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1. Background from group and
representation theory

For a more detailed background on representation theory,
we point the reader to (Serre, 1977).

Groups. A group is a set G endowed with an operation
G×G→ G (usually denoted multiplicatively) obeying the
following axioms:
G1. for any g1, g2 ∈G, g1g2 ∈G (closure);
G2. for any g1, g2, g3 ∈G, g1(g2g3) = (g1g2)g3 (associa-

tivity);
G3. there is a unique e∈G, called the identity of G, such

that eg = ge = g for any u∈G;
G4. for any g ∈G, there is a corresponding element g−1∈

G called the inverse of g, such that gg−1 = g−1g =
e.

We do not require that the group operation be commutative,
i.e., in general, g1g2 6= g2g1. Groups can be finite or in-
finite, countable or uncountable, compact or non-compact.
While most of the results in this paper would generalize
to any compact group, to keep the exposition as simple as
possible, throughout we assume that G is finite or countably
infinite. As usual, |G| will denote the size (cardinality) of
G, sometimes also called the order of the group. A subset
H of G is called a subgroup of G, denoted H ≤ G, if H
itself forms a group under the same operation as G, i.e., if
for any g1, g2 ∈H , g1g2 ∈H .

Homogeneous Spaces. Let G be a group acting on a set
X . We say that X is a homogeneous space of G if for
any x, y ∈ X , there is a g ∈ G such that y = g(x). The
significance of homogeneous spaces for our purposes is
that once we fix the “origin” x0, the above correspondence
between points in X and the group elements that map x0 to
them allows to lift various operations on the homogeneous
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space to the group. Because expressions like g(x0) appear
so often in the following, we introduce the shorthand [g]X :=
g(x0). Note that this hides the dependency on the (arbitrary)
choice of x0.

As an example, Z2 is a homogeneous space of itself with
respect to the trivial action (i, j) 7→ (g1 + i, g2 + j). The
sphere S2 is a homogeneous space of the rotation group
SO(3) with respect to the action

x 7→ R(x) R(x) = Rx x∈S2. (1)

Representations. A (finite dimensional) representation
of a group G over a field F is a matrix-valued function
ρ : G → Fdρ×dρ such that ρ(g1)ρ(g2) = ρ(g1g2) for any
g1, g2 ∈G. In this paper, unless stated otherwise, we always
assume that F=C. A representation ρ is said to be unitary
if ρ(g−1) = ρ(g)† for any g ∈G. One representation shared
by every group is the trivial representation ρtr that simply
evaluates to the one dimensional matrix ρtr(g) = (1) on
every group element.

Equivalence, reducibility and irreps. Two representa-
tions ρ and ρ′ of the same dimensionality d are said to
be equivalent if for some invertible matrix Q ∈ Cd×d,
ρ(g) = Q−1ρ′(g)Q for any g ∈ G. A representation ρ
is said to be reducible if it decomposes into a direct sum of
smaller representations in the form

ρ(g)

= Q−1 (ρ1(g)⊕ρ2(g)) Q

= Q−1
(
ρ1(g) 0

0 ρ2(g)

)
Q ∀ g ∈G

for some invertible matrix Q ∈ Cdρ×dρ . We use RG to
denote a complete set of inequivalent irreducible representa-
tions of G. However, since this is quite a mouthful, in this
paper we also use the alternative term system of irreps to
refer toRG. Note that the choice of irreps inRG is far from
unique, since each ρ∈RG can be replaced by an equivalent
irrep Q>ρ(g)Q, where Q is any orthogonal matrix of the
appropriate size.

