
Self-Bounded Prediction Suffix Tree via Approximate String Matching

Dongwoo Kim 1 2 Christian Walder 3 1

Abstract
Prediction suffix trees (PST) provide an effec-
tive tool for sequence modelling and prediction.
Current prediction techniques for PSTs rely on
exact matching between the suffix of the current
sequence and the previously observed sequence.
We present a provably correct algorithm for learn-
ing a PST with approximate suffix matching by
relaxing the exact matching condition. We then
present a self-bounded enhancement of our algo-
rithm where the depth of suffix tree grows auto-
matically in response to the model performance
on a training sequence. Through experiments
on synthetic datasets as well as three real-world
datasets, we show that the approximate matching
PST results in better predictive performance than
the other variants of PST.

1. Introduction
Prediction suffix trees (PST) provide an elegant and effective
tool for sequence prediction tasks such as compression,
temporal classification, reinforcement learning, and DNA
sequencing (Li & Fu, 2014; Majumdar, 2016; Messias &
Whiteson, 2017). The advantage of PSTs over other fixed-
order Markov model is that the number of symbols used
to predict depends on prediction context through the suffix
tree data structure, which provides an efficient way to store
and retrieve a set of strings and all their suffixes (Bellemare
et al., 2014).

Many PST algorithms perform exact matching between the
suffix of the current sequence and sub-sequences in the
previous sequence (Ron et al., 1996). The algorithms then
make a prediction based on the previous history of those sub-
sequences. Although the exact matching explicitly models
the context where the same pattern occurred, it is potentially

1Australian National University, Canberra, ACT, Australia
2Data to Decisions CRC, Kent Town, SA, Australia 3Data61 at
CSIRO, Canberra, ACT, Australia. Correspondence to: Dongwoo
Kim <dongwoo.kim@anu.edu.au>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

(a)G 4
4 ˇ ˇ ˇ ˇ ˇ ˇ ˇ

(b)G 4
4 ˇ ˇ ˇ ˇ ˇ 4̌ ˇ

1
Figure 1. Musical note prediction: how do we predict the next
symbol of each score? (a) A PST can relate the first and last three
symbols and makes a prediction with the suffix of length three. (b)
A PST cannot relate the first and last three symbols due to the little
variation in the suffix with the same length although the pattern is
similar.

vulnerable to variation in a sequence such as substitution
noise. To illustrate the prediction under variation, we present
two symbolic music scores in Figure 1. When a PST model
performs a prediction on the first score, it can take advantage
of the same pattern between the first and last three symbols,
where the latter is the suffix of the current sequence. On
the other hand, the model cannot relate the first and last
three symbols given the second score because of the minor
variation in the suffix with the same length.

Another practical assumption made in earlier work is that a
shorter suffix has a higher priority than a longer one during
prediction (Dekel et al., 2005; Karampatziakis & Kozen,
2009). This might be an appropriate assumption for some
domains where the recently observed symbols are more
important than the previous symbols, but this might be in-
appropriate for other domains. For example, a longer suffix
would be more important than a suffix of length one to pre-
dict the next symbol of a music sheet since the temporal
pattern in music is often continued over multiple notes.

In this paper, we provide a novel construction of the predic-
tion suffix tree and its online learning algorithm via approxi-
mate string matching. In that sense, the proposed algorithm
can be robust to small variations in a sequence. We also
provide a mechanism to control the importance of different
suffixes based on their length. Finally, we derive a self-
bounded version of the proposed model that decides the
maximum length of suffix based on a trade-off between a
confidence of prediction and complexity of algorithm auto-
matically.

Self-Bounded Prediction Suffix Tree via Approximate String Matching

0

−1

4

7−2

− +

+

−3

1
+

− +

Figure 2. An example of binary prediction suffix tree T =
{−,+,+−,++,− + +,+ + +} with score function g, i.e.
g(+−) = 1. The dashed (red) nodes form suffix − + + and
can be used to the next symbol of sequences having the same suffix
such as −++,−−++,+−++.

In the next section, we describe a decision theoretic PST
model and how to learn the model parameters. In Section 3,
we derive a PST with approximate string matching and its
online learning algorithm. We also proof the mistake bound
of the proposed algorithm w.r.t. an arbitrary hypothesis.
In Section 4, we enhance our model by letting the model
adaptively choose the depth of suffix tree. In Section 5
and 6, we verify our approach on synthetic datasets and
demonstrate the improved predictive performance of our
model on three real-world datasets.

2. Background
We start by providing a formal description of a decision theo-
retic PST model. Assume that an input stream is a sequence
of vectors x1,x2, ...(xt ∈ Rn), and an output stream is
a sequence of binary symbols y1, y2, ...(yt ∈ {−1,+1}).
We will relax the binary assumption in Subsection 5.2. We
denote a sub-sequence of output yi, yi+1, ..., yj by yji . Our
goal is to predict the next symbol yt given the binary se-
quence yt−1

1 and the next input vector xt

Dekel et al. propose a provably-correct PST algorithm to
predict a sequence of symbols. With suffix-closed tree T 1

endowed with a score at each node, the prediction function
for symbol yt given yt−1

1 and xt is

h(xt,y
t−1
1) = w · xt +

t−1∑
i=1

2−i/2g(yt−1
t−i), (1)

where w ∈ Rn is a weight vector, and g(s) is a score of
node s in a suffix tree T . The score of a suffix is zero
if the tree does not have the suffix. We then use the sign
of this prediction function as a predicted symbol yt. The
prediction function looks up scores of all possible suffixes
of the input stream up to time t − 1 from suffix tree T

1T is a suffix-closed if ∀s ∈ T , all suffixes of s are also in T .

and takes a weighted sum of the scores of suffixes with
exponential decaying weight 2−i/2 w.r.t. the length of the
suffix. Finally, the weighted score is added to the inner
product between weight vector w and input vector x to make
a prediction. The magnitude of h represents the confidence
in this prediction.

