Compiling Combinatorial Prediction Games

Frederic Koriche !

Abstract

In online optimization, the goal is to iteratively
choose solutions from a decision space, so as to
minimize the average cost over time. As long as
this decision space is described by combinatorial
constraints, the problem is generally intractable.
In this paper, we consider the paradigm of com-
piling the set of combinatorial constraints into a
deterministic and Decomposable Negation Nor-
mal Form (dDNNF) circuit, for which the tasks of
linear optimization and solution sampling take lin-
ear time. Based on this framework, we provide ef-
ficient characterizations of existing combinatorial
prediction strategies, with a particular attention
to mirror descent techniques. These strategies
are compared on several real-world benchmarks
for which the set of Boolean constraints is
preliminarily compiled into a dDNNF circuit.

1. Introduction

Combinatorial optimization is a important topic of computer
science and discrete mathematics, with a wide spectrum
of applications ranging from resource allocation and job
scheduling, to automated planning and configuration
softwares. A common problem is to minimize a modular
loss function £ over a discrete space S C {0,1}¢ of
feasible solutions represented in a concise manner by a
set of combinatorial constraints. In the offline version
of this problem, all information necessary to define the
optimization task is available beforehand, and the challenge
is to develop algorithms which are provably or practically
better than enumerating all feasible solutions. Contrastingly,
in the online version of this problem (Audibert et al., 2014),
the objective function £ is subject to change over time.
The challenge here is more acute, since the optimization
algorithm is required to perform repeated choices on S so
as to minimize their average cost in the long run.

'CRIL, CNRS UMR 8188, Univer-
Correspondence to: Frederic Koriche

“Equal contribution
sité d’Artois, France.
<koriche @cril.fr>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Conceptually, an online combinatorial optimization problem
can be cast as a repeated prediction game between a learning
algorithm and its environment (Audibert et al., 2011;
2014). During each trial ¢, the learner chooses a feasible
solution s; from its decision set S and, simultaneously, the
environment selects a loss vector £; € [0,1]¢. Then, the
learner incurs the loss (£;,s;) = Z?:l £(i)s¢() and, in
light of the feedback provided by its environment, updates
its strategy in order to improve the chance of selecting
better solutions on subsequent trials.

Several classes of combinatorial prediction games can be
distinguished, depending on the type of decision set, and the
type of observed feedback. In this paper, we focus on full
information games in which it is assumed that the feedback
supplied at trial ¢ by the environment is the entire vector
£;. On the other hand, we make very few assumptions
about the decision set: S may be described by an arbitrary
SAT formula, that is, any set of combinatorial constraints
representable by Boolean clauses. As SAT encodings of
discrete solution spaces are frequently used in academic and
industrial applications (Biere et al., 2009), our setting covers
an important class of combinatorial prediction games.

As usual, the performance of an online learning algorithm is
measured according to two metrics. The first, called regret,
measures the difference in cumulative loss between the
algorithm and the best solution in hindsight. In this study,
we make no assumption about the sequence of loss vectors;
in particular £; may depend on the previous decisions
s1,---,8t—1 made by the learner. In such non-oblivious or
adversarial environments, the learner is generally allowed
to make decisions in a randomized way, and its predictive
performance is measured by the expected regret:

T T
RT =E Z<£t, St> — Isnel‘Is‘l

t=1 t=1

<et7 S>

The second metric is computational complexity, i.e. the
amount of resources required to compute s; at each round
t, given the sequence of feedbacks observed so far.

Related Work. In the literature of combinatorial pre-
diction games, three main strategies have been proposed
to attain an expected regret that is sublinear in the game
horizon 7" and polynomial in the input dimension d. The

Compiling Combinatorial Prediction Games

first, and arguably simplest strategy, is to Follow the
Perturbed Leader (FPL): on each trial ¢, the learner draws at
random a perturbation vector z; € R<, and then selects in S
a minimizer of nL; + z;, where n € (0, 1] is a step-size pa-
rameter, and L, is the cumulative loss Ly = £ +---+£;_1.
Based on the pioneering work of Hannan (1957), refined
in (Hutter & Poland, 2005; Kalai & Vempala, ZQOS), the
FPL algorithm achieves an expected regret of O(d2v/T).

The second strategy is based on the popular exponentially
weighted average forecaster in the framework of prediction
with expert advice (Cesa-Bianchi & Lugosi, 2006). The
overall idea is to maintain a weight for each feasible
solution s € S, which decays exponentially according to
the estimated cumulative loss of s. Specifically, on each
trial ¢, the learner draws a solution s; € S at random from
the exponential family p;(s) ~ exp(—n(L¢,s)). This
strategy, referred to as Expanded Hedge (EH) in (Koolen
et al., 2010), attains an expected regret of (’)(d% VT).

Finally, the third strategy is to Follow the Regularized
Leader, a paradigm often advocated in online convex
optimization (Hazan, 2016). Here, the learner operates
on the convex hull of S, denoted conv(S). On each trial
t, the learner starts by choosing a point p; € conv(S) that
minimizes 7(L;, p) + F(p), where F is a regularization
function. Next, p; is decomposed as a convex composition
of feasible solutions in S, and then, a decision s; is
picked at random according to the resulting distribution.
For modular loss functions, this strategy is equivalent to
the Online Stochastic Mirror Descent (OSMD) algorithm
(Audibert et al., 2014; Rajkumar & Agarwal, 2014), which
iteratively performs a gradient descent in the dual space
of conv(S) under F, and projects back to the primal
space according to the Bregman divergence defined from
F. Notably, when F' is the Euclidean regularizer, OSMD
coincides with the popular stochastic gradient descent
(SGD) algorithm (Robbins & Monro, 1951). Alternatively,
when F' is the entropic regularizer, OSMD corresponds to
the Component Hedge (CH) algorithm (Koolen et al., 2010),
which achieves an optimal expected regret of O(dv/T).