Complete reducibility and irreps. Representation the-
ory takes on its simplest form when G is compact (and
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F = C). One of the reasons for this is that it is possible to
prove (“theorem of complete reducibility”) that any repre-
sentation ρ of a compact group can be reduced into a direct
sum of irreducible ones, i.e.,

ρ(g) = Q−1
(
ρ(1)(g)⊕ρ(2)(g)⊕ . . .⊕ ρ(k)(g)

)
Q, (2)

for some sequence ρ(1), ρ(2), . . . , ρ(k) of irreducible repre-
sentations of G and some Q ∈ Cd×d. In this sense, for
compact groups,RG plays a role very similar to the primes
in arithmetic. FixingRG, the number of times that a partic-
ular ρ′ ∈RG appears in (2) is a well-defined quantity called
the multiplicity of ρ′ in ρ, denoted mρ(ρ

′). Compactness
also has a number of other advantages:

1. When G is compact, RG is a countable set, there-
fore we can refer to the individual irreps as ρ1, ρ2, . . ..
(When G is finite,RG is not only countable but finite.)

2. The system of irreps of a compact group is essentially
unique in the sense that if R′G is any other system of
irreps, then there is a bijection φ : RG → R′G mapping
each irrep ρ∈RG to an equivalent irrep φ(ρ)∈R′G.

3. When G is compact,RG can be chosen in such a way
that each ρ∈R is unitary.

Restricted representations. Given any representation ρ
of G and subgroup H ≤ G, the restriction of ρ to H
is defined as the function ρ|H : H → Cdρ×dρ , where
ρ|H(h) = ρ(h) for all h ∈ H . It is trivial to check that
ρ|H is a representation of H , but, in general, it is not irre-
ducible (even when ρ itself is irreducible).

Fourier Transforms. In the Euclidean domain convolu-
tion and cross-correlation have close relationships with the
Fourier transform

f̂(k) =

∫
e−2πιkx f(x) dx, (3)

where ι is the imaginary unit,
√
−1. In particular, the

Fourier transform of f ∗ g is just the pointwise product
of the Fourier transforms of f and g,

f̂ ∗ g(k) = f̂(k) ĝ(k), (4)

while cross-correlation is

f̂ ? g(k) = f̂(k)∗ ĝ(k). (5)

The concept of group representations (see Section 1) allows
generalizing the Fourier transform to any compact group.
The Fourier transform of f : G→ C is defined as:

f̂(ρi) =

∫
G

ρi(u) f(u) dµ(u), i = 1, 2, . . . , (6)

which, in the countable (or finite) case simplifies to

f̂(ρi) =
∑
u∈G

f(u)ρ(u), i = 1, 2, . . . . (7)

Despite R not being a compact group, (3) can be seen
as a special case of (6), since e−2πιkx trivially obeys
e−2πιk(x1+x2) = e−2πιkx1e−2πιkx2 , and the functions
ρk(x) = e−2πιkx are, in fact, the irreducible representations
of R. The fundamental novelty in (6) and (7) compared to
(3), however, is that since, in general (in particular, when G
is not commutative), irreducible representations are matrix
valued functions, each “Fourier component” f̂(ρ) is now
a matrix. In other respects, Fourier transforms on groups
behave very similarly to classical Fourier transforms. For
example, we have an inverse Fourier transform

f(u) =
1

|G|
∑
ρ∈R

dρ tr
[
f(ρ)ρ(u)−1

]
,

and also an analog of the convolution theorem, which is
stated in the main body of the paper.

2. Convolution of vector valued functions
Since neural nets have multiple channels, we need to further
extend equations 6-12 to vector/matrix valued functions.
Once again, there are multiple cases to consider.

Definition 1. Let G be a finite or countable group, and X
and Y be (left or right) quotient spaces of G.
1. If f : X → Cm, and g : Y → Cm, we define f ∗g : G→

C with

(f ∗ g)(u) =
∑
v∈G

f↑G(uv−1) · g↑G(v), (8)

where · denotes the dot product.

2. If f : X → Cn×m, and g : Y → Cm, we define f ∗
g : G→ Cn with

(f ∗ g)(u) =
∑
v∈G

f↑G(uv−1) × g↑G(v), (9)

where × denotes the matrix/vector product.

3. If f : X → Cm, and g : Y → Cn×m, we define f ∗
g : G→ Cm with

(f ∗ g)(u) =
∑
v∈G

f↑G(uv−1) ×̃ g↑G(v), (10)

where v×̃A denotes the “reverse matrix/vector product”
Av.

