Disentangling by Factorising

Appendix

A. Experimental Details for Factor VAE and
B-VAE

We use a Convolutional Neural Network for the encoder,
a Deconvolutional Neural Network for the decoder and a
Multi-Layer Perceptron (MLP) with for the discriminator
in FactorVAE for experiments on all data sets. We use [0,1]
normalised data as targets for the mean of a Bernoulli dis-
tribution, using negative cross-entropy for log p(x|z) and
Adam optimiser (Kingma & Ba, 2015) with learning rate
1074, 81 = 0.9, B2 = 0.999 for the VAE updates, as in Hig-
gins et al. (2016). We also use Adam for the discriminator
updates with 5, = 0.5, 82 = 0.9 and a learning rate tuned
from {107%,107°}. We use 10~* for 2D Shapes and 3D
Faces, and 1075 for 3D Shapes, 3D Chairs and CelebA. The
encoder outputs parameters for the mean and log-variance
of Gaussian ¢(z|x), and the decoder outputs logits for each
entry of the image. We use the same encoder/decoder ar-
chitecture for 3-VAE and FactorVAE, shown in Tables 1,
2, and 3. We use the same 6 layer MLP discriminator with
1000 hidden units per layer and leaky ReL.U (IReLU) non-
linearity, that outputs 2 logits in all FactorVAE experiments.
We noticed that smaller discriminator architectures work
fine, but noticed small improvements up to 6 hidden layers
and 1000 hidden units per layer. Note that scaling the dis-
criminator learning rate is not equivalent to scaling ~, since
~ does not affect the discriminator loss. See Algorithm 2 for
details of FactorVAE updates. We train for 3 x 10° iterations
on 2D Shapes, 5 x 10° iterations on 3D Shapes, and 10°
iterations on Chairs, 3D Faces and CelebA. We use a batch
size of 64 for all data sets.

B. Details for the Disentanglement Metrics

We performed a sensitivity analysis of each metric with re-
spect to its hyperparameters (c.f. Figure 2). In Figures 16,
we show that the metric in Higgins et al. (2016) is very sen-
sitive to number of iterations of the Adagrad (Duchi et al.,
2011) optimiser with learning rate 0.01 (used in Higgins
et al. (2016)), and constantly improves with more iterations.
This suggests that one might want to use less noisy multi-
class logistic regression solvers than gradient-descent based
methods. The number of data points used to evaluate the
metric after optimisation did not seem to help reduce vari-
ance beyond 800. So in our experiments, we use L = 200
and 10000 iterations, with a batch size of 10 per iteration of
training the linear classifier, and use a batch of size 800 to
evaluate the metric at the end of training. Each evaluation of
this metric took around 30 minutes on a single GPU, hence
we could not afford to train for more iterations.

For our disentanglement metric, we first prune out all la-
tent dimensions that have collapsed to the prior (¢(z;|z) =

Table 1. Encoder and Decoder architecture for 2D Shapes data.

| Encoder | Decoder

‘ Input 64 x 64 binary image

| 4 x 4 conv.32ReLU. stride 2 | FC. 128 ReLU.

| 4 x 4conv.32ReLU. stride 2 | FC. 4 x 4 x 64 ReLU.

4 x 4 conv. 64 ReLU. stride 2	4 x 4 upconv. 64 ReLU. stride 2
4 x 4 conv. 64 ReLU. stride 2	4 x 4 upconv. 32 ReLU. stride 2
FC. 128. FC. 2 x 10.	4 x 4 upconv. 32 ReLU. stride 2

| | 4 x 4 upconv. 1. stride 2 |

|
‘ Input € R0 ‘
|
|

Table 2. Encoder and Decoder architecture for 3D Shapes, CelebA,
Chairs data.

| Encoder | Decoder
| Input 64 x 64 x 3 RGB image | Input € R (3D Shapes) R (CelebA, Chairs)
| 4 x 4 conv. 32 ReLU. stride 2 | FC. 256 ReLU.