From the viewpoint of regret, the results outlined above
indicate that few improvements remain to be made in full
information games. However, we get a different picture if
computational considerations are taken into account: all
aforementioned algorithms rely on powerful oracles for
making decisions in spaces S represented by combinatorial
constraints. Namely, the EH algorithm is required, at each
iteration, to sample a solution according to an exponential
family over S, a problem which is generally #P-hard (Dyer
et al., 2009). Similarly, the FPL strategy has to repeatedly
solve a linear optimization task over S, which is generally
NP-hard (Creignou et al., 2001). For the 0SMD algorithm,
and its specializations SGD and CH, the computational issue

is exacerbated by the fact that, even if the learner has access
to a linear optimization oracle, it still has to perform, at
each trial, a Bregman projection step for which the best
known algorithms run in O(d%) time (Suehiro et al., 2012).

Although combinatorial prediction games are generally
intractable, efficient implementations of sampling and op-
timization oracles may be obtained for several decision sets
S. For example, when the feasible solutions in S coincide
with the bases of a binary matroid, or the perfect matchings
of a bipartite graph, linear optimization can be performed
in polynomial time, and tractable forms of FPL and OSMD
may be derived (Helmbold & Warmuth, 2009; Koolen et al.,
2010; Takimoto & Hatano, 2013; Rajkumar & Agarwal,
2014). On the other hand, when the feasible solutions in S
correspond to the paths or multi-paths of a rooted Directed
Acyclic Graph (DAG), the sampling oracle may be imple-
mented by the weight pushing technique (Mohri, 1998), that
recursively evaluates the partition function of an exponential
family over the edges of the input DAG. Based on this
technique, tractable forms of EH can be derived (Takimoto
& Warmuth, 2003; Rahmanian & Warmuth, 2017).

Our Results. Viewing feasible solutions as paths in a
DAG is only one of many abstractions that have been pro-
posed in the literature of circuit complexity for representing
combinatorial spaces. In the related field of knowledge
compilation (Darwiche & Marquis, 2002), various classes
of Boolean circuits have been identified, each associated
with a set of inference tasks which can be performed in poly-
nomial time. These theoretical results naturally motivate
the following question: can we compile a set of constraints
representing a combinatorial space S into a compact and
Boolean circuit for which both solution sampling and linear
optimization are tractable? By viewing the compilation
process as a “pre-processing step”, we may get for free effi-
cient implementations of sampling and optimization oracles,
provided that the size of the resulting circuit is not too large.

The present study aims at solving combinatorial prediction
games, by compiling decision sets into deterministic
Decomposable Negation Normal Form (dDNNF) circuits
(Darwiche, 2001). This class comes with generic compilers
which take as input a SAT formula representing a decision
set S, and return a dDNNF circuit C' that encodes S
(Darwiche, 2002; Lagniez & Marquis, 2017). Although
the size of C' may grow exponentially in the treewidth of
the input formula, it is usually much smaller in practice;
existing compilers are able to compress combinatorial
spaces defined over thousands of variables and constraints.

With these compilation tools in hand, our contributions are
threefold: (i) we show that for dADNNF circuits, the sam-
pling oracle in EH and the linear optimization oracle in
FPL, run in linear time using a simple variant of the weight-

Compiling Combinatorial Prediction Games

pushing technique; (ii) for the SGD and CH strategies, we de-
velop a Bregman projection-decomposition method that uses
O(d? In(dT)) calls to the linear optimization oracle; (iii) we
experimentally show on online configuration and planning
tasks that EH and FPL are fast, but our variants of SGD and
CH are more efficient to minimize the empirical regret.

Before proceeding to the core of the paper, we emphasize
that the compilation approach to online optimization is not
entirely new. Recently, Sakaue et. al. (2018) used the class
of Ordered Binary Decision Diagrams (OBDDs) (Bryant,
1986) for implementing the EWA forecaster in combinatorial
bandits. Here, S is described by a graph over d edges,
together with a constraint specifying the type of objects
we desire (e.g. paths or cliques). By contrast, our study
assumes that S is described with an arbitrary set of Boolean
constraints. So, both studies are targeting different classes
of combinatorial prediction games. Moreover, it is known
that dDNNF is strictly more succinct than OBDD (Darwiche
& Marquis, 2002). Namely, any OBDD can be transformed
in linear time and space into an equivalent dDNNF circuit,
but the converse is not true: dDNNF includes simple circuits
which require an exponential size representation in OBDD.
In fact, the key point of compiling combinatorial prediction
games is to use both tractable and succinct languages, for
allowing prediction strategies to be efficient on a wide
variety of combinatorial domains.

2. Tractable Inference via Compilation

For the combinatorial prediction games considered in
this paper, we assume that the input decision space S is
defined from a set of n binary-valued attributes, and we
use X = {x1,---, x4}, where d = 2n, to denote the set of
all “attribute-value” pairs, called literals. A solution is a
vector s € {0,1}% such that s(i) + s(j) = 1 for every pair
of distinct literals z;, x; € X defined on the same attribute.
Thus, ||s||; = n for any feasible solution s € S.

An NNF circuit over X is a rooted DAG, whose internal
nodes are labeled by V (or-node) or A (and-node), and
whose leaves are labeled by either a literal in X, or a
constant in {0, 1}. The size of C, denoted |C], is given by
the number of its edges. The set of attributes occurring in
the subgraph of C rooted at some node c¢ is denoted att(c).

For the sake of clarity, we assume that any NNF circuit C'
satisfies two basic properties, namely (i) any internal node
¢ in C has exactly two children, denoted ¢; and ¢,., and (ii)
att(c;) = att(c,) # & for any or-node c of C'. An NNF cir-
cuit satisfying both conditions is called smooth. As shown in
(Darwiche, 2001), any Boolean circuit C' can be transformed
in to an equivalent smooth NNF circuit of size linear in |C|.

