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A: Condition of Theorem 1

Denoting the spectrum of a matrix B (i.e., the set of its
eigenvalues) by o(B), the following condition is a restate-
ment of the relevant part in condition A of Meyer & Kreiss
(2015):

Condition A. Let W be the spectral density matrix of
the purely non-deterministic stochastic process {Y;}32,
satisfying the conditions of Theorem 1. We assume that the
spectral density matrix is bounded, i.e. there is a constant
¢ > 0 so that

min (c(W(\))) > ¢ (1)
for all frequencies A € (—m, 7], i.e. the eigenvalues of the
spectral density matrix are uniformly bounded away from
Zero.

B: Empirical evaluation of computation time

For this comparison, we use the original code of Turner
(2012) for the GP-models. As the MSE is smallest for ARG-
PCP for all data sets except for the snowfall data, we com-
pare BOCPDMS against the arguably best GPCP model. We
note that while NSGP performs better on the snowfall data
than ARGPCP, its requirement to do Hamiltonian Monte
Carlo sampling will make it significantly slower. We also
note that BVAR models inside BOCPDMS outperformed the
MSE of the ARGPCP model for all data sets considered. All
computations were performed on a 3.1 GHz Intel i7 with
16GBRAM.

Table 1 summarizes the results. It is clear that BOCPDMS
outperforms ARGPCP computationally: e.g., the computa-
tion time per parameter is between 60 (Nile data) and 585
(Bee data) times faster for BOCPDMS with BVAR mod-
els. Computation times are faster per model, too. The only
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exception to this is the 30 Portfolio data set, where the
deployed SSBVAR models are orders of magnitude more
parameter-rich than the ARGPCP-model. Related to this, we
also note that comparing the computation time per parame-
ter makes sense for two reasons: Firstly, BVARS model the
d time series jointly, thus requiring d? parameters in the pos-
terior covariance matrix of y;. In contrast, the GP-models
ignore any dependence between the series, resulting in d
parameters of the (diagonal) posterior covariance matrix for
y. Secondly, the parameters of the GP’s kernel arguably
making its parameter space O infinite-dimensional are not
actually learnt on-line at all. Instead, they are optimized
for a training period of 7" observations and then fixed, see
section 4 in the main paper. Hence, the parameter space the
GP-models can learn in is finite-dimensional.

Table 1. Computation time in seconds per model and per parameter
in the space © = Upe m O,

NILE
TIME/| M| TIME/|O)|
ARGPCP 42.2 21.0
BVAR 4.03 0.35
SNOWFALL
TIME/| M| TIME/|O)|
ARGPCP 284 142
BVAR 157 4.25
BEE
TIME/| M| TIME/|O|
ARGPCP 164 23.4
BVAR 97.3 0.04
30 PORTFOLIOS
TIME/| M| TIME/|O|
ARGPCP 12077 403
BVAR 34183 1.48