Since in cases 2 and 3 the nature of the product is clear
from the definition of f and g, we will omit the × and ×̃
symbols. The specializations of these formulae to the cases
of Equations 6-12 are as to be expected.
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3. Proof of Proposition 1.

Proposition 1 has three parts. To proceed with the proof, we
introduce two simple lemmas.

Recall that if H is a subgroup of G, a function f : G→ C
is called right H–invariant if f(uh) = f(u) for all h∈H
and all u∈G, and it is called left H–invariant if f(hu) =
f(u) for all h∈H and all u∈G.

Lemma 1. Let H and K be two subgroups of a group G.
Then

1. If f : G/H → C, then f↑G : G → C is right H–
invariant.

2. If f : H\G → C, then f↑G : G → C is left H–
invariant.

3. If f : K\G/H → C, then f↑G : G → C is right H
invariant and left K–invariant.

Lemma 2. Let ρ be an irreducible representation of a count-
able group G. Then

∑
u∈G ρ(u) = 0 unless ρ is the trivial

representation, ρtr(u) = (1).

Proof. Let us define the functions rρi,j(u) = [ρ(u)]i,j .
Recall that for f, g : G → C, the inner product 〈f, g〉 is
defined 〈f, g〉 =

∑
u∈G f(u)∗g(u). The Fourier transform

of a function f can then be written element-wise as
[f̂(ρ)]i,j = 〈rρi,j

∗
, f〉. However, since the Fourier transform

is a unitary transformation, for any ρ, ρ′ ∈ RG, unless
ρ = ρ′, i = i′ and j = j′, we must have 〈rρi,j , r

ρ′

i′,j′〉 = 0.
In particular,

[∑
u∈G ρ(u)

]
i,j

= 〈rρtr1,1, r
ρ
i,j〉 = 0, unless

ρ = ρtr (and i= j = 1). �

Now recall that given an irrep ρ of G, the restriction of ρ
to H is ρ|H : H → Cdρ×dρ , where ρ|H(h) = ρ(h) for all
h ∈ H . It is trivial to check that ρ|H is a representation
of H , but, in general, it is not irreducible. Thus, by the
Theorem of Complete Decomposability (see section 1), it
must decompose in the form ρ|H(h) = Q(µ1(h)⊕µ2(h)⊕
. . .⊕ µk(h))Q† for some sequence µ1, . . . , µk of irreps of
H and some unitary martrix Q. In the special case when
the irreps of G and H are adapted to H ≤ G, however, Q is
just the unity.

Proof of Proposition 1, Part 1. The fact that any u∈G can
be written uniquely as u= gh where g is the representative
of one of the gH cosets and h∈H immediately tells us that
f̂(ρ) factors as

f̂(ρ) =
∑
u∈G

f↑G(u)ρ(u)

=
∑

x∈G/H

∑
h∈H

f↑G(xh)ρ(xh)

=
∑

x∈G/H

∑
h∈H

f(x)ρ(xh)

=
∑

x∈G/H

∑
h∈H

f(x)ρ(x)ρ(h)

=
∑

x∈G/H

f(x)ρ(x)
[∑
h∈H

ρ(h)
]
.

However, ρ(h) = µ1(h) ⊕ µ2(h) ⊕ . . . ⊕ µk(h) for some
sequence of irreps µ1, . . . , µk of H , so∑
h∈H

ρ(h) =
[∑
h∈H

µ1(h)
]
⊕
[∑
h∈H

µ2(h)
]
⊕. . .⊕

[∑
h∈H

µk(h)
]
,

and by Lemma 2 each of the terms in this sum where µi is
not the trivial representation (onH) is a zero matrix, zeroing
out all the corresponding columns in f̂(ρ). �

Proof of Proposition 1, Part 2. Analogous to the proof
of part 1, using u = hg except that

∑
h∈H ρ(h) will now

multiply
∑
x∈H\G f(x)ρ(x) from the left. �

Proof of Proposition 1, Part 3. Immediate from combining
case 3 of Lemma 1 with Parts 1 and 2. �

4. Proof of Proposition 2.

Proof. Let us assume that G is countable. Then

f̂ ∗g(ρi) =
∑
u∈G

[∑
v∈G

f(uv−1) g(v)
]
ρi(u)

=
∑
u∈G

∑
v∈G

f(uv−1) g(v)ρi(uv
−1)ρi(v)

=
∑
v∈G

∑
u∈G

f(uv−1) g(v)ρi(uv
−1)ρi(v)

=
∑
v∈G

[∑
u∈G

f(uv−1) ρi(uv
−1)
]
g(v)ρi(v)

=
∑
v∈G

[∑
w∈G

f(w) ρi(w)
]
g(v)ρi(v)

=
[∑
w∈G

f(w) ρi(w)
][∑
v∈G

g(v)ρi(v)
]

= f̂(ρi) ĝ(ρi).

The continuous case is proved similarly but with integrals
with respect Haar measure instead of sums. �
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5. Proof of Theorem 1.
The proof of the Theorem for the forward direction, i.e., that
convolution implies equivariance, is in the main text. Here
we provide the proof for the reverse direction, i.e., that a
network is equivariant only if it is convolutional. We start
with two versions of Schur’s Lemma.

Lemma 3. (Schur’s lemma I) Let {ρ(g) : U→U}g∈G and
{ρ′(g) : V → V }g∈G be two irreducible representations of
a compact group G. Let φ : U → V be a linear (not nec-
essarily invertible) mapping that is equivariant with these
representations in the sense that φ(ρ(g)(u)) = ρ′(g)(φ(u))
for any u∈U . Then, unless φ is the zero map, ρ and ρ′ are
equivalent representations.

Lemma 4. (Schur’s lemma II) Let {ρ(g) : U → U}g∈G
be an irreducible representation of a compact group G on a
space U , and φ : U → U a linear map that commutes with
each ρ(g) (i.e., ρ(g) ◦ φ = φ ◦ ρ(g) for any g ∈G). Then φ
is a multiple of the identity.

We build up the proof through a sequence of lemmas.

Lemma 5. Let U and V be two vector spaces on which
a compact group G acts by the linear actions {Tg : U→
U}g∈G and {T ′g : V→ V }g∈G, respectively. Let φ : U→ V
be a linear map that is equivariant with the {Tg} and {T ′g}
actions, and W be an irreducible subspace of U (with re-
spect to {Tg}). Then Z =φ(W ) is an irreducible subspace
of V , and the restriction of {Tg} to W , as a representation,
is equivalent with the restriction of {T ′g} to Z.

Proof. Assume for contradiction that Z is reducible, i.e.,
that it has a proper subspace Z ⊂ Z that is fixed by {T ′g}
(in other words, T ′g(v)∈Z for all v ∈Z and g ∈G). Let v
be any nonzero vector in Z , u ∈ U be such that φ(u) = v,
and W = span {Tg(u) | g ∈G }. Since W is irreducible,
W cannot be a proper subspace of W , soW = W . Thus,

Z = φ(span {Tg(u) | g ∈G })
= span{T ′g(φ(u))|g ∈G} = span{T ′g(v)|g ∈G} ⊆ Z,

(11)

contradicting our assumption. Thus, the restriction {Tg|W }
of {Tg} to W and the restriction {T ′g|Z} of {T ′g} to Z
are both irreducible representations, and φ : W → Z is
a linear map that is equivariant with them. By Schur’s
lemma it follows that {Tg|W } and {T ′g|Z} are equivalent
representations. �

Lemma 6. Let U and V be two vector spaces on which
a compact group G acts by the linear actions {Tg : U →
U}g∈G and {T ′g : V → V }g∈G, and let U = U1⊕U2⊕ . . .
and V = V1 ⊕ V2 ⊕ . . . be the corresponding isotypic
decompositions. Let φ : U → V be a linear map that is

equivariant with the {Tg} and {T ′g} actions. Then φ(Ui) ⊆
Vi for any i.

