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Appendix for Self-Bounded Prediction Suffix Tree via Approximate String Matching

A. Proof of Lemma 2

Lemma 5. Ler w(i, k) = ((1 5)’“)3 exp(—\)/i!)}/2. Given binary sequence y\~" and arbitrary suffix tree T equipped
with Hamming distance metric, 3 \_ } D hm0 DsseT, d(sy' =)=k W 2(i,k) < —e=* 4+ AOT(t, =N\ (=2 + €))/T(t) for
allA>0,e>0,and0 < & < 1.

Proof. Given a binary sequence of length 7, there are at most ( fc) possible suffixes that are exactly k-Hamming distance
away from the original sequence if i > k, otherwise 0.> Therefore the sum of w can be bounded by the number of possible

approximate suffixes as
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where I'(a) and T'(a, b) are Gamma function and incomplete Gamma function, respectively. O

B. Proof of Lemma 3

Lemma 6. Let w(i, k) = ((1 — £)* X exp(—\)/i!)'/2. Given binary sequence y'.™' and arbitrary suffix tree T equipped
with Hamming distance metric, Z:;i Yo N W 2(i,k) < e T(1 +e,\)/T(1 4 ¢€) forall A\ > 0, € > 0,
and () < ¢ < 1.
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Proof. Again, from the proof of Lemma 2, we can show
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where we use Y~y A exp(—A)/il = 1. O

C. Proof of Theorem 4

Proof. We use the same definition of A, and A, as Theorem 1. The upper bound on }, (A + At) in Eq. 9 and the
equality on A; + A, in Eq. 13 still hold.

Let (1) = 0if k > i.
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Lety = min{—e~* + e* ¢ e (1 4+ ¢, \)/T(1 + €)}. Given Eq. 13, Corollary 3.1 with the definition of h; and h* gives
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where we subtract the last term after constructing h* by its definition in Eq. 5. The magnitude of the last summations can be
bounded by the Cauchy-Schwartz inequality
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Given that d; > [ + €], the Chernoff bound (Hoeffding, 1963) gives an upper bound on the square root
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Alternatively, we may use a tighter bound of the Poisson tail distribution (Glynn, 1987). For now, let r =
I(1+eM\)/T(1+e€) and ux(d;) = Te¥A¥d . Plugging the upper bound into Eq. 18 and combining the lower
bound of ¥; in Theorem 1 lead to
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Summing the lower bound over ¢ and comparing to the upper bound in Eq. 9 yield
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where P, = Y°;_, 27\/ux(dy) and Ly = 35 7l

We now use mathematical induction to prove that P? < L;. Assume P? | < L;_1, and let Py = Lo = 0. By the definition
of P, we can expand

Pt2 :(Pt,1 =+ 27’15 U)\(dt>)2
=P2 | + 47\ ux(dy) Pi_1 + 472ux(dy) (22)

If we choose minimum d; which satisfies both u(d) < (((PE, + 7e)Y/? — Pt,l)/27t)2 and d; > [\ + €], and plug

this into Eq. 22, then with the inductive assumption we can show

Pf < Pt2,1 + 71l < Ly y + 1ely = Ly, (23)



Self-Bounded Prediction Suffix Tree via Approximate String Matching

which proves the inductive argument. Note that the upper bound w) (d;) is strictly decreasing when d; > ), so we can
always find the minimum d; which satisfies both conditions when ¢ > 1/2. Since P; and L; are always positive, we have
Pr < /Lp. Combining this inequality with Eq. 21 leads to
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This equation is a quadratic inequality in v/ L. From the positive root of the quadratic equation, we get that
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Since Va2 + b2 < (a + b), (a,b > 0), the upper bound on /L can be rewritten as
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If the loss /; at round ¢ is greater than 1/2, then 7,4, > ¢? /(3 + 7) by Eq. 15, otherwise 7, = 0. Therefore the sum of £7 is
less than (3 + -y) L, which results the bound of Theorem 4. O
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D. Experiments with Binary Synthetic Sequence
D.1. Sequence generated by single motif

We provide more comprehensive results on the synthetic binary data used in Subsection 5.1.

(a) Sequence Length = 100.0 (b) Sequence Length = 100.0 (c) Noise Probability = 0.1 (d) Noise Probability = 0.1
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Figure 7. (a), (b): Prediction accuracy and tree depth of PSTs with respect to varying proportions of noise. Each row represents a different
sequence length. (c), (d): Prediction accuracy and tree depth of PSTs with respect to varying lengths of sequence given the fixed noise
level. Each row represents a different noise level.
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D.2. Sequence generated by mixture of motifs

In this section, we provide experiments with more complex sequence patterns than those of the main text. For the experiments,
we randomly synthesize a sequence based on two motifs: [—1,—1,+1,+41] and [+1,—1,+41, —1]. Starting from an empty
sequence, on each round, we randomly choose which motif we will append at the end of the sequence, and then add a
randomly corrupted motif via a fixed noise probability. Through the above process, we generate sequences of length 100,
200, 400, 800. We randomly generate 30 sequences for each length and report the average accuracy and tree depth of each
model in Figure 8.
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Figure 8. (a), (b): Prediction accuracy and tree depth of PSTs with respect to varying proportions of noise. Each row represents a different
sequence length. (c), (d): Prediction accuracy and tree depth of PSTs with respect to varying lengths of sequence given the fixed noise
level. Each row represents a different noise level.