By viewing literals as “input gates”, and nodes as “output
gates”, we may specify various inference tasks on Boolean

Q R & ® T 1
maxmin | {0,1} max min 1 0
minsum | RU{+00} min + 0 4o
sumprod | R + * 1 0

Table 1: Commutative semirings

circuits, depending on the type of input values and the
semantics of nodes. As suggested by Friesen & Domingos
for sum-product functions (2016), inference tasks can be
captured through semiring operations. To this point, recall
that a commutative semiring is a tuple (R, ®,®, L, T)
such that R is a set including the elements | and T, & is
a associative and commutative binary operation on R with
identity element |, ® is an associative binary operation on
R with identity element T and absorbing element 1, and
the operator ® left and right distributes over the operator .

Inference tasks on an NNF circuit C' are defined using a
commutative semiring) = (R, ®,®, L, T) and an input
vector w € R%. The output of a node c in C for Q given
w is denoted Q(c|w), and recursively defined by

w(?) if ¢ is the literal z;,
T if ¢ is the constant 1,
Qclw)=< L if ¢ is the constant 0,

Qla|w) ® Qler |w)
Qlar|w) ® Qer |w)

if cis anode Vv, and
if cis a node A

By Q(C | w), we denote the output of the root of C for @
given w. Of particular interest in this study are the semirings
described in Table 1; maxmin, minsum, and sumprod,
and used to capture the inference tasks of model checking,
linear optimization, and model sampling, respectively.

2.1. Model Checking

Given an NNF circuit C over X, the task of model checking
is to decide whether a Boolean input s € {0, 1} is true in
C according to the propositional semantics of nodes. Obvi-
ously, s is a model of C' iff maxmin(C' | s) = 1, which can
be determined in O(|C|) time. An NNF circuit C is called
a representation of a set of feasible solutions S C {0,1}¢
if s0l(C) = S, where sol(C) is the set of models of C.

Apart from model checking, virtually all inference tasks in
NNF circuits are NP-hard. Indeed, the NNF language covers
the class of SAT formulas. So, we need to refine this class
in order to get tractable forms of optimization and sampling.

Compiling Combinatorial Prediction Games

2.2. Decomposability and Optimization

A Boolean circuit C'is decomposable if for every and-node
¢ of C, we have att(c;) N att(c,) = @. The class
of decomposable NNF circuits is denoted DNNF. For
such circuits, which are similar to Boolean sum-product
networks (Poon & Domingos, 2011), we can get an efficient
implementation of the linear optimization oracle.

Proposition 1. Let S C {0, 1} be a (nonempty) decision
set represented by a DNNF circuit C, and let w € R% be a
modular objective. Then, finding a minimizer of w in &
can be done in O(|C|) time.

Proof. Based on the minsum semiring, we have

Iggg('tﬂ, s) = sergllr(lc)hu, sy = minsum(C |w)
This observation suggests a two-pass weight pushing
method for finding a minimizer s of w in S in O(|C|) time.
Given a topological ordering of C, the first pass stores the
value Q(c| w) of each node ¢ € C, using = minsum.
The second pass performs a top-down search over C, by
selecting all children of a visited and-node, and by selecting
exactly one child ¢’ € {¢, ¢, } of a visited or-node ¢ such
that Q(¢' | w) = Q(c | w). Let T be the corresponding
search tree, and let s € {0, 1} be the indicator vector of
the set of literals occurring in 7'. By construction, we have
Q(T|w) = Q(C|w), which implies that s is a minimizer
of w. Since S is not empty, we know that Q(C |w) < +o0.
This, together with the fact that minmax(T | s) = 1
whenever Q (T |w) < +o0, implies that s € S. O

2.3. Determinism and Sampling

As the problem of counting the number of models in a DNNF
circuit is #P-hard (Darwiche & Marquis, 2002), we need to
refine this class in order to get an efficient implementation of
the sampling oracle. To this end, an NNF circuit C'is called
deterministic if minmax(¢; | s) + minmax(c, | s) <1
for every or-node ¢ € C and every feasible solution s. The
class of deterministic DNNF circuits is denoted dDNNF'.

Proposition 2. Let S C {0,1}% be a decision set repre-
sented by a dDNNF circuit C, and for a vector w € R<, let
P, be the exponential family on S given by:

exp(w, s)

Fuls) = s e lw, o)

Then, sampling s ~ P,, can be done in O(|C|) time.

Proof. Based on the sumprod semiring, we have

exp(w, s exp(w, 8

Pls) ws) vl
Zs/esol(C) exp(w, S >

sumprod(C'|w’)

N / v \ A /\/\/\/\
VAVAY

\ /

Figure 1: A smoothed DNNF circuit C' (left), and a ADNNF circuit
C’ (right). Here, x; and T; are distinct literals sharing the same
attribute. Note that C’ can be smoothed by simply replacing x3
with z3 A (x4 V T4), and using a symmetric substitution for 4.

where w’ = (e®(), ... ¢®(d), Again, such an equivalence
suggests a two-pass weight pushing method for sampling
a solution s according to P,, in O(|C|) time. Using a
topological ordering of C, the first pass stores the values
Q(c|w’), where @ = sumprod. The second pass performs
a top-down randomized search over C, by selecting all chil-
dren of a visited and-node, and by drawing at random one of
the children of a visited or-node ¢ according to the distribu-
tion p(cr) = Q(er | w')/Q(c | w') and p(e,) = 1 - p(cy).
Let T be the tree of visited nodes, and s be the indicator
vector of the literals in 7. Since S # &, we must have
Q(C'|w) > 0. Thus, each Bernoulli test performed in T is
valid, and hence, s € S. For any literal 2; occurring in 7', let
p(x;) denote the probability of the (unique) path connecting
the root to x;. By a telescoping product of Bernoulli dis-
tributions, we get that p(z;) = ¢*® /Q(C'|w'). Therefore,
p(8) = Li.s(i)=1 P(xi) = Pay(s), as desired. O