Figure 2 shows an example of prediction suffix tree with
six suffixes therein. The value of node shows the score of a
corresponding suffix, e.g., g(−+ +) = 4. Assume that we
want to predict the next symbol of sequence y4

1 = −−++,
then, with the prediction function given Eq. 1, the predicted
symbol of y5 is sign(2−1/2×(−1)+2−2/2×(4)+2−3/2×
(−2)).

There are multiple ways to construct the suffix tree and
learn the model parameters. In this paper, we focus on
the margin-based online learning algorithm and its analysis
as per Dekel et al.; Karampatziakis & Kozen. In online
learning, the model parameters are updated after each round.
At round t, the model makes a prediction given input xt
and the previous sequence yt−1

1 . The predicted symbol
ŷt = sign(ht(xt,y

t−1
1)) is then compared to the revealed

correct symbol yt. Finally, the prediction function is updated
based on the prediction and true symbol. More formally, the
model computes the hinge loss after each round

`t = max{0, 1− ytht(xt,yt−1
1)}. (2)

Then the weight vector and node scores are updated based
on the loss suffered from the prediction. The update rules
for w and g for all s ∈ {yt−1

t−i }
t−1
i=1 are as follows:

wt+1 = wt + ytτtxt (3)

gt+1(s) =

{
gt(s) + yt2

−|s|/2τt, if s ∈ Tt
yt2
−|s|/2τt, otherwise

(4)

where τt depends on the loss `t and can be interpreted as
a learning weight at time t, and Tt is a suffix tree at time
t. When the updates happen, the unbounded version of
this PST learning algorithm adds suffixes of the currently
observed sequence into the suffix tree, resulting in the tree
having O(t) depth and O(t2) nodes. The same authors
derive a self-bounded PST where the depth of tree is auto-
matically chosen based on the model performance.

3. PST with Approximate String Matching
We propose a new prediction suffix tree algorithm with ap-
proximate string matching (aPST) where the prediction on
next symbol depends on the exact matching as well as ap-
proximate matching suffixes. From the previous section, we
observe that the PST algorithm has the following properties:

• The model performs exact matching between the cur-
rent suffix and a node in the suffix tree where each node

Self-Bounded Prediction Suffix Tree via Approximate String Matching

represents sub-sequences of the previously observed
sequence.

• The weight of shorter suffixes is higher than longer
suffixes due to the exponential decaying rate.

As we have seen in Section 1, the first property prevents
the model to take into account similar sub-sequences in
the previous sequence, and the second property does not
reflect the importance of suffix length. Our new prediction
function takes into account all possible suffixes within ε-
Hamming distance from the original suffixes and provides
a controllable weighting scheme. Formally, the prediction
function of aPST is defined as:

h(xt,y
t−1
1) = w>xt +

t−1∑
i=1

ε∑
k=0

∑
s:s∈Tt−1,

d(s,yt−1
t−i)=k

ω(i, k)g(s),

(5)

where ω : Z+ × Z → R+ controls the contribution of
suffix s, and d(s, s′) computes a distance between s and
s′ given some distance metric. We use Hamming distance
throughout the paper, but the proposed framework may be
applied to other distance metrics defined over strings. When
ε = 0, the model performs the exact string matching over
the suffix tree. Hamming distance is only defined when the
lengths of two sequences are the same (Robinson, 2003).
Hence there is no suffix s whose distance k from yt−1

t−i is
greater than i. We define the contribution function ω as

ω(i, k) =

(
(1− ξ)k λ

i exp(−λ)

i!

) 1
2

,
λ > 0

1 > ξ > 0
(6)

where λ and ξ are two model parameters. Unlike Eq. 1,
where shorter sequences get a higher weight than longer
ones, the model imposes different weights on different
lengths of suffix. Specifically, the model gives the highest
weight to suffixes of length bλc. To reduce the contribution
of approximate suffixes, we add an exponentially decaying
factor w.r.t the distance from the original suffixes k.

The following theorem bounds the cumulative loss of the
unbounded aPST online learning method of Algorithm 1
w.r.t. any fixed hypothesis h? which could be chosen in
hindsight. To derive the bound we define the norm of the
score function g as ||g||2 =

∑
s∈T g(s)2.

