
Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

A. Organization of the Appendix
Appendix B defines the greedy versions of the non-submodularity parameters.

Appendix C provides omitted proofs from Section 3.

Appendix D defines the BinarySearchPivot procedure and omitted proofs from Section 4.1.

Appendix E provides omitted proofs from Section 4.2.

Appendix F defines the Independent Cascade model, proves that classical IM and boosting are subproblems of our IM
model, and provides the proof of Theorem 3 from Section 5.

Appendix G provides additional experimental results characterizing the parameters of FastGreedy.

Appendix H presents details of our GIM implementation.

B. Greedy Versions of Non-Submodularity Parameters
We define various greedy versions of the non-submodularity parameters in this section. In this work, these are referred to
as FastGreedy weak DR ratio, etc., where the instance is clear from the context.

ThresholdGreedy DR ratio.
Definition 5 (ThresholdGreedy DR ratio). Let an instance I of Problem MCC be given, with budget constraint k. Let
g1, . . . ,gT be the sequence of values g takes during execution of ThresholdGreedy on I. The ThresholdGreedy version of
the DR ratio on I γTG,I

d (f) ∈ [0, 1], is the maximum value such that for any i ∈ {1, . . . , T}, for any s ∈ S, if gi,s is the
value of the greedy vector immediately after s was considered during the inner for loop of the threshold directly preceding
the one in which gi was considered (gi,s = 0 if gi was considered during the first threshold),

γTG,I
d δs(g

i) ≤ δs(gi,s).

Greedy versions of weak DR ratio.
Definition 6. LetA ∈ {StandardGreedy,ThresholdGreedy}, and let an instance I of Problem MCC be given, with budget
constraint k. Let g1, . . . ,gT be the sequence of values g takes during execution of A on I. The A version of the weak
DR ratio on I γA,Is ∈ [0, 1], is the maximum value such that for any s ∈ S, for any i ∈ {1, . . . , T}, for any w such that
gi ≤ w and ‖w − gi‖1 ≤ k and w ≤ b,

γA,Is

[
f(w)− f(gi)

]
≤

∑
s∈{w−gi}

δs(g
i).

The FastGreedy weak DR ratio differs from the above two only in that the sequence of vectors g1, . . . ,gT are the value of
the greedy vector g at the beginning of each iteration of the outer while loop, instead of all values of g during execution of
the algorithm.

C. Proofs for Section 3
Proof of Proposition 1. Suppose v ≤ w ∈ NS . Let {w − v} = {s1, ..., sl}. Then,

γd(f(w)− f(v)) = γd

l∑
i=1

[f(v + s1 + ...+ si)− f(v + s1 + ...+ si−1)]

= γd

l∑
i=1

δsi(v + s1 + ...+ si−1)

≤
l∑
i=1

δsi(v)

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

Algorithm 4 BinarySearchPivot(f,g,b, s, k, τ)

1: Input: f ∈ Fb, g ∈ NS , b ∈ NS , s ∈ S, k ∈ N, τ ∈ R+

2: Output: l ∈ N
3: ls ← 1, lt ← min{bs − gs, k − ‖g‖1},
4: if δlts(g) ≥ ltτ then
5: return lt
6: if δs(g) < τ then
7: return 0
8: while lt 6= ls + 1 do
9: m = b(lt + ls)/2c

10: if δms(g) ≥ mτ then
11: ls = m
12: else
13: lt = m
14: return ls

Therefore, γd ≤ γs, since γs is the maximum number satisfying the above inequality. The second statement follows from
reduction of the lattice to sets, the well-known characteriziation of submodularity of a set function in terms of diminishing
returns, and application of results on the weak DR ratio from Bian et al. (2017b).

D. BinarySearchPivot and Proofs for Section 4.1 (ThresholdGreedy)
BinarySearchPivot. The routine BinarySearchPivot (Alg. 4) efficiently finds a pivot for each s ∈ S. BinarySearchPivot
uses a modified binary-search procedure that maintains ls < lt such that both

δlss(g) ≥ lsτ, (1)
δlts(g) < ltτ. (2)

Initially, ls and lt do satisfy (1), (2), or else we have already found a valid pivot (lines 4, 4). The midpoint m of the interval
[ls, lt] is tested to determine if ls or lt should be updated to maintain (1), (2); this process continues until lt = ls + 1.

Lemma 2. BinarySearchPivot finds a valid pivot l ∈ {0, . . . , lmax} in O(log lmax) queries of f , where lmax = min{bs−
gs, k − ‖g‖1}, bmax = maxs∈S bs.

Proof of Lemma 2. The routine BinarySearchPivot maintains inequalities (1), (2), it is enough to show that given (1), (2),
there exists a l ∈ {ls, ..., lt − 1} such that l is a pivot. Consider lj = lt − j, for j ∈ N; there must be a smallest j ≥ 1 such
that lj satisfies property (P1) of being a pivot, since ls < lt satisfies property (P1). If property (P2) is unsatisfied, then

δ(lj+1)ei(s) = δi(s+ lj) + δljei(s)

≥ τ + ljτ = (lj + 1)τ,

contradicting the choice of j since lj + 1 = lj−1. The query complexity follows from a constant number of queries per
iteration of the while loop and the fact that each iteration reduces the distance from ls to lt by a factor of 2; initially, this
distance was lmax.

