling. Specifically, by having G uniform grid
points {f,}5, over [0,T] with At = #,,1 — t,, we define
the following statistics:

G G
P _ i g i i i i\
Yo = ngKzi,t"gKt'y,zﬂ v = ngm (tg)ng,z“
g=1

g=1
Wy = wy(m'({y)?, =Y wik} ;. 27)
g=1 g=1
where w!, = [aefsC]; At. We then numerically compute
ENO; as:

(1" = m) (Kb 5:) T WG (K 5:) 7 (1 —mbs) +
+ 2W (KL 50) 7 (0 = m) = Tr((Ki 20) 7' W)
+ Tr((KGi z:) 'S (K 7)) + W5 + W5, (28)

In this way the gradient of ENO, can be derived fairly easily,
which is summarized in Appendix C.3.

When the optimization is done by first-order gradient meth-
ods, the computational complexity of the variational infer-
ence for our model is no more than r (the number of latent
GP functions) times that of the variational inference of the
GPCox as in (Lloyd et al., 2015), which can be seen as a
special MMGCP model with r = 1.

4.4. Model Selection and Test Prediction

We discuss how to determine the optimal value of . The
ELBO objective, the lower bound of the data log-likelihood,
tends to increase as we increase r since models with higher
r naturally subsume those with lower. However, it would
incur higher chance of overfitting and worse generaliza-
tion on unseen test data. We need to trade off between
the model complexity and the goodness of data fitting, and
along this line one can employ certain information crite-
ria such as the Bayesian criterion (Schwarz, 1978). When
specifying the model complexity, we take into considera-
tion all related parameters as well as the inducing points.
Alternatively, we can choose r by cross validation, mea-
suring performance on a validation set, randomly held-out
portion of the training data. Once the model and the varia-
tional parameters are learned, we can estimate the predictive
likelihood for an unseen test data D,.. We see that the predic-
tive log-likelihood, log P(D.|D, ©, Q) is lower-bounded by
Eq(x.¢) [ log P(D.| X, f,0,9)], which can be computed by
the exactly same procedures as in Sec. 4.3 with D,..

5. Evaluations

In this section we demonstrate the performance of the pro-
posed MMGCP model. We mainly compare our model
with two existing extreme stationarity models, MMPP and
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Figure 1. Two event sequences from the synthetic Full-Stn data.
The X-axis is time. The (blue) curves depict the realized intensity
functions from the true MMPP model. The generated events are
marked as (red) crosses on the X-axis.

GPCox, since our model is motivated from both. For the
GPCox, among several inference strategies, we opt for the
latest variational inference method proposed in (Lloyd et al.,
2015), which exhibits comparable generalization perfor-
mance to other approaches while being significantly faster
than sampling-based methods such as (Adams et al., 2009).
As a baseline, we also consider: i) the classical kernel
smoothing (KS) approach (Diggle, 1985), specifically the
Gaussian kernel density estimator, and ii) the log Gaussian
Cox process (LGCP) (Rathbun & Cressie, 1994; Mgller
et al., 1998), which approximates the problem as a stan-
dard GP inference with Poisson-likelihood iid data via event
counting through discretization of the time horizon.

5.1. Synthetic data

To demonstrate the effectiveness of the proposed MMGCP
model, we devise three different synthetic data setups that
exhibit highly different aspects in terms of time stationarity.

The first setup simulates a fully stationary scenario (denoted
by Full-Stn), where we generate data from a r = 3-
state MMPP model with highly different intensity levels
{1.0,4.0,8.0}. Within the time horizon T" = 50, we gen-
erate 10 event sequences from the model (Fig. 1 for two
exemplar sequences), from which we randomly take 5 se-
quences as training data while the rest as a test set. For
the MMPP and our MMGCP models, we choose the model
order by cross validation, which both correctly recovered
7 = 3 hidden states. For the GPCox and our model, we use
the squared exponential kernels, and the variational infer-
ence in both models uses the same M = 10 pseudo inputs
(also the same across ¢ = 1, ..., r for the MMGCP).