|
|
|
| 4 x 4conv. 32 ReLU. stride 2 | FC. 4 x 4 x 64 ReLU. |
|
|
|
|

| 4 x 4 conv. 64 ReLU. stride 2 | 4 x 4 upconv. 64 ReLU. stride 2
| 4 x 4 conv. 64 ReLU. stride 2 | 4 x 4 upconv. 32 ReLU. stride 2
‘ FC. 256. FC. 2 x 10.

| 4 x 4 upconv. 32 ReLU. stride 2
\ | 4 x 4upconv. 3. stride 2

Table 3. Encoder and Decoder architecture for 3D Faces data.

| Encoder | Decoder

| 4 x 4 conv. 32 ReLU. stride 2 | FC. 256 ReLU.

| 4 x4 conv. 32ReLU.stride2 | FC. 4 x 4 x 64 ReLU.

4 x 4conv. 64 ReLU. stride 2	4 x 4 upconv. 64 ReLU. stride 2
4 x 4conv. 64 ReLU. stride 2	4 x 4 upconv. 32 ReLU. stride 2
FC.256. FC. 2 x 10.	4 x 4 upconv. 32 ReLU. stride 2

| | 4 x 4 upconv. 1. stride 2 |

|
‘ Input 64 x 64 greyscale image ‘ Input € R*° ‘
|
|

p(z;)). Then we just use the surviving dimensions for the
majority vote. From the sensitivity analysis our metric in
Figure 17, we observe that our metric is much less sen-
sitive to hyperparameters than the metric in Higgins et al.
(2016). We use L = 100 and take the majority vote classifier
from 800 votes. This only takes a few seconds on a single
GPU. The majority vote classifier C' works as follows: sup-
pose we are given data (a;, b;)M,,a; € {1,...,D},b; €
{1,...,K} (so M = 500). Then for j € {1,..., D}, let
Vie = Zﬁ I(a; = j,b; = k). Then the majority vote
classifier is defined to be C'(j) = arg max;, Vjy.

Note that D, the dimensionality of the latents, does not
affect the metric; for a classifier that chooses at random, the
accuracy is 1/K, independent of D.

For discrete latent variables, we use Gini’s definition of

Disentangling by Factorising

@ number of optimisation iterations=1000
= number of optimisation iterations=3000
= number of optimisation iterations=10000
= number of optimisation iterations=30000

(i

L=100 L=200 L=400 L=800

=
S

=
=

0ld disentanglement metric

0o

Figure 16. Mean and standard deviation of metric in Higgins et al.
(2016) across 10 random seeds for varying L and number of Ada-
grad optimiser iterations (batch size 10). The number of points
used for evaluation after optimisation is fixed to 800. These were
all evaluated on a fixed, randomly chosen (3-VAE model that was

trained to convergence on the 2D Shapes data.

09
I number of points for final evaluation=50
B number of points for final evaluation=100
08 B number of points for final evaluation=200
B number of points for final evaluation=400

B number of points for final evaluation=800
o7

new disentanglement metric
= = o o =
S & - & 5

=l

o° L=25 L=50 =100 L=200 L=400
Figure 17. Mean and standard deviation of our metric across 10
random seeds for varying L and number of points used for evalua-
tion. These were all evaluated on a fixed, randomly chosen 3-VAE
model that was trained to convergence on the 2D Shapes data.

empirical variance:

N

— 1

Var(x) NN —1) ”zz:l d(z;, ;) 4)
forz = [z1,...,2n] € RN, d(z;,z;) = 1if 2; # 2 and

0if z; = x;. Note that this is equal to empirical variance
for continuous variables when d(z;, z;) = (z; — ;).

C. KL Decomposition

The KL term in the VAE objective decomposes as follows
(Makhzani & Frey, 2017):

Lemma 1. E,,) [KL(q(z|2)||p(2))] =

I(z;2) +
K L(q(2)||p(z)) where q(z, z))

= pdata(x)Q(z|x .

Proof.