We close this section by highlighting some interesting sub-
classes of dADNNF'. A decision node is an or-node of the form
(i AN ¢)) V (T; A c.), where z; and Z; are opposite literals,
and ¢} and ¢]. are arbitrary nodes. The class of Free Binary
Decision Diagrams (FBDD) is the subset of ADNNF in which
every or-node is a decision node, and at least one child of any
and-node is a literal (Wegener, 2000). For example, if in the
dDNNF circuit of Figure 1, we replace the or-node (in blue)
by a simple literal, say =3, then we get an FBDD circuit. The
family of Ordered Binary Decision Diagrams (OBDD) is the
subclass of FBDD obtained by imposing a fixed ordering on
the decision variables. Alternatively, the well-known family
of (Binary) Decision Trees (DT) is the subclass of FBDD cir-
cuits for which the primal graph is cycle-free. Since all these
classes are (strict) subsets of dDNNF, they admit linear-time
algorithms for linear optimization and model sampling.

3. Tractable Prediction via Compilation

After an excursion into compilation languages, we are now
ready to provide efficient characterizations of combinatorial
prediction strategies. Our results are summarized in Table 2.

Compiling Combinatorial Prediction Games

Algorithm | Regret Runtime
EH O(d2VT) o(Cl)
FPL O(d3V/T) o(c))

(d
SGD+PCG | O(d(VT +InT)) O(d?|C|In(dT))
5-CH+PCG | O(d(VT +InT)) O (@ In %)

Table 2: Expected regrets and per-round running times of combi-
natorial prediction strategies, implemented on a dDNNF circuit C'.

Notably, using the fact that ||s||; = d/2, the regret bounds
for EH and FPL can easily be derived from (Audibert et al.,
2011) and (Hutter & Poland, 2005), respectively. Both
strategies are straightforward to implement on dDNNF
circuits. Indeed, recall that EH draws, at each trial ¢,
a feasible solution s; € S at random according to the
distribution P_, ., where L; = £; +---+£;_1. So, by
direct application of Proposition 2, this strategy runs in
O(|C]) time per round, using a dDNNF representation C
of the decision set S. For the FPL strategy, each round ¢ is
performed by choosing a minimizer s; € S of the objective
function nL; — z;, where z; € RY is a perturbation
vector whose components are independent exponentially
distributed random variables. By Proposition 1, the FPL
strategy also runs in O(|C|) time per round, using a dDNNF
encoding C of S, and the fact that |C| is in (d).

However, the OSMD strategy and its specializations, SGD
and CH, require more attention, due to the projection-
decomposition step involved at each iteration.

3.1. Online Stochastic Mirror Descent

The overall idea of Online Mirror Descent (OMD) is to
“follow the regularized leader” through a primal-dual
approach (Nemirovski & Yudin, 1983; Beck & Teboulle,
2003). Let K be a convex set, and let int(K) denotes its
interior. Given a regularization function F defined on K,
OMD iteratively performs a gradient descent in the interior
of the dual space *, and projects back the dual point into
the primal space K. The connection between K and K*
is ensured using the gradients VF' and VF*, where F™* is
the convex conjugate of F, defined on K*. The projection
step is captured by the Bregman divergence of F', which
is a function B : K x int(K) — R given by:

Br(p,q) = F(p) — F(q) — (VF(q),p —q)

In the stochastic variant of OMD, introduced by Audibert
et. al. (2011; 2014), and specified in Algorithm 1, each
projection is performed onto the subset conv(S) of I,
and the resulting point p; is decomposed into a convex
combination of feasible solutions in S, from which one is
picked at random for the prediction task.

Algorithm 1 osMD

Input: decision set S C {0,1}%, horizon T € Z,.
Parameters: regularizer F' on K 2 conv(S), step-size
n € (0,1]

setu; =0

fort =1to T do
set py € Argmingecony(s) Br(p, VF* (ut))
play s; ~ p; and observe £;
set ur1 = VE(pr) — nk

end for

For common regularizers, the gradient V F'(p;) and its dual
V F*(u;) are easily calculable, and we shall assume that
the time spent for their construction is negligible compared
with the running time of the linear optimization oracle.
In fact, the computational bottleneck of OSMD is to find
a minimizer p; of Bp(p, VF*(u;)) in the convex hull
of S, and to decompose p; into a convex combination of
solutions in S. Fortunately, under reasonable assumptions
about the curvature of B, this projection-decomposition
step can be efficiently computed, using recent results in
projection-free convex optimization algorithms.

To this end, we need additional definitions. For a convex set
K, a differentiable function f : I — R is called a-strongly
convex with respect to a norm || - || if

f®) — fp) = (Vip).p —p) + 5 IIp —pl

Furthermore, f is called 3-smooth' with respect to | - || if

1)~) < (VI)0) + 5 I~ p?

Based on these notions, we say that a Bregman divergence
Br has the condition number 8/« if B is both a-strongly
convex and (3-smooth with respect to the Euclidean norm
|| - |2 in its first argument. For such regularizers, the next
result states that the projection-decomposition step can be
approximated in low polynomial time, by exploiting the
Pairwise Conditional Gradient (PCG) method, a variant of
the Frank-Wolfe convex optimization algorithm, whose con-
vergence rate has been analyzed in (Lacoste-Julien & Jaggi,
2015; Garber & Meshi, 2016; Bashiri & Zhang, 2017).

Lemma 1. Let S C {0, 1} be a decision set represented by
a dDNNF circuit C, and F' be a regularizer on K O conv(S)
such that Br has condition number 8/a. Then, for any
q € int(K) and € € (0, 1), one can find in O(§d2|0|ln @)
time a convex decomposition of p € conv(S) such that

Br(p,q) — min _ Bp(p',q) <e

p’€conv(C)

!"This notion of geometric smoothness should not be confused
with the structural smoothness of NNF circuits in Section 2.