The average test log-likelihoods are shown in Table 1(A).
As expected, the MMPP model attains the best performance
since the model structure exactly matches that of the data
generating one. Our MMGCP, although a generalization
of MMPP, performs worse than the MMPP due to the use
of smooth kernels. However, the MMGCP significantly
outperforms the GPCox and other non-stationary models.
The figures in the parentheses indicate the p-values from the
paired sample t¢-test for the competing models against our
MMGCEP. Thus the differences between existing models and
ours are all statistically significant (p-values less than 0.05).
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Table 1. Average test log-likelihoods for the three synthetic data
setups. The boldfaced figures indicate the best performing ones
with statistical significance. From the paired sample ¢-test, the
p-values of the competing models against our MMGCP are shown
in the parentheses.

(A) FULL-STN

MMGCP GPCox MMPP KS LGCP
2.50 1.14 15.45 —27.12 —36.61
=) (0.029) (0.014) (0.0004) (0.0017)

(B) NON-STN

MMGCP GPCox MMPP KS LGCP

—42.19 —42.36 —45.00 —45.54 —44.16
(=) (0.89) (<10™%)  (0.0004) (0.29)

(C) SEMI-STN

MMGCP GPCox MMPP KS LGCP

—87.66 —97.64 —90.66 —102.18 —160.88
(=) (0.0019) (0.001) (0.0003) (0.0001)

The second synthetic dataset represents fully non-stationary
intensity setup (denoted by Non-Stn). From (Adams
et al., 2009) we take A(t) = 2exp(—t/15) + exp(—((t —
25)/10)?) as the true (deterministic) intensity function over
[0, 50], and generate data from the inhomogeneous Poisson
process. See Fig. 2 for the true intensity function and a
sample event sequence. With the similar experimental se-
tups as the first dataset, we run the five models and report
the test scores in Table 1(B). The MMPP, with r = 3 hid-
den states chosen, now underperforms the non-stationary
time-dependent intensity modeling methods with statistical
significance. The GPCox and our MMGCP perform com-
parably well. The MMGCP selects r» = 2 hidden states by
the cross validation although » = 1 (i.e., GPCox) yields
a slightly smaller but very close validation score than that
of r = 2. This implies that the smooth intensity change
is properly represented by the covariance functions of the
Gaussian processes.

2

x  Data
True
—MMGCP

15 - - -GPCox ||

0 " I I I
0 10 20 30 40 50

Figure 2. The synthetic Non—Stn data. The true intensity func-
tion, a sample event sequence, and the estimated (expected) inten-
sity functions of the competing models are shown.

In this Non-Stn dataset, since we have the true intensity
function available, we can measure the distance between

Table 2. Average L2 errors for the Non-Stn setup.

MMGCP GPCox
2.20 2.59

MMPP KS LGCP
19.44  7.22 8.85

Figure 3. Two event sequences from the synthetic Semi~-Stn data.
The X-axis is time. The top panel depicts two candidate inten-
sity functions A*(¢) and A*(¢). The other two panels show two
event sequences generated from the model: the curve indicates
the realized intensity function by selecting each of two candidates
according to the underlying Markov process, while the generated
events are marked as (red) crosses on the X-axis.

the estimated (expected) intensity functions and the true
one. We use the L2 error defined as fOT(Am'e(t) —\(t))? dt,
where A(t) = E[\(¢)|D] is the posterior-expected intensity
function. In our MMGCP moﬁdel, as we have the posterior
approximation (X, f), using \(t) ~ E,[(fX®)?] we have:

At) = Y e (1) +67().  (29)

i=1

The L2 errors of the competing methods are reported in
Table 2. See also Fig. 2 for the estimated intensity functions.
Our MMGCP and the GPCox exhibit the best performance.

For the last synthetic setup, we aim to simulate the semi-

stationary scenario (denoted by Semi-Stn). We consider

two underlying candidate intensity functions as follows:
2e~t/30 + Gos (t) + 2G50(t) + 3.5Ggs (t) +4

() = 3 :

1
g(1.8 sin(0.005t%) + 2), (30)

Nt =

where G, (t) = e~ ((1=a)/10)* " Ag shown in Fig. 3, they
exhibit highly different patterns and levels from each other.
We also incorporate a 2-state CTMC so that which of the two
candidate functions is active at each moment is determined
stochastically by the latent Markov process. We generate
event sequences over the horizon T' = 100 from the model.

We follow the experimental setup similar to the previous
two datasets. The test log-likelihood scores of the compet-
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Table 3. Average test log-likelihoods on the Football and
Earthquakes datasets. For both sets, the boldfaced figures
indicate the best performing ones with statistical significance (i.e.,
the p-values, from the paired sample ¢-test of the competing models
against our MMGCP, all less than 10~%).

