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Abstract
This paper studies semiparametric contextual ban-
dits, a generalization of the linear stochastic ban-
dit problem where the reward for an action is mod-
eled as a linear function of known action features
confounded by a non-linear action-independent
term. We design new algorithms that achieve
˜O(d
p
T ) regret over T rounds, when the lin-

ear function is d-dimensional, which matches
the best known bounds for the simpler uncon-
founded case and improves on a recent result
of Greenewald et al. (2017). Via an empirical
evaluation, we show that our algorithms outper-
form prior approaches when there are non-linear
confounding effects on the rewards. Techni-
cally, our algorithms use a new reward estima-
tor inspired by doubly-robust approaches and our
proofs require new concentration inequalities for
self-normalized martingales.

1. Introduction
A number of applications including online personalization,
mobile health, and adaptive clinical trials require that an
agent repeatedly makes decisions based on user or patient in-
formation with the goal of optimizing some metric, typically
referred to as a reward. For example, in online personaliza-
tion problems, we might serve content based on user history
and demographic information with the goal of maximizing
user engagement with our service. Since counterfactual in-
formation is typically not available, these problems require
algorithms to carefully balance exploration—making po-
tentially suboptimal decisions to acquire new information—
with exploitation—using collected information to make bet-
ter decisions. Such problems are often best modeled with
the framework of contextual bandits, which captures the
exploration-exploitation tradeoff and enables rich decision
making policies but ignores the long-term temporal effects
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that make general reinforcement learning challenging. Con-
textual bandit algorithms have seen recent success in appli-
cations, including news recommendation (Li et al., 2010)
and mobile health (Tewari & Murphy, 2017).

Contextual bandit algorithms can be categorized as either
parametric or agnostic, depending on whether they model
the relationship between the reward and the decision or not.
Parametric approaches typically assume that the reward is a
(generalized) linear function of a known decision-specific
feature vector (Filippi et al., 2010; Chu et al., 2011; Abbasi-
Yadkori et al., 2011; Agrawal & Goyal, 2013). Once this
function is known to high accuracy, it can be used to make
near-optimal decisions. Exploiting this fact, algorithms for
this setting focus on learning the parametric model. Unfor-
tunately, fully parametric assumptions are often unrealistic
and challenging to verify in practice, and these algorithms
may perform poorly when the assumptions do not hold.

In contrast, agnostic approaches make no modeling assump-
tions about the reward and instead compete with a large
class of decision-making policies (Langford & Zhang, 2008;
Agarwal et al., 2014). While these policies are typically
parametrized in some way, these algorithms provably suc-
ceed under weaker conditions and are generally more robust
than parametric ones. On the other hand, they typically have
worse statistical guarantees, are conceptually much more
complex, and have high computational overhead, technically
requiring solving optimization problems that are NP-hard
in the worst case. This leads us to a natural question:

Is there an algorithm that inherits the simplic-
ity and statistical guarantees of the parametric
methods and the robustness of the agnostic ones?

Working towards an affirmative answer to this question, we
consider a semiparametric contextual bandit setup where
the reward is modeled as a linear function of the decision
confounded by an additive non-linear perturbation that is
independent of the decision. This setup significantly gener-
alizes the standard parametric one, allowing for complex,
non-stationary, and non-linear rewards (See Section 2 for a
precise formulation). On the other hand, since this pertur-
bation is just a baseline reward for all decisions, it has no
influence on the optimal one, which depends only on the
unknown linear function. In the language of econometrics
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and causal modeling, the treatment effect is linear.

In this paper, we design new algorithms for the semiparamet-
ric contextual bandits problem. When the linear part of the
reward is d-dimensional, our algorithms achieve ˜O(d

p
T )

regret over T rounds, even when the features and the con-
founder are chosen by an adaptive adversary. This guarantee
matches the best results for the simpler linear stochastic ban-
dit problem up to logarithmic terms, showing that there
is essentially no statistical price to pay for robustness to
confounding effects. On the other hand, our algorithm and
analysis is quite different, and it is not hard to see that exist-
ing algorithms for stochastic bandits fail in our more general
setting. Our regret bound also improves on a recent result
of Greenewald et al. (2017), who consider the same setup
but study a weaker notion of regret. Our algorithm, main
theorem, and comparisons are presented in Section 3.

We also compare our algorithm to approaches from both
parametric and agnostic families in an empirical study (we
use a linear policy class for agnostic approaches). In Sec-
tion 5, we evaluate several algorithms on synthetic problems
where the reward is (a) linear, and (b) linear with confound-
ing. In the linear case, our approach learns, but is slightly
worse than the baselines. On the other hand, when there is
confounding, our algorithm significantly outperforms both
parametric and agnostic approaches. As such, these experi-
ments demonstrate that our algorithm represents a favorable
trade off between statistical efficiency and robustness.