Compiling Combinatorial Prediction Games

Algorithm 2 PCG

Input: S C {0,1}¢, f: K =R, m € Z,
Parameters: step-sizes {7},

let p; be some point in S

for j = 1tomdo
let 25:1 a;s; be the convex decomposition of p;
set 8;_ € ArgInianconv(S) <vf(pj)a p>
set s; € Argminger,, .. o3 (=Vf(p)).)
setpj1 = pj + (s — ;)

end for

Proof. Observe that conv(S) is a simplex-like polytope
(Bashiri & Zhang, 2017), defined by the linear constraints
p>0, Ziil a;s; = p, a > 0, and le\; o; = 1, where
N = |S|. So, conv(S) and Bp satisfy the conditions
of Theorem 1 in (Garber & Meshi, 2016), and using the
step-sizes advocated by the authors, we get that

d
Br(pm,q) — Br(p*,q) < % exp (— 8;;2 m)

where p,, is the point obtained at the last iteration of PCG,
and p* is the (unique) minimizer of Br(p,) on conv(S).
Therefore, after m > (8d23/a) In(d/(2¢)) iterations, we
have Bp(pm,q) — Br(p*, q) < c. Finally, since each itera-
tion of PCG makes one call to the linear optimization oracle,
the runtime complexity follows from Proposition 1. O

By OSMD+PCG, we denote the refined version of the OSMD
algorithm that uses the PCG method at each trial ¢ in order
to approximate the Bregman projection-decomposition step.
In addition to a regularizer F' and a step-size 17, OSMD+PCG
takes as parameters a sequence {¢; }7_; such that

Br(pt,q:) — Br(p;, qt) < &

where p; is the point returned by PCG, q; = VF*(u;), and
p; is the minimizer of Br(p, q;) over conv(S).

Theorem 1. Suppose that OSMD+PCG takes as input a
dDNNF representation C' of a decision set S C {0, 1}4,
and a horizon T, and uses a regularizer F' on K 2 conv(S)
such that B has condition number 8/, together with a step-
size € (0, 1] and a sequence of {¢;}Z_; such that ¢, = 7/s?
for v > 0. Then, OSMD+PCG attains the expected regret

2vd 1
Ry </—(nT + 1) + — max Br(s, p]
T o () 1 568 F(8,p7) (1)

n % > Bp-(VF(p}) — &, VF(pt))

t=1

T
with a per-round running time in O (Bd2 |Cln Bd> .
o v

Proof. Let s* € S be the optimal solution chosen with the
benefit of hindsight. By decomposing the regret, we have

T T

_S*>+ZE<£t,8t—pZ> (2)

t=1 t=1

By Theorem 2 in (Audibert et al., 2014), the first term in (2)
is bounded by the last two terms in (1). For the second term
in (2), we get from the Cauchy-Schwarz inequality that

E(:, 50— p;) < [€]2llpe — P} ll2< Vdllp: — pi |2

Moreover, by applying the Generalized Pythagorean
Theorem (Cesa-Bianchi & Lugosi, 2006), we know

that Br(p,q:) > Br(p,p;) + Br(p;,q:), for any
p € conv(S). Using p = p; and rearranging,

Br(pt,p;) < Br(pt,q:) — Br(p;,a:) < e (3)

Since Br is a-strongly convex with respect to || - ||2 in its
first argument, we also have $||p; — p; |3 < Br(pt, p}).
Thus by plugging this inequality into (3), we get that
E(€;,s: — p;) < +/2de;/a. Finally, by substituting e,
with p/t2, summing other T, and applying the logarithmic
bound on harmonic series, we obtain the desired result. [

3.2. Stochastic Gradient Descent

The (online) SGD algorithm is derived from OSMD using
the Euclidean regularizer F(p) = 1 || pHg In this simple
framework, the primal and dual spaces coincide with R4,
and hence, F*(u) = u, VF(p) = p, and VF*(u) = u.
Furthermore, Br has the condition number 1/1, since
Br(p,q) = 3|p— 4|3 We denote by SGD+PCG the

instance of OSMD+PCG defined on the Euclidean regularizer.

Proposition 3. The SGD+PCG algorithm achieves an
expected regret bounded by d(vT + InT + 1) with a
per-round runtime complexity in O(d?|C|In(dT)) using
n=1/vTand vy = d/2.

Proof. This simply follows from Theorem 1, together with
the fact that max,cs Br(s,p}) <dand ||£]3<d. O

3.3. Component Hedge

The CH algorithm is derived from OSMD using the entropic
regularizer F(p) = Zle p(7)(Inp(i) — 1), for which the
conjugate is F*(u) = Z?:l expu(i). Here, we cannot
find a finite condition number for the associated divergence
Br(p,q) = i, p(i)In &5 — (p(i) — q(3)), since its
gradient is unbounded. This issue may, however, be
circumvented using a simple trick advocated in (Krichene
et al., 2015), which consists in replacing the entropic
regularizer with the function F5(p) = F(p + d), where

Compiling Combinatorial Prediction Games

d€(0,1)and d = (0, --,9). For this function, the primal
space is (—d, +00), and since Fy(u) = F*(u) — (u,d),
the dual space is R?. It is easy to show that

OF5s(p)
op(i)
Br;(p,q) = Br(p+9,q+9)

OFF (u)
ou(i)
Bf, (u,v) = Bp(u,v)

)

= In(p(i) + 9)

where By (u,v) = 24:1 (vl 4y (i) —u(i) — 1).

