An Alternative View: When Does SGD Escape Local Minima?

A. Discussions on one point convexity

If f is 6-one point strongly convex around z* in a convex domain D, then z* is the only local minimum point in D (i.e.,
global minimum).

To see this, for any fixed z € D, look at the function g(t) = f(tz* + (1 — t)x) for ¢t € [0, 1], then ¢’ (t) = (V f(tz* + (1 —
t)x),x* — x). The definition of J-one point strongly convex implies that the right side is negative for ¢ € (0, 1]. Therefore,
g(t) > g(1) for t > 0. This implies that for every point y on the line segment joining = to =*, we have f(y) > f(z*), so z*
is the only local minimum point.

B. Proof for Lemma
Proof. Recall that we want to show
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On the left hand side there are three summands. Below we show that each of them is bounded by ‘gi\b
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Finally,
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Adding the three summands together, we get the claim. O

%We made no effort to optimize the constants here.
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C. Proof for Theorem

Proof. Recall that we have x;1 = x; — nV f(z;). Since we have (—V f(z;),z* — z;) < /[|z* — x,||3, then
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Where the last inequality holds since we know 1 > TV
t)ll2
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