Epsura() K L(a(2[2)]Ip(2))]

= Epora(@) Eq(z12) | l0g

=E

Paata(@)Eq(z|z) | 108

=E tamE z|x IOg
Pdata(T) Q(l)_ a(2)

= E:Ddam(z) [KL(C](Z|CL')||q(z))] + Eq(m,z) |:10g Z(Z)]

= I,(z;2) + Eg(r) [log %}

= I(z;2) + KL(q(2)||p(2))

O

Remark. Note that this decomposition is equivalent to
that in Hoffman & Johnson (2016), written as follows:

Epsara @ K L(q(z]2)[[p(2))] = I (i; 2) + KL(q(2)[|p(2))
where 1(i,2) = 2q(z|zV), hence r(z|i) = q(z[z@),

r(z) = % Y q(zl29) = g(2).

Proof.

1, (is 2) = L(r(2]8)]Ir(2))]

E,i)[K
N
Z q(z]z™)]|q(2))

Epdmm (K L(q(z])[lq(2))]
= Iy(w;2)

D. Using a Batch Estimate of ¢(z) for
Estimating TC

We have also tried using a batch estimate for the density
q(z), thus optimising this estimate of the TC directly instead
of having a discriminator and using the density ratio trick.
In other words, we tried ¢(z) = §(z) = ﬁ Yie a(zlz),
and using the estimate:

M Lats) =Ea)

z
~ Eq(z) |:10g T

Disentangling by Factorising

Note that:
q(2)
E,. [log - }
T acz)
H D
1 1 ;
~ 7 2 |05 gy 2 Tt
h=1 | | i€B j=1
Do
h i
~tog][o S atef" e >>}
j=1 icB

(6)

for 2 % q(z). However while experimenting on 2D
Shapes, we observed that the value of log ¢(2(")) becomes
very small (negative with high absolute value) for latent
dimension d > 2 during training, because G(z) is not a good
enough approximation to ¢(z) unless B is very big. As
training progresses for the VAE, the variance of Gaussians
q(z|2®) becomes smaller and smaller, so they do not over-
lap too much in higher dimensions. Hence we get z(") ~
q(z) that land on the tails of §(z) = \Tlﬂ Sien a(zlz®),
giving worryingly small values of log ¢(z(")). On the other

hand [, (j(z§h)), a mixture of |B|?¢ Gaussians hence of
much higher entropy, gives much more stable values of

log[]; (j(zlﬁh)). From Figure 18, we can see that even with
B as big as 10,000, we get negative values for the esti-
mate of TC, which is a KL divergence and hence should
be non-negative, hence this method of using a batch es-
timate for g(z) does not work. A fix is to use samples
from §(z) instead of ¢(z), but this seemed to give a similar
reconstruction-disentanglement trade-off to 5-VAE. Very
recently, work from (Chen et al., 2018) has shown that dis-

entangling can be improved by using samples from §(z).
7bueta=1.(:\,TC estimate=-193.30 Elg(]eta:S.U,TC estimate=-10.62 beta=9.0, TC estimate=-2.22

0o a0 700
% &0
=00 o o
w0 500
i 00 00
20 20 bt
. 200
100 100 0
0 — 0 —— 0

0 0
0 120 -0 80 60 40 20 O 80 70 -60 -50 40 30 20 -10 0

Figure 18. Histogram of log G(z")) (top) and H?Zl cj(z§.h)) (bot-
tom) for 2™ X ¢(z) with |B| = 10000, d = 10. The columns
correspond to values of 5 = 1, 5,9 for training 5-VAE. In the title
of each histogram, there is an estimate of TC based on the samples

of z(M.

E. Log Marginal Likelihood and Samples

We give the log marginal likelihood of each of the best per-
forming 5-VAE and FactorVAE models (in terms of disen-
tanglement) for both the 2D Shapes and 3D Shapes data sets
along with samples from the generative model. Since the log
marginal likelihood is intractable, we report the Importance-
Weighted Autoencoder IWAE) bound with 5000 particles,

Figure 19. Randomly chosen samples from the best performing (in
terms of disentanglement) 3-VAE generative model (8 = 4).

Figure 20. Randomly chosen samples from the best performing (in
terms of disentanglement) FactorVAE generative model (7 = 35).

ple™ by oipiapln o & "
B g TN e b RS
Hod O

Figure 21. Randomly chosen samples from the best performing (in
terms of disentanglement) 3-VAE generative model (5 = 32).