On a technical level, our algorithm and analysis require sev-
eral new ideas. First, we derive a new estimator for linear
models in the presence of confounders, based on recent and
classical work in semiparametric statistics and economet-
rics (Robinson, 1988; Chernozhukov et al., 2016). Second,
since standard algorithms using optimism principles fail to
guarantee consistency of this new estimator, we design a
new randomized algorithm, which can be viewed as an adap-
tation of the action-elimination method of Even-Dar et al.
(2006) to the contextual bandits setting. Finally, analyzing
the semiparametric estimator requires an intricate deviation
argument, for which we derive a new self-normalized in-
equality for vector-valued martingales using tools from de la
Peña et al. (2008; 2009).

2. Preliminaries
We study a generalization of the linear stochastic ban-
dit problem with action-dependent features and action-
independent confounder. The learning process proceeds
for T rounds, and in round t, the learner receives a context
x
t

, {z
t,a

}
a2A where z

t,a

2 Rd and A is the action set,
which we assume to be large but finite. The learner then
chooses an action a

t

2 A and receives reward

r
t

(a
t

) , h✓, z
t,ati+ f

t

(x
t

) + ⇠
t

, (1)

where ✓ 2 Rd is an unknown parameter vector, f
t

(x
t

) is
a confounding term that depends on the context x

t

but,
crucially, does not depend on the chosen action a

t

, and ⇠
t

is
a noise term that is centered and independent of a

t

.

For each round t, let a?
t

, argmax

a2Ah✓, zt,ai denote the
optimal action for that round. The goal of our algorithm is
to minimize the regret, defined as

Reg(T ) ,
T

X

t=1

r
t

(a?
t

)� r
t

(a
t

) =

T

X

t=1

h✓, z
t,a

?
t
� z

t,ati.

Observe that the noise term ⇠
t

, and, more importantly, the
confounding term f

t

(x
t

) are absent in the final expression,
since they are independent of the action choice.

We consider the challenging setting where the context x
t

and
the confounding term f

t

(·) are chosen by an adaptive adver-
sary, so they may depend on all information from previous
rounds. This is formalized in the following assumption.

Assumption 1 (Environment). We assume that x
t

=

{z
t,a

}
a2A, ft, ⇠t are generated at the beginning of round t,

before a
t

is chosen. We assume that x
t

and f
t

are chosen by
an adaptive adversary, and that ⇠

t

satisfies E[⇠
t

|x
t

, f
t

] = 0

and |⇠
t

|  1.

We also impose mild regularity assumptions on the parame-
ter, the feature vectors, and the confounding functions.

Assumption 2 (Boundedness). Assume that k✓k
2

 1 and
that kz

t,a

k
2

 1 for all a 2 A, t 2 [T ]. Further assume
that f

t

(·) 2 [�1, 1] for all t 2 [T ].

For simplicity, we assume an upper bound of 1 in these
conditions, but our algorithm and analysis can be adapted
to more generic regularity conditions.

Related work. Our setting is related to linear stochastic
bandits and several variations that have been studied in
recent years. Among these, the closest is the work of Gree-
newald et al. (2017) who consider the same setup and pro-
vide a Thompson Sampling algorithm using a new reward
estimator that eliminates the confounding term. Motivated
by applications in medical intervention, they consider a dif-
ferent notion of regret from our more-standard notion and,
as such, the results are somewhat incomparable. For our
notion of regret, their analysis can produce a T 2/3-style
regret bound, which is worse than our optimal

p
T bound.

See Section 3.3 for a more detailed comparison.

Other results for linear stochastic bandits include upper-
confidence bound algorithms (Rusmevichientong & Tsit-
siklis, 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011),
Thompson sampling algorithms (Agrawal & Goyal, 2013;
Russo & Van Roy, 2014), and extensions to generalized
linear models (Filippi et al., 2010; Li et al., 2017). How-
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ever, none of these models accommodate arbitrary and non-
linear confounding effects. Moreover, apart from Thompson
sampling, all of these algorithms use deterministic action-
selection policies (conditioning on the history), which prov-
ably incurs ⌦(T ) regret in our setting, as we will see.

One can accommodate confounded rewards via an agnostic-
learning approach to contextual bandits (Auer et al., 2002;
Langford & Zhang, 2008; Agarwal et al., 2014). In this
framework, we make no assumptions about the reward, but
rather compete with a class of parameterized policies (or
experts). Since a d-dimensional linear policy is optimal in
our setting, an agnostic algorithm with a linear policy class
addresses precisely our notion of regret. However there are
two disadvantages. First, agnostic algorithms are all com-
putationally intractable, either because they enumerate the
(infinitely large) policy class, or because they assume access
to optimization oracles that can solve NP-hard problems
in the worst case. Second, most agnostic approaches have
regret bounds that grow with

p
K, the number of actions,

while our bound is completely independent of K.