(A) FOOTBALL

MMGCP GPCox MMPP KS LGCP
—69.48 —72.26 —70.34 —71.26 —76.56
(B) ITALY’S EARTHQUAKES
MMGCP GPCox MMPP KS LGCP
—-101.19 -—-109.73 -—117.17 —186.76 —130.78

ing approaches are summarized in Table 1(C). In this case,
our MMGCP is outstanding for this semi-stationary data.
The superiority of the MMGCP to competing methods is
statistically significant whereas the fully stationary MMPP
and the time-dependent inhomogeneous models like GPCox
and kernel smoother suffer from the heterogeneity of data:
globally undergoing stationary regime switching but being
time-dependent within each regime.

Overall, our MMGCRP is viable consistently across all differ-
ent time stationarity setups, ranging from fully stationary to
non-stationary as well as semi-stationary in between. In the
following sections, we also demonstrate the effectiveness of
our model on some real-world event datasets.

5.2. Football Data

We test on the football events dataset® from the Kaggle
open data platform. There are 9074 football games as a
whole collected from major European leagues for 5 years
(from 2011/12 season to 2016/17). For each game, the
major events (e.g., shot attempts, goals, corners, fouls, etc.)
are marked in the minute scale. The types and times of
the events are obtained from various sources, mainly text
commentary and web scraping.

From the dataset, we consider the events of shot attempts
only, and focus on those games which contain 30 or more
events, which comprise about 2000 games. Each game is
represented as a sequence of events, and we regard each se-
quence as an iid sample from an unknown process within the
horizon [0, T'] with T = 90+ « minutes where o amounts to
the random extra time which is usually less than 5 (minutes).
The average number of events per sequence is 33.4 with
standard deviation 3.4.

Among these sequences, we randomly select 500 sequences
for training and 100 as a test set. The test likelihood scores
are summarized in Table 3(A). It shows that the proposed
MMGCP outperforms the competing models with statistical
significance (the p-values with regard to our MMGCP are all

Shttps://www.kaggle.com/secareanualin/football-events

less than 10~#). The improvement achieved by the proposed
approach can be attributed to the semi-stationary nature of
the data in some sense: the event rates can be time dependent
in certain regimes (e.g., there are often more active attack
attempts during the beginning/end of the game or the half
time than in the middle of the game), but overall intensities
tend to be stationary, exhibiting highly different aspects
from game to game.

5.3. Italy’s Earthquakes Data

We next demonstrate the performance of the proposed ap-
proach on the daily earthquake data publicly available from
the Kaggle open data platform. The dataset’ is obtained
by real-time collections of the earthquake events from the
Italian Earthquakes National Center, which contains earth-
quake records of various magnitudes that hit the center of
Italy for three months, from August to November in 2016.
As we are interested in the daily patterns, we group them on
a daily basis, and regard the events for each day as an iid
sequence sample. There are 99 (daily) event sequences for
which we split them randomly into 60/39 training/test sets.

We consider all the events with the Richter magnitude no
less than 2.0, where the magnitude 2.0 corresponds to earth-
quakes that are minor, but felt by some people. The number
of events per sequence is highly varying across sequences:
the mean is 81.7 and the standard deviation 107.5. We also
scale the event times from the original data down to [0, 100].
The test results are shown in Table 3(B). The MMGCP again
exhibits significantly better generalization capability than
models based on the extreme time stationarity assumptions.
Considering the complexity of the underlying event gener-
ating process for this data (e.g., time-sensitive factors as
well as stationary changes of states), it signifies that the
MMGCP’s added flexibility attained by combining inhomo-
geneous Poisson process with the latent regime switching
to account for major trend changes, can be highly effective
for representing a complex event process.

6. Conclusion

In this paper we have proposed a novel Markov modu-
lated Gaussian Cox process model that incorporates both
the GP-based smooth intensity changes along with major
regime switches through a hidden Markov process. While
subsuming existing stationary and non-stationary Cox pro-
cess models as special cases, the proposed model is espe-
cially suitable for representing semi-stationary event data.
Through empirical evaluations on both synthetic and real-
world datasets, we have demonstrated that the model is
promising, yielding better generalization for complex event
data modeling than existing approaches.

https://www.kaggle.com/blackecho/italy-earthquakes/data
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