O™ e lllese M
ot hm'a"e Il ¢adsi

Figure 22. Randomly chosen samples from the best performing (in
terms of disentanglement) FactorVAE generative model (y = 6).

in line with standard practice in the generative modelling
literature.

In Figures 19 and 20, the samples for FactorVAE are ar-
guably more representative of the data set than those of
(B-VAE. For example 5-VAE has occasional samples with
two separate shapes in the same image (Figure 19). The log
marginal likelihood for the best performing 5-VAE (8 = 4)
is -46.1, whereas for FactorVAE it is -51.9 (y = 35) (a
randomly chosen VAE run gives -43.3). So on 2D Shapes,
FactorVAE gives better samples but worse log marginal
likelihood.

In Figures 21 and 22, the samples for 5-VAE appear
more coherent than those for FactorVAE. However the log
marginal likelihood for 8-VAE (5 = 32) is -3534, whereas
for FactorVAE it is -3520 (v = 6) (a randomly chosen VAE
run gives -3517). So on 3D Shapes, FactorVAE gives worse

Disentangling by Factorising

samples but better log marginal likelihood.

In general, if one seeks to learn a generative model with a
disentangled latent space, it would make sense to choose
the model with the lowest value of 5 or v among those with
similarly high disentanglement performance.

F. Losses and Experiments for other related
Methods

The Adversarial Autoencoder (AAE) (Makhzani et al., 2015)
uses the following objective

N
%Z [y llogp@12)]] = KL(a(=)Ip(2)),)

utilising the density ratio trick to estimate the KL term.

Information Dropout (Achille & Soatto, 2018) uses the ob-
jective

N
5 S B log (e 2)] — BK La(=l) la(2))

i=1
®)
The following objective is also considered in the paper but
is dismissed as intractable:

N
Z[(eta log p(aV[2)] = BK L{g (21D la(2))]

HHQZJ

€))

—vKL(q

Note that it is similar to the FactorVAE objective (which
has 8 = 1), but with p(z) in the first KL term replaced with

q(2).

DIP-VAE (Kumar et al., 2018) uses the VAE objective
with an additional penalty on how much the covariance of
q(z) deviates from the identity matrix, either using the law
of total covariance Covg(,)[2] = Ep,...(2)C0Vg(z|2)[2] +
COUpdata(as) (]E‘Z(Z|93) [2]) (DIP-VAE I):

N
%Z[etz logp(a?]2)] = KL(a(z|2) [p(2)]

= Xoa Y _[COVp o) [1(2)]]7;
i#

=X Y _([CoVp o wy[1(@)]]ii — 1) (10)

%

where p(x) = mean(q(z|x)), or directly (DIP-VAE II):

N
%Z[o(efocon Dogp(a[2)] = K L(a(=la) Ip(2))]
-)\od Z Covq(z) [Z]] j

i#]
—)\dZ([Covq(Z)[z]]ii —1)2 (11D

%

One could argue that during training of FactorVAE,
[1; a(z;) will be similar to p(z), assuming the prior is fac-
torial, due to the K L(q(z|x)||p(z)) term in the objective.
Hence we also investigate a modified FactorVAE objective

that replaces [[¢(z;) with p(2):

N
3 37 [Egraion log pa 1))~ K L(a(1a®) ()]

: KL lp() (12)

However as shown in Figure 40 of Appendix I, the his-
tograms of samples from the marginals are clearly quite
different from the the prior for FactorVAE.

100

reconstruction error
& 8 B

o
— 260
— 5120
— 10240

new disentanglement metric old disentanglement metric

00 150000 200000 250000
iteration

0 150000 200000 250000
iteration

Figure 23. Same as Figure 4 but for AAE (left) and a variant of
FactorVAE (Eqn. (12).