We are aware of one approach that is independent of K, but
it requires enumeration of an infinitely large policy class.
This method is based on ideas from the adversarial lin-
ear and combinatorial bandits literature (Dani et al., 2008;
Abernethy et al., 2008; Bubeck et al., 2012; Cesa-Bianchi
& Lugosi, 2012). Writing ✓

t

, (✓, f
t

(x
t

)) 2 Rd+1 and
z0
t,a

, (z
t,a

, 1) 2 Rd+1, our setting can be re-formulated
in the adversarial linear bandits framework. However, stan-
dard linear bandit algorithms compete with the best fixed
action vector in hindsight, rather than the best policy with
time-varying action sets. To resolve this, one can use the
linear bandits reward estimator (Swaminathan et al., 2017)
in a contextual bandit algorithm like EXP4 (Auer et al.,
2002), but this approach is not computationally tractable
with the linear policy class. For our setting, we are not aware
of any computationally efficient approaches, even oracle-
based approaches, that achieve poly(d)

p
T regret with no

dependence on the number of actions.

We resolve the challenge of confounded rewards with an
estimator from the semiparametric statistics literature (Tsi-
atis, 2007), which focuses on estimating functionals of a
nonparametric model. Most estimators are based on Ney-
man Orthogonalization (Neyman, 1979), which uses mo-
ment equations that are insensitive to nuisance parameters
in a method-of-moments approach (Chernozhukov et al.,
2016). These orthogonal moments typically involve a lin-
ear correction to an initial nonparametric estimate using
so-called influence functions (Bickel et al., 1998; Robins
et al., 2008). Robinson (1988) used this approach for the
offline version of our setting (known as the partially linear
regression (PLR) model) where he demonstrated a form
of double-robustness (Robins & Rotnitzky, 1992) to poor

estimation of the nuisance term (in our case f
t

(x
t

)). We
generalize Robinson’s work to the online setting, showing
how orthogonalized estimators can be used for adaptive
exploration. This requires several new techniques, includ-
ing a novel action selection policy and a self-normalized
inequality for vector-valued martingales.

3. Algorithm and Results
In this section, we describe our algorithm and present our
main theoretical result, an ˜O(d

p
T ) regret bound for the

semiparametric contextual bandits problem.

3.1. A Lower Bound

Before turning to the algorithm, we first present a lower
bound against deterministic algorithms. Since the functions
f
t

may be chosen by an adaptive adversary, it is not hard
to show that this setup immediately precludes the use of
deterministic algorithms.

Proposition 3. Consider an algorithm that, at round t,
chooses an action a

t

as a deterministic function of the ob-
servable history H

t

, {x
1:t

, a
1:t�1

, r
1:t�1

}. There exists a
semiparametric contextual bandit instance with d = 2 and
K = 2 where the regret of the algorithm is at least T/2.

See Appendix B for the proof, which resembles the stan-
dard argument against deterministic online learning algo-
rithms (Cover, 1965). The main difference is that the adver-
sary uses the confounding term to corrupt the information
that the learner receives, whereas, in the standard proof,
the adversary chooses the optimal action in response to the
learner. In fact, deterministic algorithms can succeed in the
full information version of our setting, since taking differ-
ences between rewards eliminates the confounder. Thus,
bandit feedback plays a crucial role in our construction and
the bandit setting is considerably more challenging than the
full information analogue.

We emphasize that, except for the Thompson Sampling ap-
proach (Agrawal & Goyal, 2013), essentially all algorithms
for the linear stochastic bandit problem use deterministic
strategies, so they provably fail in the semiparametric setting.
As we mentioned, Thompson Sampling was analyzed in our
setting by Greenewald et al. (2017), but they do not obtain
the optimal

p
T -type regret bound (See Section 3.3 for a

more quantitative and detailed comparison). In contrast, our
algorithm is quite different from all of these approaches;
it ensures enough randomization to circumvent the lower
bound and also achieves the optimal

p
T regret.

To conclude this discussion, we remark that the ⌦(d
p
T )

lower bound for linear stochastic bandits (Dani et al., 2008),
which also applies to randomized algorithms, holds in our
more general setting as well.
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3.2. The Algorithm

Pseudocode for the algorithm, which we call BOSE, for
“Bandit Orthogonalized Semiparametric Estimation,” is dis-
played in Algorithm 1. The algorithm maintains an estimate
ˆ✓ for the true parameter ✓, which it uses in each round to
select an action via two steps: (1) an action elimination step
that removes suboptimal actions, and (2) an optimization
step that finds a good distribution over the surviving actions.
The algorithm then samples and plays an action from this
distribution and uses the observed reward to update the pa-
rameter estimate ˆ✓. This parameter estimation step is the
third main element of the algorithm. We now describe each
of these three components in detail.