Proof. Let Ui = U1
i ⊕U2

i ⊕ . . . be the decomposition of Ui
into irreducible G–modules, and V ji = φ(U ji ). By Lemma
5, each V ji is an irreducible G–module that is equivalent
with U ji , hence V ji ⊆ Vi. Consequently, φ(Ui) = φ(U1

i ⊕
U2
i ⊕ . . .) ⊆ Vi. �

Lemma 7. Let X = G/H and X ′ = G/K be two homo-
geneous spaces of a compact group G, let {Tg : L(X )→
L(X )}g∈G and {T′g : L(X ′) → L(X ′)}g∈G be the corre-
sponding translation actions, and let φ : L(X )→ L(X ′) be
a linear map that is equivariant with these actions. Given
f ∈ L(X ) let f̂ denote its Fourier transform with respect
to a specific choice of origin x0 ∈ X and system or irreps
RG = {ρ1, ρ2, . . .}. Similarly, f̂ ′ is the Fourier transform
of f ′ ∈L(X ′), with respect to some x′0 ∈X ′ and the same
system of irreps.

Now if f ′ = φ(f), then each Fourier component of f ′ is a
linear function of the corresponding Fourier component of
f , i.e., there is a sequence of linear maps {Φi} such that
f̂ ′(ρi) = Φi(f̂(ρi)).

Proof. Let U1 ⊕ U2 ⊕ . . . and V1 ⊕ V2 ⊕ . . . be the iso-
typic decompositions of L(X ) and L(X ′) with respect to
the {Tg} and {T′g} actions. Each Fourier component f̂(ρi)
captures the part of f falling in the corresponding isotypic
subspace Ui. Similarly, f̂ ′(ρj) captures the part of f ′ falling
in Vj . Lemma 6 tells us that because φ is equivariant with
the translation actions, it maps each Ui to the corresponding
isotypic Vi. Therefore, f̂ ′(ρi) = Φi(f̂(ρi)) for some func-
tion Φi. By the linearity of φ, each Φi must be linear. �

Lemma 7 is a big step towards describing what form
equivariant mappings take in Fourier space, but it doesn’t
yet fully pin down the individual Φi maps. We now focus
on a single pair of isotypics (Ui, Vi) and the corresponding
map Φi taking f̂(ρi) 7→ f̂ ′(ρi). We will say that Φi is
an allowable map if there is some equivariant φ such
that φ̂(f)(ρi) = Φi(f̂(ρi)). Clearly, if Φ1,Φ2, . . . are
individually allowable, then they are also jointly allowable.

Lemma 8. All linear maps of the form Φi : M 7→ MB
where B ∈Cδ×δ are allowable.

Proof. Recall that the {Tg} action takes f 7→ fg, where
fg(x) = f(g−1x). In Fourier space,
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f̂g(ρi) =
∑
u∈G

ρi(u)fg↑G(u) =
∑
u∈G

ρi(u)f↑G(g−1u)

=
∑
w∈G

ρi(gw)f↑G(w) = ρi(g)
∑
w∈G

ρi(w)f↑G(w)

= ρi(g) f̂(ρi). (12)

(This is actually a general result called the (left) translation
theorem.) Thus,

Φi
(
T̂g(f)(ρi)

)
= Φi

(
ρi(g)f̂(ρi)

)
= ρi(g) f̂(ρi)B.

Similarly, the {T′g} action maps f̂ ′(ρi) 7→ g(ρi)f̂
′(ρi), so

T′g
(
Φi(f̂(ρi))

)
= T′g

(
f̂(ρi)B

)
= ρi(g) f̂(ρi)B.

Therefore, Φi is equivariant with the {T} and {T′} actions.
�

Lemma 9. Let Φi : M 7→ BM for some B ∈Cδ×δ. Then
Φi is not allowable unless B is a multiple of the identity.
Moreover, this theorem also hold in the columnwise sense
that if Φi : M → M ′ such that [M ′]∗,j = Bj [M ]∗,j for
some sequence of matrices B1, . . . , Bd, then Φi is not al-
lowable unless each Bj is a multiple of the identity.