Moreover we show experimental results for AAE (adding
a ~y coefficient in front of the K L(q(2)||p(z)) term of
the objective and tuning it) and the variant of FactorVAE
(Eqn. (12)) on the 2D Shapes data. From Figure 23, we see
that the disentanglement performance for both are some-
what lower than that for FactorVAE. This difference could
be explained as a benefit of directly encouraging ¢(z) to
be factorised (FactorVAE) instead of encouraging it to ap-
proach an arbitrarily chosen factorised prior p(z) = N(0, I)
(AAE, Eqn. (12)). Information Dropout and DIP-VAE did

Disentangling by Factorising

not have enough experimental details in the paper nor pub-
licly available code to have their results reproduced and
compared against.

G. InfoGAN and InfoWGAN-GP

We give an overview of InfoGAN (Chen et al., 2016) and
InfoWGAN-GP, its counterpart using Wasserstein distance
and gradient penalty. InfoGAN uses latents z = (¢, €) where
¢ models semantically meaningful codes and ¢ models in-
compressible noise. The generative model is defined by
a generator G with the process: ¢ ~ p(c),e ~ p(e),z =
(¢c,€), x = G(z).i.e. p(z) = p(c)p(e). GANs are defined as
aminimax game on some objective V (D, G), where D is ei-
ther a discriminator (e.g. for the original GAN (Goodfellow
et al., 2014)) that outputs log probabilities for binary clas-
sification, or a critic (e.g. for Wasserstein-GAN (Arjovsky
et al., 2017)) that outputs a real-valued scalar. InfoGAN
defines an extra encoding distribution @Q(c|z) that is used to
define an extra penalty:

L(G,Q) = Ep)Epe)[log Q(c|G(c, €))] (13)

that is added to the GAN objective. Hence InfoGAN is the
following minimax game on the parameters of neural nets

D,G,Q:
min mgXVI(D, G,Q) = min max V(D,G) - AL(G,Q)

(14)
L can be interpreted as a variational lower bound to
I(c; G(c,€)), with equality at Q = argming V7 (D, G, Q).
i.e. L encourages the codes to be more informative about
the image. From the definition of L, it can also be seen as
the reconstruction error of codes in the latent space. The
original InfoGAN defines:

V(D, G) = Epdam(x) [D(x)] - IEp(z) [D(G(z))} (15)

same as the original GAN objective where D outputs log
probabilities. However as we’ll show in Appendix H this
has known instability issues in training. So it is natural to try
replacing this with the more stable WGAN-GP (Gulrajani
et al., 2017) objective:

V(D,G) =Eyp,...) [D(®)] — By [D(G(2))]
+ (|| VaD(2)]o=z]l2 — 1) (16)

for & = wx, + (1 —m)xy with w ~ U[0,1], 2, ~ Pdate (),
zy ~ p(z), ; =stop_gradient(G(zs)) and with a
new z for each iteration of optimisation. Thus we obtain
InfoWGAN-GP.

H. Empirical Study of InfoGAN and
InfoWGAN-GP

To begin with, we implemented InfoGAN and InfoWGAN-
GP on MNIST using the hyperparameters given in Chen

et al. (2016) to better understand its behaviour, using 1 cat-
egorical code with 10 categories, 2 continuous codes, and
62 noise variables. We use priors p(c;) = U[—1, 1] for the
continuous codes, p(cj) = % for categorical codes with J
categories, and p(e;) = N (0, 1) for the noise variables. For
2D Shapes data we use 1 categorical codes with 3 categories
(J = 3), 4 continuous codes, and 5 noise variables. The
number of noise variables did not seem to have a noticeable
effect on the experiment results. We use the Adam opti-
miser (Kingma & Ba, 2015) with 81 = 0.5, 82 = 0.999,
and learning rate 10~ for the generator updates and 10~
for the discriminator updates. The detailed Discrimina-
tor/Encoder/Generator architecture are given in Tables 4
and 5. The architecture for IfoWGAN-GP is the same
as InfoGAN, except that we use no Batch Normalisation
(batchnorm) (Ioffe & Szegedy, 2015) for the convolutions
in the discriminator, and replace batchnorm with Layer Nor-
malisation (Ba et al., 2016) in the fully connected layer
that follows the convolutions as recommended in (Gulrajani
et al., 2017). We use gradient penalty coefficient n = 10,
again as recommended.