Parameter estimation. For simplicity, we use z
t

, z
t,at

to denote the feature vector for the action that was chosen
at round t, and similarly we use r

t

, r
t

(a
t

). Using all
previously collected data, specifically {z

⌧

, r
⌧

}t
⌧=1

at the
end of round t, we would like to estimate the parameter
✓. First, if f

⌧

(x
⌧

) were identically zero, by exploiting the
linear parametrization we could use ridge regression, which
with some � > 0 gives

ˆ✓Ridge ,
 

�I +
t

X

⌧=1

z
⌧

z>
⌧

!�1

t

X

⌧=1

z
⌧

r
⌧

.

This estimator appears in most prior approaches for linear
stochastic bandits (Rusmevichientong & Tsitsiklis, 2010;
Chu et al., 2011; Abbasi-Yadkori et al., 2011). Unfortu-
nately, since f

⌧

(x
⌧

) is non-zero, ˆ✓Ridge has non-trivial and
non-vanishing bias, so even in benign settings it is not a
consistent estimator for ✓.1

Our approach to eliminating the bias from the confounding
term f

⌧

(x
⌧

) is to center the feature vectors z
⌧

. Intuitively, in
the ridge estimator, if z

⌧

is centered, then z
⌧

(r
⌧

� h✓?, z
⌧

i)
is mean zero, even when there is non-negligible bias in
the second term. As such, the error of the corresponding
estimator can be expected to concentrate around zero. In the
semiparametric statistics literature, this is known as Neyman
Orthogonalization (Neyman, 1979), which was analyzed in
the context of linear regression by Robinson (1988) and in
a more general setting by Chernozhukov et al. (2016).

To center the feature vector, we will, at round t, choose
action a

t

by sampling from some distribution ⇡
t

2 �(A).
Let µ

t

, E
at⇠⇡t [zt,at |xt

] denote the mean feature vector,

1A related estimator can be used to evaluate the reward of a
policy, as in linear and combinatorial bandits (Cesa-Bianchi & Lu-
gosi, 2012), but to achieve adequate exploration, one must operate
over the policy class, which leads to computational intractability.
We would like to use ✓̂ to drive exploration, and this seems to re-
quire a consistent estimator. See Appendix A for a simple example
demonstrating how using a biased estimator in a confidence-based
approach results in linear regret.

taking expectation only over our random action choice. With
this notation, the orthogonalized estimator is

� = �I +
t

X

⌧=1

(z
⌧

� µ
⌧

)(z
⌧

� µ
⌧

)

>,

ˆ✓ = �

�1

t

X

⌧=1

(z
⌧

� µ
⌧

)r
⌧

.

ˆ✓ is a Ridge regression version of Robinson’s classical semi-
parametric regression estimator (Robinson, 1988). The esti-
mator was originally derived for observational studies where
one might not know the propensities µ

⌧

exactly, and the stan-
dard description involves estimates ˆf

⌧

and µ̂
⌧

for the con-
founding term f

⌧

and the propensities µ
⌧

respectively. Infor-
mally, the estimator achieves a form of double-robustness,
in the sense that it is accurate if either of these auxilliary
estimators are. In our case, since we know the propensities
µ
⌧

exactly, we can use an inconsistent estimator for the con-
founding term, so we simply set ˆf

⌧

(x
⌧

) ⌘ 0. In Lemma 5,
we prove a precise finite sample concentration inequality for
this orthogonalized estimator, showing that the confounding
term f

t

(x
t

) does not introduce any bias. While the estimator
has been studied in prior works (Robinson, 1988), to our
knowledge, our error guarantee is novel.

The convergence rate of the orthogonalized estimator de-
pends on the eigenvalues of the matrix �, and we must
carefully select actions to ensure these eigenvalues are suf-
ficiently large. To see why, notice that any deterministic
action-selection approach with the orthogonalized estimator
(including confidence based approaches), will fail, since
z
t

= µ
t

, so the eigenvalues of � do not grow rapidly and in
fact the estimator is identically 0. This argument motivates
our new action selection scheme which ensure substantial
conditional covariance.

Action selection. Our action selection procedure has two
main elements. First using our estimate ˆ✓, we eliminate any
action that is provably suboptimal. Based on our analysis
for the estimator ˆ✓, at round t, we can certify action a is
suboptimal, if we can find another action b such that

hˆ✓, z
t,b

� z
t,a

i > �(T )kz
t,b

� z
t,a

k
�

�1 .

Here �(T ) is the constant specified in the algorithm, and
kxk

M

,
p
x>Mx denotes the Mahalanobis norm. Using

our confidence bound for ˆ✓ in Lemma 5 below, this inequal-
ity certifies that action b has higher expected reward than
action a, so we can safely eliminate a from consideration.

The next component is to find a distribution over the sur-
viving actions, denoted A0

t

at round t, with sufficient co-
variance. The distribution ⇡

t

2 �(A0
t

) that we use is the
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Algorithm 1: BOSE (Bandit orthogonalized semiparametric estimation)
Input :T, � 2 (0, 1).