2
Furthermore, since the first and second order partial

derivatives of B, (p, q) at the coordinate p(i) are

p(i)+0 0°Br,(p,q) 1

9Br; (p,q) I
j q(i) +0 9?p(i) p(i) +0

apli) .

it follows that Bp; has the condition number 1+6/5. Indeed,
given an arbitrary point ¢ € int(—d,+o0), let Hq(p)
denote the the Hessian matrix of B, (p, q) at p € conv(S).
Then, for any z € RY, the diagonal entries of Hy(p) satisfy

2
1 < 7 BF<paq)

110~ %) 2(0)* <

1
5

using the fact that p(i) € [0,1]. Thus, o < Hq(p) < A1
for « = /145 and § = 1/s. In what follows, the instance of
OSMD+PCG that uses Fj as regularizer is called §-CH+PCG.

Proposition 4. The §-CH+PCG algorithm achieves an
expected regret bounded by d(1 + 26)(v/T + InT + 1)
with a per-round runtime complexity in O (4°IC1/5In dT/s)
using n = 1/vT and v = 2d(1/2 + 0)/(1 + 9).

Proof. The runtime complexity simply follows from
Theorem 1. The regret bound is obtained by bounding the
second and third terms of (1), and using the above values
for n and «y. Using s] as a maximizer of the second term
of (1), we have Br,(s},p}) = Fs(s}) — F5(p7). Using
the notation p; = p} + d and r = d(1/2 + §), we get that

d
1 d
Fs(s?) — Fs(p?) < p1(1)In —— < rln —
5(1) 5(p1) —;pl() p1(l) r

which is bounded by 7. For the third term of (1), observe
that Fs is ﬁ-strongly convex with respect to the norm

I ll1. since [|[p — p'l|i< d|lp — p'[|3. By Theorem 3 in
(Kakade et al., 2012), it follows that F is (1 4 §)d-smooth
with respect to the norm || - || . Therefore,

1
L BP (VE®D) =t VE (o) < 5d(1+9)]1]

which is bounded by 7r. O

4. Experiments

In order to evaluate the performance of the different online
combinatorial optimization strategies examined in Section 3,
we have considered 16 instances of the SAT Library,?
described in Table 3. Namely, the first six rows of the table
are (car) configuration tasks, while the remaining rows are
planning problems. In the first four columns of the table
are reported the name of the SAT instance, the number of
attributes (4/2), the number of constraints (JSAT|), and the
number |S| of feasible solutions. We have used the recent
D4 compiler ? (Lagniez & Marquis, 2017) for transforming
SAT instances into dDNNF circuits. The size |C] of the
compiled circuit is reported in the fifth column.

In order to simulate combinatorial prediction games, we
have used the following protocol. Suppose that the set
X = {x1, -+, x4} of literals is sorted in a lexicographic
way, so that for each odd integer 4, the pair (x;, ;1)
encodes both configurations of the same binary attribute.
First, we construct a vector g of 4/2 independent Bernoulli
variables. At each round ¢ € {1,---,T}, p,; is set to
p¢—1 with probability 0.9, or picked uniformly at random
from [0,1]%? with probability 0.1. Then, the feedback
supplied to the learner is a vector £; € {0,1}¢ such that
0:(3) + £(i + 1) = 1, and ¢;(¢) = 1 with probability
wt(i+1/2) for each odd integer i. So, ¢;(i + 1) = 1 with
probability 1 — p;(i+1/2). Although this protocol is
essentially stochastic, the environment secretly resets pu;
with probability 0.1 at each round to foil the learner.

The combinatorial prediction strategies were implemented
in C++ and tested on a six-core Intel i7-5930K with 32
GiB RAM.* For the FPL and EH algorithms, we used the
step-size n reported in (Audibert et al., 2011) and (Hutter
& Poland, 2005), respectively. Concerning the SGD+PCG
and 6-CH+PCG algorithms, we used for 7 and ~ the values
determined by our theoretical analysis; the step-sizes {n; }
of PCG were computed from binary search as advocated by
Garber & Meshi (2016) in their experiments, and the value
of ¢ was fixed to 1/ind in order to keep a quadratic runtime
complexity for -CH+PCG. Finally, the horizon 7" was set
to 102, and a timeout of one day was fixed for learning.

In our experiments, the regret is measured by the difference
in cumulative loss between the algorithm and the best feasi-
ble solution in hindsight, which is obtained using the linear
optimization oracle at horizon 7". This measure is averaged
on 10 simulations, and divided by T to yield an average
empirical regret. Similarly, the per-round runtimes (in sec-
onds) are averaged on 10 simulations. The corresponding
results are reported in the last four columns of Table 3.

2www.cs.ubc.ca/~hoos/SATLIB/
Swww.cril.univ-artois.fr/KC/d4.html
“www.github.com/frederic—koriche/ccpg.git

www.cs.ubc.ca/~hoos/SATLIB/
www.cril.univ-artois.fr/KC/d4.html
www.github.com/frederic-koriche/ccpg.git

