Appendix of “Nonconvex Optimization for Regression with
Fairness Constraints”

A Derivation of the SDP Optimization
For the ease of discussion, we write down Eqn. (3.3) of the main paper in the following:

max ¢(§),
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where ¢(§) is the optimal function defined as
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Let Qe s(§) == (14+£&(1 —€))V, and Q¢ (&) := (1 — &€)V,,. Taking a derivative with respect to
each of a and B we see that the minimum is achieved when
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Letting A > 0 denote that A is positive semidefinite (PSD) and 1 denotes the pseudo-inverse of a
matrix, the optimization is transformed as:
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From Assumption 1 in the main paper, Q¢ s(A) and Qg () are invertible for € € (0,1). A standard
discussion on the Schur complement of
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implies (e.g., Proposition 2.1.(2) in Gallier [Gallier, 2010]) that the constraint in (4) is equivalent
to M = 0. Therefore, solving the problem boils down into the equivalent optimization:

max -y (5)
7€
0 —qf -q, 1.0 0
st. |—g. V. 0 |—=~0 0 0
—q, 0 V, 00 0
0 0 0
velo A=V, 0 | =0, >0, (6)
0 0 —eV,

which is Eqn. (3.4) of the main paper.



Table 1: Comparison of SDP and convex QCQP optimizations. “Runtime (SDP)” and “Runtime
(QCQP)” indicate the total running time (measured in seconds) of 100 instances of SDP and
QCQP, respectively. The running time is nearly square to the number of features, which is better
than the theoretical bound we discussed in Section 3.3 of the main paper. This is not surprising
because such a theoretical complexity bound considers the scaling of the hardest instance. We
confirmed that in all runs the objective values of the two optimizations were identical within the
margin of 0.1%. The simulation here was run on a modern PC server with a Xeon E5-2680 v2
CPU and 198GB memory.

| d | Runtime (SDP) [ Runtime (QCQP) |

10 1.85 1.21
100 12.75 46.85
1000 6149.56 4036.50
3000 103103.18 33859.97

Table 2: Variables selected from the NLSY 79 survey. We used the first two variables as sensitive
attributes. The target y is the income of people in 1990 divided by 10,000.

[ RNUM [ Variable Title [ Year [ Used as ]
R0000600 AGE OF R 1979 s
R0214800 SEX OF R 1979 s
HO0003400 SF-12 - ASSESSMENT OF R’S GENERAL HEALTH - x
R0304900 ILLEGAL ACTIVITY 80 INT - TIMES INTENTIONALLY 1980 x

DAMAGED PROPERTY IN PAST YEAR
R0307100 EVER CHARGED WITH ILLEGAL ACTIVITY? 80 INT 1980 x
(EXC MINOR TRAFFIC OFFENSE)
R3127300 | TYPE OF BUSINESS OR INDUSTRY OF MOST RECENT JOB | 1990 x
(80 CENSUS 3 DIGIT) CPS ITEM
R3146100 ATTENDED VOCATIONAL/TECHNICAL PGM OR 1990 x
ON THE JOB TRAINING SINCE LAST INT?
R3279401 TOTAL INCOME FROM WAGES AND SALARY 1990 y
IN PAST CALENDAR YEAR (TRUNC) (REVISED)
R3403500 NUMBER OF DIFFERENT JOBS EVER REPORTED 1990 x
AS OF INTERVIEW DATE
R3401501 HIGHEST GRADE COMPLETED AS OF 1990 x
MAY 1 SURVEY YEAR (REVISED)
R0618300 | PROFILES, ARMED FORCES QUALIFICATION TEST (AFQT) | 1989 x
PERCENTILE SCORE - REVISED 1989

B Comparison of SDP and Convex QCQP Optimizations

This section shows the comparison of the empirical performances of the SDP and the convex QCQP
optimizations by using synthetic data. We solved SDPs by using the Mosek optimizer! and convex
QCQPs by using the Gurobi optimizer?.

Let d = dy + d,. We assigned 10% of the features to s (i.e., ds = (1/10)d). The number of
datapoints was set to n = 10d. Each of features in s and w are drawn from standard normal
distribution, and y = (1,1,...,1)s 4+ (1/100,1/100,...,1/100)u + 1, where 7 is drawn from the
standard normal distribution. We set the strength of the fairness constraint to e = 0.1, which urges
the use of both sensitive and non-sensitive features.