1 Set � 4d log(9T ) + 8 log(4T/�) and �(T ) 
p
�+

p

27d log(1 + 2T/d) + 54 log(4T/�).
2 Initialize ˆ✓  0 2 Rd,� �I

d⇥d

.
3 for t = 1, . . . , T do
4 Observe x

t

= {z
t,a

}
a2A

5 Filter

A
t

 
n

a 2 A | 8b 2 A, hˆ✓, z
t,b

� z
t,a

i  �(T )kz
t,a

� z
t,b

k
�

�1

o

. (2)

6 Find distribution ⇡
t

2 �(A
t

) such that 8a 2 A
t

(We use Cov

b⇠⇡t(zt,b) , E[z
t,b

z>
t,b

]� (Ez
t,b

)(Ez
t,b

)

>.)
kz

t,a

� E
b⇠⇡tzt,bk2

�

�1  tr(�

�1

Cov

b⇠⇡t

(z
t,b

)). (3)

7 Sample a
t

⇠ ⇡
t

and play a
t

. Observe r
t

(a
t

). (r
t

(a
t

) = h✓, z
t,ati+ f

t

(x
t

) + ⇠
t

.)
8 Let µ

t

= E
a⇠⇡t [zt,a | x

t

] and update parameters

� �+ (z
t,at � µ

t

)(z
t,at � µ

t

)

>, ˆ✓  �

�1

t

X

⌧=1

(z
⌧,a⌧ � µ

⌧

)r
⌧

(a
⌧

). (4)

solution to the following feasibility problem

8a 2 A0
t

, kz
t,a

� E
b⇠⇡tzt,bk2

�

�1  tr(�

�1

Cov

b⇠⇡t

(z
t,b

)).

For intuition, the left hand side of the constraint for action a
is an upper bound on the expected regret if a is the optimal
action on this round. Thus, the constraints ensure that the
regret is related to the covariance of the distribution, which
means that if we incur high regret, the covariance term
Cov

b⇠⇡t(zt,b) will be large. Since we use a sample from ⇡
t

to update our parameter estimate, this means that whenever
the instantaneous regret is large, we must learn substantially
about the parameter. In this way, the distribution ⇡

t

balances
exploration and exploitation. We will see in Lemma 8 that
this program is convex and always has a feasible solution.

Our action selection scheme bears some resemblance to
action-elimination approaches that have been studied in
various bandit settings (Even-Dar et al., 2006). The main
differences are that we adapt these ideas to the contextual
setting and carefully choose a distribution over the surviving
actions to balance exploration and exploitation.

3.3. The Main Result

We now turn to the main result, a regret guarantee for BOSE.

Theorem 4. Consider the semiparametric contextual ban-
dit problem under Assumption 1 and Assumption 2. For
any parameter � 2 (0, 1), with probability at least 1 � �,
Algorithm 1 has regret at most O(d

p
T log(T/�)).

The constants, and indeed a bound depending on � and �(T )
can be extracted from the proof, provided in the appendix.
To interpret the regret bound, it is worth comparing with
several related results:

Comparison with linear stochastic bandits. While
most algorithms for linear stochastic bandits provably
fail in our setting (via Proposition 3), the best regret
bounds here are O(

p

dT log(TK/�)) (Chu et al., 2011) and
O(d
p
T log(T ) +

p

dT log(T ) log(1/�)) (Abbasi-Yadkori
et al., 2011) depending on whether we assume that the num-
ber of actions K is small or not. This latter result is optimal
when the number of actions is large (Dani et al., 2008),
which is the setting we are considering here. Since our
bound matches this optimal regret up to logarithmic factors,
and since linear stochastic bandits are a special case of our
semiparametric setting, our result is therefore also optimal
up to logarithmic factors. An interesting open question is
whether an ˜O(

p

dT log(K/�)) regret bound is achievable
in the semiparametric setting.

Comparison with agnostic contextual bandits. The
best oracle-based agnostic approaches achieve ˜O(

p
dKT )

regret (Agarwal et al., 2014), incurring a polynomial de-
pendence on the number of actions K, although there is
one inefficient method that can achieve ˜O(d

p
T ),2 as we

discussed previously. To date, all efficient methods in the
agnostic setting require some form of i.i.d. (Agarwal et al.,
2014) or transductive assumption (Syrgkanis et al., 2016;
Rakhlin & Sridharan, 2016) on the contexts, which we do
not assume here.

Comparison with Greenewald et al. (2017). Gree-
newald et al. (2017) consider a very similar setting to ours,
where rewards are linear with confounding, but where one
default action a

0

always has z
t,a0 ⌘ 0 2 Rd. Applications

in mobile health motivate a restriction that the algorithm
2This follows easily by combining ideas from Auer et al. (2002)

and Cesa-Bianchi & Lugosi (2012).
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choose the a
0

action with probability 2 [p, 1� p] for some
small p 2 (0, 1). Their work also introduces a new notion of
regret where they compete with the policy that also satisfies
this constraint but otherwise chooses the optimal action a?

t

.
In this setup, they obtain an ˜O(d2

p
T ) regret bound, which

has a worse dimension dependence than Theorem 4.