Theorem 1 (unbounded aPST). Let x1,x2, ...,xT be an
input stream and let y1, y2, ..., yT be an output stream,
where every ||x||2 ≤ 1 and every yt ∈ {−1,+1}. Let
h? = (w?, T ?, g?) be an arbitrary hypothesis such that
||g?||2 < ∞ and which attains the loss values `?1, `?2, ...
`?T . Let `1, ..., `T be the sequence of losses attained by the
unbounded online learning algorithm with the ε-Hamming

Algorithm 1 Online learning algorithm for unbounded
aPST.

1: Input: T1 = {∅},w1 = 0, λ > 0, ε ≥ 0, 1 > ξ > 0

2: Set γ = min{−e−λ + eλ(1−ξ), e
λΓ(1+ε,λ)
Γ(1+ε) }

3: for all t = 1, 2, ..., T do
4: Compute ht(xt,yt−1

1)
5: Predict ŷt = sign(ht(xt,y

t−1
1))

6: Receive yt and compute loss
`t = max{0, 1− ytht(xt,yt−1

1)}
7: Set τt = `t/(||x||2 + 2 + γ)
8: Set dt = t− 1
9: Update weight vector: wt+1 = wt + ytτtxt

10: Update tree:
11: Tt+1 = Tt ∪ {yt−1

t−i : 1 ≤ i ≤ dt}
12: gt+1(s) = gt(s) + ytτtω(|s|, d(s,yt−1

t−i))

if {s : s ∈ T , d(s,yt−1
t−i) ≤ ε}

13: gt+1(s) = ytτtω(|s|, d(s,yt−1
t−i))

if {s : s /∈ T , d(s,yt−1
t−i) ≤ ε}

14: end for

distance in Algorithm 1. Then it holds that

T∑
t=1

`2t ≤
(

3 + γ

)(
||w?||2 + ||g?||2 +

1

2

T∑
t=1

(`?t)
2

)
,

where γ = min{−e−λ + eλ(1−ξ), e
λΓ(1+ε,λ)
Γ(1+ε) }.

Proof. Define ∆t = ||wt −w?||2 − ||wt+1 −w?||2 and

∆̂t =
∑
s∈Y?

(gt(s)− g?(s))2 −
∑
s∈Y?

(gt+1(s)− g?(s))2.

(7)

We prove the theorem by using an upper and lower bound
of
∑
t(∆t + ∆̂t). First, expanding

∑
t(∆t + ∆̂t) by the

definition gives∑
t

(∆t + ∆̂t) = ||w1 −w?||2 − ||wt+1 −w?||2

+
∑
s∈Y?

{
(g1(s)− g?(s))2 − (gt+1(s)− g?(s))2

}
. (8)

Since w1 = 0 and g1(·) = 0, we can obtain a simple upper
bound by omitting the negative terms∑

t

(∆t + ∆̂t) ≤ ||w?||2 + ||g?||2, (9)

where ||g?||2 =
∑

s∈Y? g
?(s)2. To derive the lower bound,

we first rewrite ∆t as ||wt−w?||2−||(wt+1−wt)+(wt−
w?)||2 by adding null term wt −wt. A further derivation
gives ∆t = −||wt+1−wt||2− 2(wt+1−wt) · (wt−w?).
With the update rule wt+1 = wt + ytτtxt, we can obtain

∆t = −τ2
t ||xt||2 − 2ytτtxt(wt −w?). (10)

Self-Bounded Prediction Suffix Tree via Approximate String Matching

We manipulate the second term in Eq. 7 in a similar way by
adding null term gt(s)− gt(s) to get

∆̂t =
∑
s∈Y?

{(
gt(s)− g?(s)

)2

−
(

(gt+1(s)− gt(s)) + (gt(s)− g?(s))
)2}

=
∑
s∈Y?

{
−
(
gt+1(s)− gt(s)

)2

− 2
(

(gt+1(s)− gt(s))(gt(s)− g?(s))
)}
. (11)

Note that the algorithm updates gt(s) at time t only if s is
one of the approximate suffixes of {yt−1

t−i }
dt
i=1 with dt =

t− 1. Therefore gt+1(s)− gt(s) would only have non-zero
value if suffix s is within ε-neighbourhood of yt−1

t−|s|. Using

this fact, ∆̂t can be further simplified as

∆̂t =

dt∑
i=1

ε∑
k=0

∑
s:s∈Tt−1,

d(s,yt−1
t−i)=k

−τ2ω(i, k)2 (12)

− 2

dt∑
i=1

ε∑
k=0

∑
s:s∈Tt−1,

d(s,yt−1
t−i)=k

ytτtω(i, k)(gt(s)− g?(s)),

where we have used the update rule gt+1(s) = gt(s) +
ytτtω(i, k). By adding Eq. 10 and Eq. 12, we have that

∆t + ∆̂t = −τ2
t

(
||xt||2 +

dt∑
i=1

ε∑
k=0

∑
s:s∈Tt−1,

d(s,yt−1
t−i)=k

ω(i, k)2

)

− 2τtyt

(
wtxt +

dt∑
i=1

ε∑
k=0

∑
s:s∈Tt−1,

d(s,yt−1
t−i)=k

ω(i, k)gt(s)

)

+ 2τtyt

(
w?xt +

dt∑
i=1

ε∑
k=0

∑
s:s∈Tt−1,

d(s,yt−1
t−i)=k

ω(i, k)g?(s)

)
.