Table 1 shows the result of our simulations. While the SQPs ran faster than the convex QCQPs
with d = 100, the QCQPs ran significantly faster with larger d. As the convex QCQP method
showed competitive performance with all size of d, we used the QCQP method for the subsequent
simulations in the main paper.

Thttps://www.mosek.com/
2http://www.gurobi.com/
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Figure 1: RMSE as a function of MD and AUC of the binary sensitive attributes. Only binary
sensitive attributes are displayed. Note that the experiment settings were the same as those of
Figure 2 in the main paper.

C Details of the Datasets

This section describes the details on the datasets that are not described in the main paper due to
the page limitation.
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Figure 2: RMSE as a function of the correlation coefficient in the three datasets. We chose gender
(COMPAS, NLSY), race (LSAC) as the only sensitive attribute. The results are averaged over five
random training-test data splittings. “LFR” and “Quantile” are the result of the ridge regressor
after the corresponding preprocessing methods [Zemel et al., 2013, Feldman et al., 2015]. Note
that the objective of LFR involves the cross-entropy loss and thus LFR does not apply to the
NLSY and LSAC datasets where y is numeric. “Proposed” is the (non-kernelized) convex QCQP
optimization. The reguralization parameters of all algorithms are the default one (A = 1.0).

Data source: We retrieved the COMPAS dataset®. Moreover, we retrieved the C&C dataset
from the UCI repository?.

Sensitive attributes: In the COMPAS dataset, we adapted (i) a person’s gender and (ii)
whether the person is African-American or not as the sensitive attributes. In the LSAC dataset,
we adapted (i) whether the person’s race is black or not and (ii) age as the sensitive attributes.

C.1 List of Attributes Extracted from the NLSY79 Survey

We build the NLSY dataset by using the NLSY79 investigator tool®. The selected variables are
shown in Table 2. Note that the categorical features are expanded into dummies, and thus the
number of selected variables shown in Table 2 is smaller than d, + d.

D Mean Difference and AUC

This section describes the mean difference (MD) and the area under the curve (AUC) that are
studied in Calders et al. [Calders et al., 2013] and the empirical results of them. By definition,
MD and AUC are only available for a binary sensitive attribute s): Let ny—; and ns_q are the
number of datapoints where s) =1 and s() = 0, respectively. MD and AUC are defined as

MD = [, 3150 = 1] ~ En[gls® = 0]},
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where E,, indicates the sample mean and 1[xz] = 1 if z is true and 0 otherwise. The larger MD

indicates a stronger dependency between s) and 3. AUC is 0.5 when s(*) and § are independent,
and AUC far from 0.5 implies a dependency between s() and . The MD and AUC of binary
attributes on our experiment are shown in Figure 1. In summary, MD and AUC behaved very
similarly to the correlation coefficient shown in the main paper.

E Comparison with Preprocessing Methods

To obtain some idea on the accuracy of the preprocessing methods, we compared our opti-
mization (convex QCQP) with existing preprocessing methods (Figure 2). “LFR” is the data-

Shttps://github.com/propublica/compas-analysis
4http://archive.ics.uci.edu/ml/datasets/communities+and-+crime
5The data is publicly available at https://www.nlsinfo.org/investigator/pages/login.jsp.



transformation algorithm proposed in Zemel et al. [Zemel et al., 2013] with their recommended
parameters A,, Ay, A, = 0.01,1,50 and K = 10. The optimization in LFR is solved by using the I-
bfgs global minimizer. “Quantile” is the algorithm proposed in Feldman et al. [Feldman et al., 2015]
that merges the two distributions x|s = 0 and x|s = 1 into a single distribution. One can see that
the two preprocessing methods deteriorate the predictive power of features in return for their high
level of fairness. Indeed, the LFR did not yield a useful estimator in our environment. Note
that the objective of Zemel et al.|[Zemel et al., 2013| is nonconvex, and thus the quality of the
preprocessing depends on the optimization methods and related parameters.
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