While the setup is somewhat different, we can still translate
our result into a regret bound in their setting, since BOSE
can support the probability constraint, and by coupling the
randomness between BOSE and the optimal policy, the regret
is unaffected.3 On the other hand, since the constant in their
regret bound scales with 1/p, their results as stated are
vacuous when p = 0 which is precisely our setting. For
our more challenging regret definition, their analysis can
produce a suboptimal T 2/3-style regret bound, and in this
sense, Theorem 4 provides a quantitative improvement.

Summary. BOSE achieves essentially the same regret
bound as the best linear stochastic bandit methods, but in a
much more general setting. On the other hand, the agnos-
tic methods succeed under even weaker assumptions, but
have worse regret guarantees and/or are computationally
intractable. Thus, BOSE broadens the scope for computa-
tionally efficient contextual bandit learning.

4. Proof Sketch
We sketch the proof of Theorem 4 in the two-action case
(|A| = 2), which has a much simpler proof that preserves
the main ideas. The technical machinery needed for the
general case is much more sophisticated, and we briefly
describe some of these steps at the end of this section, with
a complete proof in the Appendix.

In the two arm case, one should set �(T ) ,
p
� +

p

9d log(1 + T/(d�)) + 18 log(T/�) and � = O(1),
which differs slightly from the algorithm pseudocode for
the more general case. Additionally, note that with two ac-
tions, the uniform distribution over A

t

is always feasible for
Problem (3). Specifically, if the filtered set has cardinality 1,
we simply play that action deterministically, otherwise we
play one of the two actions uniformly at random.

The proof has three main steps. First we analyze the orthog-
onalized regression estimator defined in (4). Second, we
study the action selection mechanism and relate the regret
incurred to the error bound for the orthogonalized estimator.
Finally, using a somewhat standard potential argument, we
show how this leads to a

p
T -type regret bound. For the

proof, let ˆ✓
t

,�
t

be the estimator and covariance matrix used
on round t, both based on t� 1 samples.

For the estimator, we prove the following lemma for the
3Technically it is actually smaller by a factor of (1� p).

two action case. The main technical ingredient is a self-
normalized inequality for vector-valued martingales, which
can be obtained using ideas from de la Peña et al. (2009).

Lemma 5. Under Assumption 1 and Assumption 2, let K =

2 and �(T ) ,
p
�+

p

9d log(1 + T/(d�)) + 18 log(T/�).
Then, with probability at least 1 � �, the following holds
simultaneously for all t 2 [T ]:

kˆ✓
t

� ✓k
�t  �(T ).

Proof. Using the definitions and Assumption 1, it is not
hard to re-write

ˆ✓
t

= �

�1

t

(�

t

� �I)✓ + �

�1

t

t�1

X

⌧=1

Z
⌧

⇣
⌧

,

where Z
⌧

, z
⌧,a⌧ � µ

⌧

and ⇣
⌧

, h✓, µ
⌧

i + f
⌧

(x
⌧

) +

⇠
⌧

. Further define S
t

, P

t�1

⌧=1

Z
⌧

⇣
⌧

. Then, applying the
triangle inequality the error is at most

kˆ✓
t

� ✓k
�t  k�✓k

�

�1
t

+ kS
t

k
�

�1
t
.

The first term here is at most
p
� since �

t

⌫ �I . To control
the second term, we need to use a self-normalized concen-
tration inequality, since Z

⌧

is a random variable, and the
normalizing term �

t

= �I +
P

t�1

⌧=1

Z
⌧

Z>
⌧

depends on the
random realizations. In Lemma 10 in the appendix, we
prove that with probability at least 1� �, for all t 2 [T ]

kS
t

k2
�

�1
t
 9d log(1 + T/(d�)) + 18 log(T/�). (5)

The lemma follows from straightforward calculations.

Before proceeding, it is worth commenting on the difference
between our self-normalized inequality (5) and a slightly
different one used by Abbasi-Yadkori et al. (2011) for the
linear case. In their setup, they have that ⇣

⌧

is conditionally
centered and sub-Gaussian, which simplifies the argument
since after fixing the Z

⌧

s (and hence �

t

), the randomness
in the ⇣

⌧

s suffices to provide concentration. In our case, we
must use the randomness in Z

⌧

itself, which is more delicate,
since Z

⌧

affects the numerator S
t

, but also the normalizer
�

t

. In spite of this additional technical challenge, the two
self-normalized processes admit similar bounds.

Next, we turn to the action selection step, where recall
that either a single action is played deterministically, or the
actions are played uniformly at random.