(13)

Let γ = min{−e−λ + eλ(1−ξ), eλΓ(1 + ε, λ)/Γ(1 + ε)}.
Combining Corollary 3.1 with the definition of ht and h?

leads to

∆t + ∆̂t ≥− τ2
t

(
||xt||2 + γ

)
− 2τtytht(xt,y

t−1
1) + 2τtyth

?(xt,y
t−1
1)

≥− τ2
t

(
||xt||2 + γ

)
+ 2τt(`t − 1) + 2τt(1− `?t) = Ψt. (14)

0 1 2 3 4 5

λ

0.0

0.2

0.4

0.6

0.8

1.0

ξ

0

20

40

60

80

100

120

140

(a) −e−λ + eλ(1−ξ)

0 1 2 3 4 5

λ

0

1

2

3

4

5

ε

0

20

40

60

80

100

120

140

(b) eλΓ(1−e,λ)
Γ(1+e)

Figure 3. Contour plots of γ used in Theorem 1.

If we subtract a non-negative term (21/2τt−2−1/2`?t)
2 from

Ψt, then Ψt is lower bounded by

Ψt ≥− τ2
t

(
||xt||2 + 2 + γ

)
+ 2τt`t − (`?t)

2/2

Let τt = `t/(||x||2 + 2 + γ). Using ||x||2 ≤ 1,

Ψt ≥τt`t −
(`?t)

2

2
=

`2t
||x||2 + 2 + γ

− (`?t)
2

2

≥ `2t
3 + γ

− (`?t)
2

2
(15)

Combining the sum of lower bounds
∑T
t=1(∆t + ∆̂t) with

the upper bound on
∑T
t=1(∆t + ∆̂t) in Eq. 9 gives us the

bound stated in the theorem

||w?||2 + ||g?||2 ≥
T∑
t=1

(
`2t

3 + γ
− (`?t)

2

2

)
.

The competitive ratio bound obtained by Theorem 1 depends
exponentially on λ but also depends on the other parameter ε
and ξ. We plot the contour maps of γ within a sensible range
of parameters in Figure 3. The contour suggests a plausible
range of parameters to obtain competitive bound against an
arbitrary hypothesis. For example, ξ needs to be close to 1 if
the algorithm gives more weight on long suffixes. It is also
worth noting that if we set ε to 0, we can obtain the same
competitive ratio provided in the original PST algorithm
(Dekel et al., 2005) with more flexible Poisson weighting
scheme.

The following lemmas used to prove Theorem 1 shows an
upper bound on the squared sum of ω(i, k) given sequence
yt−1

1 with respect to λ and ξ.

Lemma 2. Let ω(i, k) = ((1 − ξ)kλi exp(−λ)/i!)1/2.
Given a binary sequence yt−1

1 and an arbitrary suf-
fix tree T equipped with Hamming distance met-
ric,

∑t−1
i=1

∑ε
k=0

∑
s:s∈T ,d(s,yt−1

t−i)=k ω
2(i, k) ≤ −e−λ +

Self-Bounded Prediction Suffix Tree via Approximate String Matching

eλ(1−ξ)Γ(t,−λ(−2 + ξ))/Γ(t) for all λ > 0, ε ≥ 0, and
0 < ξ < 1.

The proof of the lemma is provided in Appendix A.

The following simplification directly follows from the defi-
nition of the gamma function.

Corollary 2.1. Under the assumption of Lemma 2,∑t−1
i=1

∑ε
k=0

∑
s:s∈T ,d(s,yt−1

t−i)=k ω
2(i, k) ≤ −e−λ +

eλ(1−ξ) for all λ > 0, ε ≥ 0, and 0 < ξ < 1.

The bound in Lemma 2 depends on the value of λ, t and ξ.
We provide an alternative bound depending on λ and ε.

Lemma 3. Let ω(i, k) = ((1 − ξ)kλi exp(−λ)/i!)1/2.
Given a binary sequence yt−1

1 and an arbitrary suf-
fix tree T equipped with the Hamming distance
metric,

∑t−1
i=1

∑ε
k=0

∑
s:s∈T ,d(s,yt−1

t−i)=k ω
2(i, k) ≤

eλΓ(1 + ε, λ)/Γ(1 + ε) for all λ > 0, ε ≥ 0, and
0 < ξ < 1.

The proof of the lemma is also provided in Appendix B.

Finally, combining above lemmas provides the constant
ratio used in Theorem 1.

Corollary 3.1. Under the assumption of Corollary 2.1
and Lemma 3,

∑t−1
i=1

∑ε
k=0

∑
s:s∈T ,d(s,yt−1

t−i)=k ω
2(i, k) ≤

min{−e−λ + eλ(1−ξ), e
λΓ(1+ε,λ)
Γ(1+ε) } for all λ > 0, ε ≥ 0,

and 0 < ξ < 1.

4. Self-Bounded aPST
The unbounded aPST algorithm relaxes the exact matching
condition of PST. However, similarly to the unbounded
PST, the depth of a suffix tree in the unbounded aPST also
scales linearly in the length of sequence. In this section, we
propose a self-bounded enhancement of the aPST algorithm
which automatically grows a bounded-depth aPST. In each
round, the algorithm decides whether to increase the depth
of the suffix tree based on the prediction of next symbol.