Compiling Combinatorial Prediction Games

Name /3 [SAT| [S] [C] EH FPL SGD+PCG 0-CH+PCG

c140-fc 1828 | 4267 | 5.7410'%1 | 6.9410° | 164 £25 (22s) | 215+ 48 (21s) - -
cl63-fw | 1815 | 3580 | 2.97 10'%° | 8.93 10° 08 4+ 27 (24s) | 112+ 44 (23s) - -
cl69-fv | 1411 637 | 3.2210% | 7.20 102 3+1 (<ls) 542 (<1s) 140.2 (1s) 140.2 (1s)
c211-fs 1635 | 2536 | 1.3710%7 | 1.7510° 12 £ 3 (<1s) 12 +5 (<1s) 942 (1s) 8+ 2 (2s)
c250-fv | 1465 | 1050 | 1.20 10" | 1.82 102 11+ 3 (<1s) 16 +4 (<1s) 942 (1s) 9+1 (1s)
c638-fvk | 1761 | 1893 | 8.8310'%' | 5.4510% | 104+ 15 (<1s) | 127+ 28 (<1s) 68 £4 (2s) 62 £ 4 (4s)
4-step 165 396 | 8.34 10* 1.29 102 342 (<1s) 5+3(<lIs) | 1+0.8 (<1Is) | 1+0.8 (<1s)
5-step 177 459 | 8.13 10* 5.80 10* 3+1(<ls) 3+1(<ls) | 1+£09(<ls) | 1+0.8(<I1s)
log-1 939 | 3742 | 5.64 10%° | 9.43 107 46 + 5 (<1s) 51 + 8 (<1s) 743 (<1s) 7T+1(<1s)
log-2 1337 | 24735 | 3.2310*° | 1.16 10* 16 + 3 (1s) 19 + 6 (1s) 12 4+ 3 (16s) 11 4+ 3 (22s)
log-3 1413 | 29445 | 2.79 10" | 4.96 10® 19+ 4 (<1s) 21 + 7 (<1s) 15 + 4 (5s) 13+ 4 (5s)
log-4 2303 | 20911 | 2.3410%® | 9.47 10* 77+ 11 (2s) 94 + 27 (2s) 19 4+ 4 (72s) 17 + 4 (81s)
tire-1 352 | 1022 | 8.2910% | 1.3710° 3+1(<1s) 4+2(<1ls) | 1+0.8(<1s) | 1+0.8(< 1s)
tire-2 550 | 1980 | 7.39 10! | 7.26 102 9+ 2(<1s) 12+ 4 (<1s) 7T+2(<1s) 541 (<1s)
tire-3 577 | 1984 | 2.2310'! | 6.31 103 944 (<1s) 14+ 7 (<1s) 742 (1s) 54 2 (2s)
tire-4 812 | 3197 | 1.0310** | 3.9710° 15+ 3 (<1s) 17+ 5(<1s) 8 £+ 3 (<1s) 7+ 3 (1s)

Table 3: Experimental results for online combinatorial optimization strategies on SAT instances encoded into dDNNF circuits.

Here, the symbol “— indicates that the learner was not able
to perform the 7' rounds in one day. From the viewpoint
of regret, SGD+PCG and §-CH+PCG outperform EH and
FPL, which confirms our theoretical results. We mention
in passing that SGD+PCG and J-CH+PCG are remarkably
stable. Contrastingly, FPL exhibits a larger variance.

Concerning runtimes, EH and FPL are unsurprisingly
faster than SGD+PCG and §-CH+PCG. Notably, for the
hard-to-compile instances c140-fc and c163-fw, both EH
and FPL were able to perform each trial in few tens of
seconds, while OSMD+PCG algorithms took several minutes
per-round (and hence, they were unable to process 103
rounds in one day), due to the time spent in approximating
the Bregman projection step. Yet, it is important to
emphasize that the convergence rate of PCG is, in practice,
much faster than the theoretical bound of O(d?|C|). Both
SGD+PCG and §-CH+PCG were able to process nearly all
instances in few seconds per round. For circuits of moderate
size, all algorithms run in less than one second per trial.
We also observed that SGD+PCG is slightly faster than
0-CH+PCG, especially for large domains where small values
of § have a significant impact on the the runtime complexity.
In essence, SGD+PCG offers the best compromise between
predictive performance and running time; since all feasible
solutions are dense (||s||1= 9/2), there is no significant
difference in accuracy between SGD+PCG and §-CH+PCG.

5. Conclusions

We have proposed a general framework for compiling online
combinatorial optimization problems, whose space of feasi-
ble solutions is described using a set of Boolean constraints.
Namely, we have focused on the class of dDNNF circuits
which is endowed with fast inference algorithms for the lin-
ear optimization oracle and the sampling oracle. Based on

this framework, we have shown than both EH and FPL admit
fast implementation for tackling large scale online combi-
natorial problems. A particular attention was devoted to the
generic OSMD strategy, which involves a computationally
expensive projection-decomposition step at each iteration.
To this point, we made use of projection-free algorithms,
and in particular the PCG method, for approximating this op-
eration. The resulting algorithms, SGD+PCG and §-CH-PCG,
are inevitably slower than EH and FPL, but achieve a better
regret performance, as corroborated by our experiments.

We conclude with a few remarks. In light of the current
results, a natural perspective of research is to extend our
framework to other classes of combinatorial prediction
games. Notably, the semi-bandit setting seems within reach.
Indeed, the semi-bandit variant of EH, often referred to as
EXP2 (Audibert et al., 2014), uses importance weights for
estimating the loss at each iteration. By simple adaptation
of Proposition 2, such weights can be computed in linear
time. Similarly, the semi-bandit extension of FPL exploits
the geometric sampling method for estimating loss vectors
(Neu & Bartok, 2016). Again, this iterative method can be
implemented in linear time (per iteration) using Proposi-
tion 1. Less obvious, however, is the extension of OSMD
to semi-bandits: although the extension of CH achieves
an optimal expected regret in this setting, its practical
use remain limited due to projection-decomposition step.
An interesting open question is to determine whether a
combination of CH with PCG is able, in the semi-bandit case,
to achieve a quasi-optimal regret in low-polynomial time.
Of course, the bandit setting is even more challenging. To
this point, Sakaue et. al. (2018) have paved the way using
OBDDs for an efficient implementation of the COMBBAND
algorithm (Cesa-Bianchi & Lugosi, 2012), Extending their
approach to dDNNF, which is more succinct than OBDD, is
a promising direction of future research.

Compiling Combinatorial Prediction Games

References

Audibert, J-Y., Bubeck, S., and Lugosi, G. Minimax poli-
cies for combinatorial prediction games. In Proceedings
of the 24th Annual Conference on Learning Theory
(COLT 2011), pp. 107-132, 2011.

Audibert, J-Y., Bubeck, S., and Lugosi, G. Regret in online
combinatorial optimization. Mathematics of Operations
Research, 39(1):31-45, 2014.

Bashiri, M. A. and Zhang, X. Decomposition-invariant
conditional gradient for general polytopes with line
search. In Advances in Neural Information Processing
Systems 30, (NIPS 2017), pp. 2687-2697, 2017.