—— disc accuracy on real samples
\ —— average disc accuracy
., — disc accuracy on fake samples
\
\

0o

0 50000 100000 150000 200000 250000 300000 350000 400000 450000
iteration

Figure 24. Discriminator accuracy of InfoGAN on MNIST
throughout training.

We firstly observe that for all runs, we eventually get a
degenerate discriminator that predicts all inputs to be real, as
in Figure 24. This is the well-known instability issue of the
original GAN. We have tried using a smaller learning rate for
the discriminator, and although this delays the degenerate
behaviour it does not prevent it. Hence early stopping seems
crucial, and all results shown below are from well before
the degenerate behaviour occurs.

Chen et al. (2016) claim that the categorical code learns digit
class (discrete factor of variation) and that the continuous
codes learn azimuth and width, but when plotting latent
traversals for each run, we observed that this is inconsistent.
We show five randomly chosen runs in Figure 25. The digit
class changes in the continuous code traversals and there are
overlapping digits in the categorical code traversal. Similar
results hold for InfoWGAN-GP in Figure 36.

We also tried visualising the reconstructions: given an im-
age, we push the image through the encoder to obtain latent
codes c, fix this c and vary the noise € to generate multiple
reconstructions for the same image. This is to check the
extent to which the noise € can affect the generation. We can
see in Figure 26 that digit class often changes when varying

Disentangling by Factorising

Table 4. InfoGAN architecture for MNIST data. 2 continuous
codes, 1 categorical code with 10 categories, 62 noise variables.

\ discriminator D / encoder Q \ generator G

‘ Input 28 x 28 greyscale image

| 4 % 4 conv. 64 IReLU. stride 2

| 4 % 4 conv. 128 IReLU. stride 2. batchnorm
‘ FC. 1024 IReLU. batchnorm

| FC. 1. output layer for D

|
‘ Input € R™ ‘
| FC. 1024 ReLU. batchnorm |
‘ FC. 7 x 7 x 128 ReLU. batchnorm ‘
|
|
|

‘ 4 x 4 upconv. 64 ReLU. stride 2. batchnorm
| 4 x 4 upconv. 1 Sigmoid. stride 2

| FC. 128 IReLU. batchnorm. FC 2 x 241 x 10 |

Table 5. InfoGAN architecture for 2D Shapes data. 4 continuous
codes, 1 categorical code with 3 categories, 5 noise variables.

| discriminator D / encoder Q | generator G

‘ Input 64 x 64 binary image

| 4 x 4 conv. 32 IReLU. stride 2

| 4 x 4 conv. 32 IReLU. stride 2. batchnorm
| 4 x 4 conv. 64 IReLU. stride 2. batchnorm
‘ 4 x 4 conv. 64 IReLU. stride 2. batchnorm
‘ FC. 128 IReL.U. batchnorm

| FC. 128 ReLU. batchnorm

| FC. 4 x 4 x 64 ReLU. batchnorm

| 4 x 4 upconv. 64 IReLU. stride 2. batchnorm |
| 4 x 4 upconv. 32 IReLU. stride 2. batchnorm |
| 4 x 4 upconv. 32 IReLU. stride 2. batchnorm |

|
‘ Input € R'? ‘
|
|

| FC. 1. output layer for D
| FC. 128 IReLU. batchnorm. FC 4 x 241 x 3 for Q | |

| 4 x 4 upconv. 1 Sigmoid. stride 2 |

Table 6. Bigger InfoGAN architecture for 2D Shapes data. 4 con-
tinuous codes, 1 categorical code with 3 categories, 128 noise
variables.

| discriminator D / encoder Q | generator G

\
R136 ‘
\
\

‘ Input 64 x 64 binary image

| 4 x 4 conv. 64 IReLU. stride 2

‘ 4 x 4 conv. 128 IReLU. stride 2. batchnorm
‘ 4 % 4 conv. 256 IReLU. stride 2. batchnorm
| 4 x 4 conv. 256 IReLU. stride 1. batchnorm
| 4 x 4 conv. 256 IReLU. stride 1. batchnorm
| FC. 1024 IReLU. batchnorm