The self-bounded aPST algorithm is described in Algo-
rithm 2. We introduce tree depth variable dt calculated
on every round of online iteration to represent the maximum
depth of the suffix tree at time t. The proposed model au-
tomatically trades off between the size of suffix tree and
confidence of prediction. We set the minimum value of dt
to dλ+ εe in order to take into account the suffixes around
the maximal weight length bλc. Note that the algorithm up-
dates the tree when the loss is greater than 1/2. This relaxed
margin prevents the tree growing linearly with respect to
the length of observed sequence. The following theorem
provides the loss bound of proposed algorithm in exchange
for having a relatively small aPST.

Algorithm 2 Online learning algorithm for self-bounded
aPST.

1: Input: T = {∅},w1 = 0, P1 = 0, λ > 0, ε ≥ 0, δ ∈
(0, 1)

2: Set Γ̄ = Γ(1 + ε, λ)/Γ(1 + ε)
3: Set γ = min{−e−λ + eλ(1−ξ), eλΓ̄}
4: for all t = 1, 2, ..., T do
5: Compute ht(xt,yt−1

1)
6: Predict ŷt = sign(ht(xt,y

t−1
1))

7: Receive yt and compute loss
`t = max{0, 1− ytht(xt,yt−1

1)}
8: if ` > 1/2 then
9: Set τt = `t/(||xt||2 + 2 + γ)

10: Set dt = max{dλ+ εe, dt−1}
11: Define function f(d) = edλdd−d

12: while Γ̄f(dt) >
((P 2

t−1+τt`t)
1/2−Pt−1

2τt

)2 do
13: dt = dt + 1
14: end while
15: Set Pt = Pt−1 + 2τt

√
Γ̄f(dt)

16: Update weight vector: wt+1 = wt + ytτtxt
17: Update suffix tree:
18: gt+1(s) = gt(s) + ytτtω(|s|, d(s,yt−1

t−i))

if {s : s ∈ T , d(s,yt−1
t−i) ≤ ε}

19: gt+1(s) = ytτtω(|s|, d(s,yt−1
t−i))

if {s : s /∈ T , d(s,yt−1
t−i) ≤ ε}

20: else
21: Set: τt = 0, Pt = Pt−1

22: end if
23: end for

Theorem 4 (Self-bounded aPST). Let x1,x2, ...,xT be
an input stream and let y1, y2, ..., yT be an output stream,
where every ||x||2 ≤ 1 and every yt ∈ {−1,+1}. Let
h? = (w?, T ?, g?) be an arbitrary hypothesis such that
||g?||2 ≤ ∞ and which attains the loss values `?1, `?2, ...
`?T . Let `1, ..., `T be the sequence of losses attained by the
self-bounded online learning algorithm with the ε-Hamming
distance in Algorithm 2. Then the sum of square losses on
those rounds where `t > 1

2 is bounded by

∑
t:`t>

1
2

`2t ≤ λ̄
(1 +

√
5

2
||g?||+ ||w?||+

(1

2

T∑
t=1

(`?t)
2
) 1

2
)2

,

where λ̄ = 3 + min{−e−λ + eλ(1−ξ), e
λΓ(1+ε,λ)
Γ(1+ε) }.

See Appendix C for the detailed proof. Here we provide
a sketch of proof. Again, the proof starts from the upper
bound and lower bound on ∆+∆̂ defined in Theorem 1. The
upper bound remains the same. The derivation of the lower
bound is the same up to Eq. 13, however, by the definition of
h, we need to add null terms consisting scores of the suffixes
from dt+ 1 to t−1 in T ? to formulate the lower bound as a

Self-Bounded Prediction Suffix Tree via Approximate String Matching

0.1 0.2 0.3 0.4 0.5

Noise

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

(a) Sequence Length = 400.0

PST

aPST-0

aPST-1

wPST

0.1 0.2 0.3 0.4 0.5

Noise

0

10

20

30

40

T
re

e
D

ep
th

(b) Sequence Length = 400.0

100 200 400 800

Sequence Length

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

(c) Noise Probability = 0.3

100 200 400 800

Sequence Length

0

10

20

30

T
re

e
D

ep
th

(d) Noise Probability = 0.3

Figure 4. (a), (b): Prediction accuracy and tree depth of PSTs with respect to varying proportions of noise given the sequence length of
400. Error bar represents one standard deviation. As the proportion of noise increases, the prediction accuracy of both models decrease,
and the accuracy converges to 0.5 when a half of sequence is corrupted by a random noise. Except that unpredictable case, aPST always
outperforms PST while keeping a slightly larger suffix tree. The similar results are also observed with the other sequence lengths. (c), (d):
Prediction accuracy and tree depth of PSTs with respect to varying lengths of sequence given the fixed noise level. As the sequence length
increases, the accuracy of both models also increase in general.

linear function of ht and h? as done in Eq. 14. Adding null
terms results in a remainder after reformulation. The lower
bound on this remainder can be obtained by Chernoff bound
since the weights of additional term can be bounded by the
sum of Poisson tail distribution. The combination of two
lower bounds leads to a new lower bound on ∆ + ∆̂. Given
the combination of upper and lower bounds on ∆ + ∆̂ , we
further show that if dt satisfies the condition described in
Algorithm 2, the sum of squared losses has the lower bound
explained in Theorem 4 via mathematical induction.