Proof. Following the same steps as in the proof of Lemma
8, we now have

Φi
(
T̂g(f)(ρi)

)
= Bρi(g) f̂(ρi),

T′g
(
Φi(f̂(ρi))

)
= ρi(g)Bf̂(ρi).

However, by the second form of Schur’s Lemma, we cannot
have Bρi(g) = ρi(g)B for all g ∈G, unless B is a multiple
of the identity. �

Lemma 10. Φi is allowable if and only if it is of the form
M 7→MB for some B ∈Cδ×δ .

Proof. For the “if” part of this lemma, see Lemma 8. For the
“only if” part, note that the set of allowable Φi form a sub-
space of all linear maps Cδ×δ → Cδ×δ, and any allowable
Φi can be expressed in the form

[Φi(M)]a,b =
∑
c,d

αa,b,c,dMc,d.

By Lemma 9, if a 6= c but b= d, then αa,b,c,d = 0. On the
other hand, by Lemma 8 if a= c, then αa,b,c,d can take on
any value, regardless of the values of b and d, as long as
αa,b,a,d is constant across varying a.

Now consider the remaining case a 6= c and b 6= d, and
assume that αa,b,c,d 6= 0 while Φi is still allowable. Then,
by Lemma 8, it is possible to construct a second allowable

map Φ′i (namely one in which α′a,d,a,b = 1 and α′a,d,x,y = 0
for all (x, y) 6= (c, d)) such that in the composite map
Φ′′i = Φ′i ◦ Φi, α′′a,d,c,d 6= 0. Thus, Φ′′i is not allowable.
However, the composition of one allowable map with an-
other allowable map is allowable, contradicting our assump-
tion that Φi is allowable.

Thus, we have established that if Φi is allowable, then
αa,b,c,d = 0, unless a= c. To show that any allowable Φi of
the form M 7→ MB, it remains to prove that additionally
αa,b,a,d is constant across a. Assume for contradiction
that Φi is allowable, but for some (a, e, b, d) indices
αa,b,a,d 6= αe,b,e,d. Now let Φ0 be the allowable map that
zeros out every column except column d (i.e., α0

x,d,x,d = 1
for all x, but all other coefficients are zero), and let Φ′ be
the allowable map that moves column b to column d (i.e.,
α′x,d,x,b = 1 for any x, but all other coeffcients are zero).
Since the composition of allowable maps is allowable,
we expect Φ′′ = Φ′ ◦ Φ ◦ Φ0 to be allowable. However
Φ′′ is a map that falls under the purview of Lemma 9,
yet α′′a,d,a,d 6= α′′e,d,e,d (i.e., Mj is not a multiple of the
identity) creating a contradiction. �

Proof of Theorem 1 (Reverse direction). For simplicty
we first prove the theorem assuming Y` =C for each `.

Since N is a G-CNN, each of the mappings (ξ` ◦
φ`) : L(X`−1)→ L(X`) is equivariant with the correspond-
ing translation actions {T`−1g }g∈G and {T`g}g∈G. Since ξ`
is a pointwise operator, this is equivalent to asserting that
φ` is equivariant with {T`−1g }g∈G and {T`g}g∈G.

Letting X = X`−1 and X ′ = X`, Lemma 8 then tells us the
the Fourier transforms of f`−1 and φ`(f`−1) are related by

̂φ`(f`−1)(ρi) = Φ
(
f̂`−1(ρi)

)
for some fixed set of linear maps Φ1,Φ2, . . .. Furthermore,
by Lemma 10, each Φi must be of the form M 7→MBi for
some appropriate matrix Bi ∈Cdρ×dρ . If we then define χ`
as the inverse Fourier transform of (B1, B2, . . .), then by the
convolution theorem (Proposition 2), φ`(f`−1) = f`−1 ∗ χ,
confirming that N is a G-CNN. The extension of this result
to the vector valued case, f` : X` → V`, is straightforward.
�
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