‘ Inpute R

| FC. 1024 ReLU. batchnorm

| FC.8 x 8 x 256 ReLU. batchnorm

| 4 x 4 upconv. 256 IReLU. stride 1. batchnorm |
| 4 x 4 upconv. 256 IReLU. stride 1. batchnorm |
| 4 x 4 upconv. 128 IReLU. stride 2. batchnorm |
| 4 x 4 upconv. 64 IReLU. stride 2. batchnorm |

| EC. 1. output layer for D
| EC. 128 IReLU. batchnorm. FC 4 x 2+ 1 x 3 for Q |

‘ 4 x 4 upconv. 1 Sigmoid. stride 2

€, so the model struggles to cleanly separate semantically
meaningful information and incompressible noise.

Furthermore, we investigated the sensitivity of the model
to the number of latent codes. We show latent traversals
using three continuous codes instead of two in Figure 27.
It is evident that the model tries to put more digit class
information into the continuous traversals. So the number
of codes is an important hyperparameter to tune, whereas
VAE methods are less sensitive to the choice of number
of codes since they can prune out unnecessary latents by
collapsing ¢(z;|z) to the prior p(z;).

We also tried varying the number of categories for the cat-
egorical code. Using 2 categories, we see from Figure 28
that the model tries to put much more information about
digit class into the continuous latents, as expected. More-
over from Figure 30, we can see that the noise variables
also have more information about the digit class. However,
when we use 20 categories, we see that the model still puts

w999 999027,
5/9/9/8 88855

Figure 25. Latent traversals for InfoGAN on MNIST across the
two continuous codes (first two rows) and the categorical code
(last row) for 5 different random seeds.

criginal

Hﬂll ll =I

EIRIE
8/8/3/8/5/8/85/5[&]

Figure 26. Reconstructions for InfoGAN on MNIST. First column:
original image. Remaining columns: reconstructions varying the
noise latent e.

Figure 27. Latent traversals for InfoGAN on MNIST across the
three continuous codes (first three rows) and the categorical code
(last row).

information about the digit class in the continuous latents.
However from Figure 31 we see that the noise variables
contain less semantically meaningful information.

Using InfoWGAN-GP solved the degeneracy issue and
makes training more stable (see Figure 33), but we observed
that the other problems persisted (see e.g. Figure 36).

Disentangling by Factorising

9/9(9 0 08) [/
717|199 08685606
£

Figure 28. Latent traversals for InfoGAN on MNIST across the
two continuous codes (first two rows) and the categorical code
(last row) using 2 categories

28868869991
88888677777
813/ 87

Figure 29. Latent traversals for InfoGAN on MNIST across the
two continuous codes (first two rows) and the categorical code
(last two rows) using 20 categories

original

<]
EIEEEIEEEE
21822 L2078

Figure 30. Same as Figure 26 but the categorical code having 2
categories.

original

Figure 31. Same as Figure 30 but with 20 categories.
40
\ —— generator loss
5\ discriminator loss
\ —— infogan regulariser

0 10000 20000 30000 40000 50000 60000 70000 BOOOO S0000
iteration

Figure 32. The generator loss —E,(,)[D(G(z))], discriminator
loss Ep, ..) [D(x)] — Ep.y[D(G(2))] and the InfoGAN reg-
ulariser term — L for IfoWGAN-GP on MNIST with A =1

For 2D Shapes, we have also tried using a bigger architec-
ture for InfoWGAN-GP that is used for a data set of similar
dimensions (Chairs data set) in Chen et al. (2016). See

- generator loss

critic loss
— infogan regulariser

0 50000 100000150000 200000250000300000 350000400000 450000
iteration

Figure 33. Same as Figure 32 but for 2D Shapes.

oo e

old disentanglement metric

new disentanglement metric

50000 100000 150000 200000 250000 300000
(teration

0 50000 100000 150000 200000 250000 300000
iteration

Figure 34. Disentanglement scores for InfoWGAN-GP on 2D
Shapes with bigger architecture (Table 6) for 10 random seeds
per hyperparameter setting. Left: Metric in Higgins et al. (2016).
Right: Our metric.