5. Simulation Study
In this section, we compare the performance of aPST on a
sequence prediction task to the classical PST (Dekel et al.,
2005) and its variant wPST (Karampatziakis & Kozen, 2009)
on a synthetic dataset. We start from a sequence motif,
which is frequently occurred subsequences of an original
sequence. Many sequences observed in real world applica-
tions can be rendered by a small number of motifs (Bailey
et al., 2006; Ross et al., 2012). It is known that the PSTs are
capable of identifying those motifs from a sequence (Ma-
jumdar, 2016). Given a sequence motif, we generate a
random sequence with some level of noise, and then, com-
pute predictive accuracies of PST algorithms to compare.
Throughout this experiments, we focus on a situation where
the input stream is unavailable, i.e. xt = 0 for all t in a
sequence, since the modelling on the input stream of aPST
algorithm remains the same as those of PST. In other words,
we measure and compare a sequence memorisation perspec-
tive of both models under a noisy environment in order to
emphasise the importance of the approximate matching and
weighting scheme.

5.1. Binary sequence prediction

We first synthesise simple sequence from the motif
[−1,−1,+1,+1]. We construct a sequence by repeating the
motif multiple times (25, 50, 100, 200 times), and then, we
randomly corrupt each entry of input yi via an independent
Bernoulli trial with a fixed noise probability. Without noise
in a final sequence, all three models can predict perfectly
after observing a first few entries. When a sequence is cor-
rupted by some random noise, PST only relies on an input
xt if available, while aPST retrieves approximate suffixes
to predict the next symbol.

For every experiment, we use the first 40% of a sequence
to train, the subsequent 20% of the sequence to validate,
and the final 40% of sequence to test the models. For both
parameter λ and ε, we test all possible configuration of
λ = {2, 4, 6, 8, 10, 12}, ξ = (0.5, 0.7, 0.9, 0.99), and ε =
{0, 1} and choose the best model based on the accuracy
of validation set. All the experiments are repeated over
20 times with randomly corrupted entries. We report two
quantities: accuracy of prediction on the uncorrupted entries
and the final depth of the suffix tree.

Figure 4 (a) and (b) show the prediction accuracy and tree
depth of the three different models with respect to varying
proportions of noise. In general, as the proportion of noise
increases, the prediction accuracy of both models decrease.
The accuracy converges to the random baseline when the
sequence is unpredictable, i.e. a half of sequence is cor-
rupted. Aside from this unpredictable case, aPST always
outperforms PST while keeping similar tree depths. Al-
though wPST maintains the shallowest tree depth, it shows
the lowest performance among all models.

Figure 4 (c) and (d) show the prediction accuracy and tree
depth of the three different models with respect to varying
lengths of sequence. The model predicts better when the

Self-Bounded Prediction Suffix Tree via Approximate String Matching

0.1 0.2 0.3 0.4 0.5

Noise

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

(a) Sequence Length = 600.0

PST

aPST-0

aPST-1

aPST-2

wPST

0.1 0.2 0.3 0.4 0.5

Noise

0

5

10

15

20

25

T
re

e
D

ep
th

(b) Sequence Length = 600.0

150 300 600 1200

Sequence Length

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

(c) Noise Probability = 0.2

150 300 600 1200

Sequence Length

0

5

10

15

20

25

T
re

e
D

ep
th

(d) Noise Probability = 0.2

Figure 5. (a), (b): Prediction accuracy and tree depth of multiclass PSTs with respect to varying proportions of noise given the sequence
length of 600. (c), (d): Prediction accuracy and tree depth of multiclass PSTs with respect to varying lengths of sequence given the fixed
noise level. In general, the aPST outperforms the other models, and performs better when we increase the maximum Hamming distance ε
between two sequences.

sequence length is longer in general. The tree depth of aPST
increases sub-linearly as the length of sequence increases.
We can also observe that the variance of accuracy decreases
as the sequence length increases with aPST.

We present a more comprehensive analysis of the binary
sequence prediction and demonstrate the performance on
more complex synthetic sequences in Appendix D.

5.2. Multi-class sequence prediction

To predict on sequences with multiple symbols, we adopt
ideas from (Crammer & Singer, 2001) and maintain trees
T (1), ...T (k) for each symbol. The decision at time t

is ŷt = arg maxk h
(k)
t (xt,y

t−1
1). If the prediction is

wrong, we update the tree parameters of predicted sym-
bol and true symbol with a piecewise margin loss defined as
`t = maxk{hkt +1−hytt } if ŷt 6= yt. Hence, different trees
might have different depth. Here, we report the maximum
depth among the trees.

Note that there might be a combinatorial number of ap-
proximate suffixes if we add all approximate suffixes while
updating the tree. To reduce the computational burden, we
add the suffixes of the current sequence into the tree if the
suffixes are not in the tree and update the approximate suf-
fixes which are already in the suffix tree. Therefore the
suffix tree only contains the sub-sequences which have been
observed in the past. The prediction still requires to search
the approximate sequences over the suffix tree, but it can
be done in an efficient way (Ukkonen, 1993; Giegerich &
Kurtz, 1997).