Beck, A. and Teboulle, M. Mirror descent and nonlinear
projected subgradient methods for convex optimization.
Operational Research Letters, 31(3):167-175, 2003.

Biere, A., Heule, M., van Maaren, H., and Walsh, T.
Handbook of Satisfiability. 10S Press, 2009.

Bryant, R. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C-35
(8):677-691, 1986.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and
Games. Cambridge University Press, 2006.

Cesa-Bianchi, N. and Lugosi, G. Combinatorial bandits.
Journal of Computer and System Sciences, 78(5):
1404-1422, 2012.

Creignou, N., Khanna, S., and Sudan, M. Complexity
Classification of Boolean Constraint Satisfaction
Problems. SIAM Monographs on Discrete Mathematics
and Applications, 2001.

Darwiche, A. Decomposable negation normal form.
Journal of the ACM, 48(4):608-647, 2001.

Darwiche, A. A compiler for deterministic, decomposable
negation normal form. In Proceedings of the 18th
National Conference on Artificial Intelligence, (AAAI
2002), pp. 627-634, 2002.

Darwiche, A. and Marquis, P. A knowledge compilation
map. Journal of Artificial Intelligence Research (JAIR),
17:229-264, 2002.

Dyer, M. E., Goldberg, L. A., and Jerrum, M. The
complexity of weighted Boolean #CSP. SIAM Journal
of Computing, 38(5):1970-1986, 2009.

Friesen, A. L. and Domingos, P. M. The sum-product
theorem: A foundation for learning tractable models. In
Proceedings of the 33nd International Conference on
Machine Learning, (ICML 2016), pp. 1909-1918, 2016.

Garber, D. and Meshi, O. Linear-memory and
decomposition-invariant linearly convergent condi-
tional gradient algorithm for structured polytopes. In
Advances in Neural Information Processing Systems 29,
(NIPS 2016), pp. 1001-1009, 2016.

Hannan, J. Approximation to Bayes risk in repeated play.
Contributions to the Theory of Games, 3:97-139, 1957.

Hazan, E. Introduction to online convex optimization.
Foundations and Trends in Optimization, 2(3-4):157-325,
2016.

Helmbold, D. P. and Warmuth, M. K. Learning permu-
tations with exponential weights. Journal of Machine
Learning Research, 10:1705-1736, 2009.

Hutter, M. and Poland, J. Adaptive online prediction by
following the perturbed leader. Journal of Machine
Learning Research, 6:639—660, 2005.

Kakade, S. M., Shalev-Shwartz, S., and Tewari, A. Regu-
larization techniques for learning with matrices. Journal
of Machine Learning Research, 13:1865-1890, 2012.

Kalai, A. T. and Vempala, S. Efficient algorithms for online
decision problems. Journal of Computer and System
Sciences, 71(3):291-307, 2005.

Koolen, W. M., Warmuth, M. K., and Kivinen, J. Hedging
structured concepts. In Proceedings of the 23rd Con-
ference on Learning Theory (COLT 2010), pp. 93—105,
2010.

Krichene, W., Krichene, S., and Bayen, A. M. Efficient
bregman projections onto the simplex. In Proceedings
of the 54th IEEE Conference on Decision and Control,
(CDC 2015), pp. 3291-3298, 2015.

Lacoste-Julien, S. and Jaggi, M. On the global linear
convergence of frank-wolfe optimization variants. In
Advances in Neural Information Processing Systems 28
(NIPS 2015), pp. 496-504, 2015.

Lagniez, J-M. and Marquis, P. An improved decision-dnnf
compiler. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, (IJCAI 2017), pp.
667-673, 2017.

Mohri, M. General algebraic frameworks and algorithms
for shortest-distance problems. Technical Report
981210-10TM, AT & T Labs-Research, 1998.

Nemirovski, A. S and Yudin, D. B. Problem Complexity
and Method Efficiency in Optimization. J. Wiley and
Sons, 1983.

Compiling Combinatorial Prediction Games

Neu, G. and Barték, G. Importance weighting without
importance weights: An efficient algorithm for com-
binatorial semi-bandits. Journal of Machine Learning
Research, 17:154:1-154:21, 2016.

Poon, H. and Domingos, P. M. Sum-product networks:
A new deep architecture. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence (UAI 2011), pp. 337-346, 2011.

Rahmanian, H. and Warmuth, M. K. Online dynamic
programming. In Advances in Neural Information Pro-
cessing Systems 30, (NIPS 2017), pp. 2824-2834, 2017.

Rajkumar, A. and Agarwal, S. Online decision-making
in general combinatorial spaces. In Advances in Neural
Information Processing Systems 27, (NIPS 2014), pp.
3482-3490, 2014.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, 22(3):
400407, 1951.

Sakaue, S., Ishihata, M., and Minato, S-I. Efficient
bandit combinatorial optimization algorithm with
zero-suppressed binary decision diagrams. In Proceed-
ings of the 21st International Conference on Artificial
Intelligence and Statistics (AISTATS 2018), 2018.

Suehiro, D., Hatano, K., Kijima, S., Takimoto, E., and
Nagano, K. Online prediction under submodular
constraints. In Proceedings of the 23rd International
Conference on Algorithmic Learning Theory (ALT 2012),
pp. 260-274, 2012.

Takimoto, E. and Hatano, K. Efficient algorithms for
combinatorial online prediction. In Proceedings of the-
24th International Conference on Algorithmic Learning
Theory (ALT 2013), pp. 22-32, 2013.

Takimoto, E. and Warmuth, M. K. Path kernels and
multiplicative updates. Journal of Machine Learning
Research, 4:773-818, 2003.

Wegener, 1. Branching Programs and Binary Decision
Diagrams: Theory and Applications. Discrete mathe-
matics and applications. SIAM Monographs on Discrete
Mathematics and Applications, 2000.