Lemma 6. Let µ
t

, E
a⇠⇡tzt,a where ⇡

t

is the solution
to (3), and assume that the conclusion of Lemma 5 holds.
Then with probability at least 1� �

Reg(T ) 
p

2T log(1/�) + 2�(T )
T

X

t=1

r

tr(�

�1

t

Cov

b⇠⇡t

(z
t,b

)).
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Proof. We first study the instantaneous regret, taking expec-
tation over the random action. For this, we must consider
two cases. First, with Lemma 5, if |A

t

| = 1, we argue that
the regret is actually zero. This follows from the Cauchy-
Schwarz inequality since assuming A

t

= {a} we get

h✓, z
t,a

� z
t,b

i � hˆ✓
t

, z
t,a

� z
t,b

i � �(T )kz
t,a

� z
t,b

k
�

�1
t

which is non-negative using the fact that b was eliminated.
Therefore a is the optimal action and we incur no regret.
Since ⇡

t

has no covariance, the upper bound holds.

On the other rounds, we set ⇡
t

= Unif({a, b}) and hence
µ
t

= (z
t,a

+ z
t,b

)/2. Assuming again that a is the optimal
action, the expected regret is

h✓, z
t,a

� µ
t

i = 1

2

h✓, z
t,a

� z
t,b

i

 1

2

⇣

hˆ✓
t

, z
t,a

� z
t,b

i+ �(T )kz
t,a

� z
t,b

k
�

�1
t

⌘

 �(T )kz
t,a

� z
t,b

k
�

�1
t
 2�(T )

r

tr(�

�1

t

Cov

b⇠⇡t

(z
t,b

)).

Here the first inequality uses Cauchy-Schwarz, the second
uses (2), since neither action was eliminated, and the third
uses (3). This bounds the expected regret, and the lemma
follows by Azuma’s inequality.

The last step of the proof is to control the sequence
T

X

t=1

r

tr(�

�1

t

Cov

b⇠⇡t

(z
t,b

)).

First, recall that

Cov

b⇠⇡t

(z
t,b

) , E
b⇠⇡t

⇥

(z
t,b

� µ
t

)(z
t,b

� µ
t

)

>⇤

with µ
t

, E
b⇠⇡t [zt,b]. Since in the two-arm case ⇡

t

either
chooses an arm deterministically or uniformly randomizes
between the two arms, the following always holds:

Cov

b⇠⇡t

(z
t,b

) = (z
t,at � µ

t

)(z
t,at � µ

t

)

>.

It follows that �

t+1

, �

t

+ Cov

b⇠⇡t(zt,b), and with
�

1

, �I , the standard potential argument for online ridge
regression applies. We state the conclusion here, and pro-
vide a complete proof in the appendix.
Lemma 7. Let �

t

, ⇡
t

be defined as above and define M
t

,
(z

t,at � µ
t

)(z
t,at � µ

t

)

>. Then

T

X

t=1

q

tr(�

�1

t

M
t

) 
p

dT (1 + 1/�) log(1 + T/(d�)).

Combining the three lemmas establishes a regret bound of

Reg(T )  O
⇣

p

Td log(T/�) log(T/d) + d
p
T log(T/d)

⌘

with probability at least 1� � in the two-action case.

Extending to many actions. Several more technical steps
are required for the general setting. First, the martingale
inequality used in Lemma 5 requires that the random vectors
are symmetric about the origin. This is only true for the
two-action case, and in fact a similar inequality does not
hold in general for the non-symmetric situation that arises
with more actions. In the non-symmetric case, both the
empirical and the population covariance must be used in the
normalization, so the analogue of (5) is instead

kS
t

k2
(�t+E�t)

�1  27d log(1 + 2T/d) + 54 log(4T/�).

On the other hand, the error term for our estimator depends
only on the empirical covariance �

t

. To correct for the
discrepancy, we use a covering argument4 to establish

�I + �

t

⌫ (�� 6d log(T/�))I + (�

t

+ E�
t

)/3.

With this semidefinite inequality, we can translate from the
Mahalanobis norm in the weaker self-normalized bound to
one with just �

t

, which controls the error for the estimator.

We also argue that problem (3) is always feasible, which is
the contents of the following lemma.
Lemma 8. Problem (3) is convex and always has a feasible
solution. Specifically, for any vectors z

1

, . . . , z
n

2 Rd and
any positive definite matrix M , there exists a distribution
w 2 �([n]) with mean µ

w

, E
b⇠w

z
b

such that

8i 2 [n], kz
i

� µ
w

k2
M

 tr(M Cov

b⇠w

(z
b

)).

The proof uses convex duality. Integrating these new argu-
ments into the proof for the two-action case leads to Theo-
rem 4.