For the experiment, we generate a random sequence from
motif [1, 2, 3, 4, 1, 3]. Again, we inject random noise based
on a Bernoulli trial with a fixed probability. The corrupted
symbols are then replaced by random symbol with uniform
probability over symbols. We follow the same experimental
procedure as used in the binary experiments with the same
set of parameters except that we tested ε up to 2.

Figure 5 shows the result of the synthetic experiments. In
general, aPST outperforms both PST and wPST, and the
accuracy increases as ε increases from 0 to 2. Again, this
results emphasis the importance of approximate matching
of PST under some noise in a sequence.

6. Experiments
In this section, we conduct some experiments with real
datasets to demonstrate the practical effectiveness of the
proposed method. We use three datasets: a symbolic music
dataset (Walder, 2016) from which we retain midi onset
events only, a system call dataset (Hofmeyr et al., 1998), and
human activity dataset (Ordónez et al., 2013). The symbolic
music dataset contains four sets of midi music dataset from
different sources. The models predict a sequence of midi
note number, which ranges 0-127. The system call dataset
records a set of system call traces made by active processes,
which might contain some intrusions of malicious programs.
The models predict the next system call given a previous call
sequence. The human activity dataset records a sequence of
activities from two subjects. The models predict the next
activity of each subject given a trajectory of activities.

We again compare aPST with PST and wPST in terms of
prediction accuracy and tree depth. For every experiment,
we use the first 30% of symbols to adjust the model param-
eters and use remaining 70% to report the model accuracy
and tree depth. We use the same set of parameters used in
the previous section.

Table 1, 2, 3 show the accuracies and final tree depth of
PST models on music, system call, human activity datasets,
respectively. For the music and human activity datasets,
aPST outperforms the other models in terms of accuracy
while using a slightly larger suffix tree. For the system call
dataset, the tree depth of aPST is shallower than those of
the other models while having a similar or better accuracies.
The performance gain of aPST against the other models are

Self-Bounded Prediction Suffix Tree via Approximate String Matching

PST wPST aPST
Acc. dT Acc. dT Acc. dT

JBM 0.203 6.2 0.231 6.0 0.246 8.5
PMD 0.349 7.5 0.386 5.9 0.442 10.4
NOT 0.469 6.7 0.510 5.9 0.571 9.9
MUS 0.237 6.6 0.253 5.9 0.270 8.7

Table 1. Average accuracy and tree depth of musical note predic-
tion on four different music sources. aPST outperforms the other
models in terms of accuracy with larger suffix trees.

PST wPST aPST
Acc. dT Acc. dT Acc. dT

[100, 200] 0.292 7.0 0.287 6.0 0.300 5.1
[200, 300] 0.408 7.0 0.399 6.0 0.411 5.0
[300, 500] 0.803 7.0 0.801 6.0 0.803 5.2

Table 2. Average accuracy and tree depth of system call prediction
broken down by the length of program sequence. The tree depths of
aPST are shallower than those of the others while keeping similar
or better accuracies.

significant when the sequence lengths are relatively short.

We plot the histogram of the best λ values for the music
dataset and system call dataset in Figure 6. The graph shows
a quite distinctive characteristic of these two datasets. λ val-
ues from the musical sequences distribute evenly across
range 0 to 8, while λ from system call traces are highly
focused on the range [3, 5). We conjecture that the songs
have a greater variety of relevant motif lengths than the
system call traces which have more static transition pat-
terns (Nikolopoulos & Polenakis, 2014), therefore λ values
are adjusted according to the nature of a song.

7. Related Work
Variants of the PST algorithm have been developed in dif-
ferent scientific communities in different forms such as the
variable length Markov models and context tree weight-
ing (Willems et al., 1995; Helmbold & Schapire, 1997;
Bühlmann et al., 1999; Bellemare et al., 2014). Most of
these algorithms need an a-priori bound on the maximum
number of previous symbols. Apostolico & Bejerano show
that the upper bound assumption can be relaxed by a linear
time prediction tree construction algorithm where the depth
of suffix tree can increase up to the length of a training
sequence. Dekel et al. propose an alternative self-bounded
PST learning algorithm where the depth of prediction tree
is bounded automatically based on a number of mistakes
made by the algorithm. Karampatziakis & Kozen combine
the idea of self-bounded PST and Winnow algorithm and
derive a multiplicative update algorithm for online learning.
By using the multiplicative update rules, the suggested al-
gorithm can quickly adopt variation in complex sequence

0 4 8 12

λ

0

5

10

15

20

F
re

q
u

en
cy

(a) Music Notes

0 2 4 6

λ

0

50

100

150

200

F
re

q
u

en
cy

(b) System Calls

Figure 6. Best λ values obtained from two different datasets. A
proper value of λ varies across domains as well as sequences.

PST wPST aPST
Acc. dT Acc. dT Acc. dT

Subject A 0.362 9 0.333 4 0.385 10
Subject B 0.191 9 0.238 4 0.238 10

Table 3. Accuracy and tree depth of human activity prediction.

which exhibit different patterns at various points during life
time. Xiao & Eckert further extend the PST to incorporate
additional side information. They derive a second order
online learning algorithm to take into account the variance
of the estimator.