Figure 35. Latent traversals for InfoWGAN-GP on 2D Shapes
across the four continuous codes (first four rows) and the cate-
gorical code (last row) with bigger architecture (Table 6) for run
with best disentanglement score (A = 0.6).

Table 6. However as can be seen in Figure 34 this did not
improve disentanglement scores, yet the latent traversals
look slightly more realistic (Figure 35).

In summary, InfoWGAN-GP can help prevent the instabili-
ties in training faced by InfoGAN, but it does not help over-
come the following weaknesses compared to VAE-based
methods: 1) Disentangling performance is sensitive to the
number of code latents. 2) More often than not, the noise
variables contain semantically meaningful information. 3)
The model does not always generalise well to all across the
domain of p(z).

I. Further Experimental Results

From Figure 37, we see that higher values of ~y in FactorVAE
leads to a lower discriminator accuracy. This is as expected,
since a higher ~ encourages ¢(2) and []; ¢(z;) to be closer
together, hence a lower accuracy for the discriminator to
successfully classify samples from the two distributions.

We also show histograms of ¢(z;) for each j in 5-VAE

Disentangling by Factorising

c|S[E86/8/8 8 889
P|?[7 744 ¢ ¢]Q[Q
11615 814/ 25 0l pE

iteration iteration
£ 17] . -
mﬂﬂﬂnn ‘f 4 Figure 39. Same as Figure 12 but for CelebA.

Eﬂnnn arbitrarily specified prior p(z).
4¢[% 8 8/33/ 577
0|54 2519 (7112
7191999195855,
2.2 3 3(8/9/9/9]9
31/ 13 247 3609
2|38 9§18 37/ 7
D C 0999999
£l 17 9 416508

Figure 36. Same as Figure 25 but for InfoWGAN-GP.

0.8 — 7
) —
> | 50
gor | 0.0
5 ' 15.0
O 06 = - e 20.0
)
© s ————— 5.0
5 | 300
o4 | 5.0
£ 40.0
IS 03 — 5
5 — 50.0
0 02 100.0
Son1 200.0
00
0 50000 100000 | 150000 200000 250000
iteration

Figure 37. Plot of discriminator accuracy of FactorVAE on 2D
Shapes data across iterations over 5 random seeds.

00

reconstruction error

A A

o 200000 400000 €00000 000D 1000000 o 200000 400000 €00000 800D 1000000
iteration iteration

Figure 38. Same as Figure 12 but for 3D Chairs.

and FactorVAE for different values of § and ~y at the end
of training on 2D Shapes in Figure 40. We can see that
the marginals of FactorVAE are quite different from the
prior, which could be a reason that the variant of FactorVAE
using the objective given by Eqn. (12) leads to different
results to FactorVAE. For FactorVAE, the model is able to
focus on factorising ¢(z) instead of pushing it towards some

Disentangling by Factorising

- B-VAE

” 1 l l
.

Fa ctorVAE

o 98MMa = 10.0| SaMples_dim =0 Gamma = 10.0 Samples G ~ 1 gamma — 10.0 Samples i =2 Gamma - 10.0 | Sampies Gim - 3 gamma — 10.0| samples dim =4 GammMa = 10.0| SaMples dim =5 Gamma = 10.0 Samples_dim — 6 gamma — 10.0 | samples i =7 Gamma - 10.0 | Samipies Gim = B gamma - 10.0 | samples gim = 9

A & A ,L ik ik ks sk Bl ke

8 = 200 | samples_dim = 4 mples dim = 5 =200]s =6 8 = 200 | samples dim =7 gamn gamma =200 |5

S
:

EELLJKLJLLLLmL

Figure 40. Histograms of ¢(z;) for each j (columns) for 5-VAE and FactorVAE at the end of training on 2D Shapes, with the pdf of
Gaussian NV(0, 1) overlaid in red. The rows correspond to different values of 3 (1,4, 16,64) and «y (10, 20, 40, 80) respectively.