5. Experiments
We conduct a simple experiment to compare BOSE with
several other approaches5. We simulate three different envi-
ronments that follow the semiparametric contextual bandits
model with d = 10, K = 2. In the first setting the re-
ward is linear and the action features are drawn uniformly
from the unit sphere. In the latter two settings, we set
f
t

(x
t

) = �max

a

h✓, z
t,a

i, which is related to the construc-
tion in the proof of Proposition 3. One of these semipara-
metric settings has action features sampled from the unit
sphere, while for the other, we sample from the intersection
of the unit sphere and the positive orthant.

In Figure 1, we plot the performance of Algorithm 1 against
four baseline algorithms: (1) OFUL: the optimistic algo-
rithm for linear stochastic bandits (Abbasi-Yadkori et al.,

4For technical reasons, the Matrix Bernstein inequality does
not suffice here since it introduces a dependence on the maximal
variance. See Appendix for details.

5Our code is publicly available at http://github.com/
akshaykr/oracle_cb/.
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Figure 1. Synthetic experiments with d = 10,K = 2. Left: A linear environment where action-features are uniformly from the unit
sphere. Center: A confounded environment with features from the sphere. Right: A confounded environment with features from the
sphere intersected with the positive orthant. Algorithms are BOSE, OFUL (Abbasi-Yadkori et al., 2011), ILTCB (Agarwal et al., 2014),
EPSGREEDY (Langford & Zhang, 2008), and THOMPSON (Agrawal & Goyal, 2013). Agnostic approaches use a linear policy class.

2011), (2) THOMPSON sampling for linear contextual ban-
dits (Agrawal & Goyal, 2013), (3) EPSGREEDY: the ✏-
greedy approach (Langford & Zhang, 2008) with a linear
policy class, (4) ILTCB: a more sophisticated agnostic al-
gorithm (Agarwal et al., 2014) with linear policy class. The
first algorithm is deterministic, so can have linear regret
in our setting, but is the natural baseline and one we hope
to improve. Thompson Sampling is another natural base-
line, and a variant was used by Greenewald et al. (2017)
in essentially the same setting as ours. The latter two have
(Kd)1/3T 2/3 and

p
KdT regret bounds respectively under

our assumptions, but require solving cost-sensitive classifi-
cation problems, which are NP-hard in general. Following
prior empirical evaluations (Krishnamurthy et al., 2016),
we use a surrogate loss formulation based on square loss
minimization in the implementation.

The results of the experiment are displayed in Figure 1,
where we plot the cumulative regret against the number of
rounds T . All algorithms have a single parameter that gov-
erns the degree of exploration. In BOSE and OFUL, this is
the constant �(T ) in the confidence bound, in THOMPSON it
is the variance of the prior, and in ILTCB and EPSGREEDY
it is the amount of uniform exploration performed by the
algorithm. For each algorithm we perform 10 replicates for
each of 20 values of the corresponding parameter, and we
plot the best average performance, with error bars corre-
sponding to ±2 standard deviations.

In the linear experiment (Figure 1, left panel), BOSE per-
forms the worst, but is competitive with the agnostic ap-
proaches, demonstrating a price to pay for robustness. The
experimental setup in the center panel is identical except
with confounding, and BOSE is robust to this confounding,
with essentially the same performance, while the three base-
lines degrade dramatically. Finally, when the features lie in
the positive orthant (right panel), OFUL degrades further,
while BOSE remains highly effective.

Regarding the baselines, we make two remarks:

1. Intuitively, the positive orthant setting is more challeng-
ing for OFUL since there is less inherent randomness
in the environment to overcome the confounding effect.

2. The agnostic approaches, despite strong regret guaran-
tees, perform somewhat poorly in our experiments, and
we believe this for three reasons. First, our surrogate-
loss implementation is based on an implicit realizabil-
ity assumption, which is not satisfied here. Second, we
expect that the constant factors in their regret bounds
are significantly larger than those of BOSE or OFUL.
For computational reasons, we only solve the optimiza-
tion problem in ILTCB every 50 rounds, which causes
a further constant factor increase in the regret.

Overall, while BOSE is worse than other approaches in the
linear environment, the experiment demonstrates that when
the environment is not perfectly linear, approaches based on
realizability assumptions (either explicitly like in OFUL,
or implicitly like in implementations of ILTCB and EPS-
GREEDY), can fail. We emphasize that linear environments
are rare in practice, and such assumptions are typically im-
possible to verify. We therefore believe that trading off
a small loss in performance in the specialized linear case
for significantly more robustness, as BOSE demonstrates, is
desirable.

6. Discussion
This paper studies a generalization of the linear stochas-
tic bandits setting, where rewards are confounded by an
adaptive adversary. Our new algorithm, BOSE, achieves
the optimal regret, and also matches (up to logarithmic fac-
tors) the best algorithms for the linear case. Our empirical
evaluation shows that BOSE offers significantly more robust-
ness than prior approaches, and performs well in several
environments.
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