8. Conclusion
We have presented the decision theoretic prediction suffix
tree with approximate string matching (aPST) by relaxing
the exact matching condition of the PST models. The depth
of the suffix tree generated by the proposed algorithm scales
linearly with the length of the input sequence. To limit the
depth of aPST, we proposed self-bounded version of aPST
which automatically determines the depth of suffix tree. The
loss bounds for both unbounded- and bounded-aPST are
analysed. We showed that the applications of aPST to se-
quence modelling outperform the other PST models under a
noisy environment via synthetic datasets. Furthermore, we
showed the improved predictive performance of aPST on
three real world datasets. Future work on this research will
explorer wide range of distance metrics instead of the Ham-
ming distance in order to take into account more complex
editing behaviour in sequences.

Acknowledgements
We thank Minjeong Shin, Cheng Soon Ong and Lexing Xie
for instructive discussions on an early draft of this work. We
also thank the anonymous reviewers for their detailed and
thoughtful comments.

Self-Bounded Prediction Suffix Tree via Approximate String Matching

References
Apostolico, A. and Bejerano, G. Optimal amnesic proba-

bilistic automata or how to learn and classify proteins in
linear time and space. Journal of Computational Biology,
7(3-4):381–393, 2000.

Bailey, T. L., Williams, N., Misleh, C., and Li, W. W. Meme:
discovering and analyzing dna and protein sequence mo-
tifs. Nucleic acids research, 34(suppl 2):W369–W373,
2006.

Bellemare, M., Veness, J., and Talvitie, E. Skip context
tree switching. In International Conference on Machine
Learning, pp. 1458–1466, 2014.

Bühlmann, P., Wyner, A. J., et al. Variable length markov
chains. The Annals of Statistics, 27(2):480–513, 1999.

Crammer, K. and Singer, Y. On the algorithmic implementa-
tion of multiclass kernel-based vector machines. Journal
of machine learning research, 2(Dec):265–292, 2001.

Dekel, O., Shalev-Shwartz, S., and Singer, Y. The power of
selective memory: Self-bounded learning of prediction
suffix trees. In Advances in Neural Information Process-
ing Systems, pp. 345–352, 2005.

Giegerich, R. and Kurtz, S. From ukkonen to mccreight
and weiner: A unifying view of linear-time suffix tree
construction. Algorithmica, 19(3):331–353, 1997.

Glynn, P. W. Upper bounds on poisson tail probabilities.
Operations research letters, 6(1):9–14, 1987.

Helmbold, D. P. and Schapire, R. E. Predicting nearly as
well as the best pruning of a decision tree. Machine
Learning, 27(1):51–68, 1997.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. Journal of the American statistical
association, 58(301):13–30, 1963.

Hofmeyr, S. A., Forrest, S., and Somayaji, A. Intrusion
detection using sequences of system calls. Journal of
computer security, 6(3):151–180, 1998.

Karampatziakis, N. and Kozen, D. Learning prediction
suffix trees with winnow. In Proceedings of the 26th
Annual International Conference on Machine Learning,
pp. 489–496. ACM, 2009.

Li, K. and Fu, Y. Prediction of human activity by discov-
ering temporal sequence patterns. IEEE transactions on
pattern analysis and machine intelligence, 36(8):1644–
1657, 2014.

Majumdar, A. Finding dna motifs: A probabilistic suffix
tree approach. 2016.

Messias, J. V. and Whiteson, S. Dynamic-depth context tree
weighting. In Advances in Neural Information Processing
Systems, pp. 3330–3339, 2017.

Nikolopoulos, S. D. and Polenakis, I. Detecting malicious
code by exploiting dependencies of system-call groups.
arXiv preprint arXiv:1412.8712, 2014.

Ordónez, F. J., de Toledo, P., and Sanchis, A. Activity recog-
nition using hybrid generative/discriminative models on
home environments using binary sensors. Sensors, 13(5):
5460–5477, 2013.

Robinson, D. J. An introduction to abstract algebra. Walter
de Gruyter, 2003.

Ron, D., Singer, Y., and Tishby, N. The power of amnesia:
Learning probabilistic automata with variable memory
length. Machine Learning, 25(2):117–149, Nov 1996.
ISSN 1573-0565. doi: 10.1007/BF00114008. URL
https://doi.org/10.1007/BF00114008.

Ross, J. C., Vinutha, T., and Rao, P. Detecting melodic
motifs from audio for hindustani classical music. In
ISMIR, pp. 193–198, 2012.

Ukkonen, E. Approximate string-matching over suffix
trees. In Combinatorial Pattern Matching, pp. 228–242.
Springer, 1993.

Walder, C. Symbolic music data version 1.0. arXiv preprint
arXiv:1606.02542, 2016.

Willems, F. M., Shtarkov, Y. M., and Tjalkens, T. J. The
context-tree weighting method: basic properties. IEEE
Transactions on Information Theory, 41(3):653–664,
1995.

Xiao, H. and Eckert, C. Efficient online sequence prediction
with side information. In Data Mining (ICDM), 2013
IEEE 13th International Conference on, pp. 1235–1240.
IEEE, 2013.

https://doi.org/10.1007/BF00114008