Omitted proofs from Section 4.1.

Proof that Property 1 holds. Let gτ,s be the value of g immediately after s is considered during the iteration corresponding
to τ ; then property (P2) of pivot was satisfied: δs(gτ,s) < τ .

Proof of Claim 1. Suppose γd ≥ ε. Suppose ‖g‖1 < k, and let g′ be the solution returned by a modified ThresholdGreedy
that continues updating the threshold until ‖g′‖1 = k. Order {g′} \ {g} = {s1, . . . , s`}, and let g′i = g′i−1 + si,

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

i = 1, . . . , `, with g′0 = g, so that g′` = g′. Also, let gi−1 ≤ g be the vector guaranteed for si by Lemma 1 with the last
threshold value τ of ThresholdGreedy. Then

f(g′)− f(g) =
∑̀
i=1

δsi(g
′
i−1)

≤ 1

γd

∑̀
i=1

δsi(gi−1)

≤ `

ε

ε2M

k
≤ εM ≤ εf(Ω).

Hence, for any Φ > ε, if

f(g′) ≥ Φf(Ω),

then

f(g) ≥ (Φ− ε)f(Ω).

From proof of Theorem 1:

“If γd < ε, the ratio holds trivially”. If γd < ε, the ratio holds trivially from the inequality 1−e−x ≤ x, for real x > 0,
since

1− e−γdγsκ ≤ γdγsκ < ε.

“from which the hypothesis of Claim 1 follows”. Since (1−x) ≤ e−x and
∑
t l
t = k, we have

∏T
t=1(1−ltγdγsκ/k) ≤∏T

t=1 exp((−ltγdγsκ/k)) = exp(−γdγsκ).

Proof of Corollary 1. As in proof of Theorem 1, suppose γd ≥ ε. Claim 1 still holds as before. Now, let gt be the value of
g at the beginning of the tth iteration of the outer for loop with threshold value τt. Since the inner for loop is conducted
in parallel, all marginal gains in iteration t are considered with respect to gt. Order the vectors added in this iteration
l1s1, . . . , l`s`; because each li is a pivot, we know δlisi(g

t) ≥ liτt and δsi(g
t + lisi) < τt.

Let gti = gti−1 + lisi, so gt0 = gt and gt` = gt+1. Now for each i and for each s ∈ S, there exists a vector hsi ≤ gt such
that δs(hsi) < τt/κ (namely hsi = gt−1 + l∗si, from when si was considered during the previous iteration t− 1, or hsi = 0
if t = 1 is the first iteration). Furthermore gt ≤ gti and δlisi(g

t) ≥ liτt. Hence

δlisi(g
t
i) ≥ (1− α)δlisi(g

t) ≥ (1− α)liτt ≥ κ(1− α)liδs(h
s
i) ≥ κ(1− α)liγdδs(g

t
i),

for any s ∈ S. The preceding argument proves an analogue of Claim 2, and the argument from here is exactly analogous
to the proof of Theorem 1.

E. Proofs for Section 4.2
Proof of Theorem 2. Since we have included γd ≥ ε as a hypothesis, we have the following claim, analogous to Claim 1.

Claim 4. If g is produced by the modified version of FastGreedy that continues until ‖g‖1 = k, and f(g) ≥ (1 −
e−κβ

∗γs)f(Ω), then the Theorem is proved.

Proof. Suppose ‖g‖1 < k, and let g′ be the solution returned by a FastGreedy* which continues updating the threshold
until ‖g′‖1 = k. Order {g′} \ {g} = {s1, . . . , s`}, and let g′i = g′i−1 + si, i = 1, . . . , `, with g′0 = g, so that g′` = g′.

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

Then

f(g′)− f(g) =
∑̀
i=1

δsi(g
′
i−1)

≤ 1

γd

∑̀
i=1

δsi(g)

≤ `

ε

ε2M

k
≤ εM ≤ εf(Ω).

Hence, for any Φ > ε, if
f(g′) ≥ Φf(Ω),

then
f(g) ≥ (Φ− ε)f(Ω).

Thus, for the rest of the proof, let g be produced by the modified version of FastGreedy as in the hypothesis of Claim
4. Let st ∈ S, gt be the direction maximizing the marginal gain on line 3, the solution g immediately after the tth
iteration of the while loop, respectively. By the choice of st, for each s ∈ {Ω}, we have δs(gt−1) ≤ δst(g

t−1). Let
l1s
′
1, . . . , l`s

′
` be the additions on line 3 to the solution g during iteration t, with each lm > 0 for m = 1, . . . , `. Let

gt−1
0 = gt−1 and gt−1

m = gt−1
m−1 + lms′m. Let Lt =

∑`
m=1 lm. Now, lm was chosen by BinarySearchPivot and hence

satisfies δlms′m(gt−1
m−1) ≥ lmβκδst(gt−1) by property (P1) of pivot and the choice of threshold τ = βκm. So

f(gt)− f(gt−1) =
∑̀
m=1

f(gt−1
m)− f(gt−1

m−1)

≥
∑̀
m=1

lmβκδst(g
t−1)

= Ltβκδst(g
t−1)

≥ Ltβ
∗κ

k

∑
s∈{Ω−(gt−1∧Ω)}

δs(g
t−1)

≥ Ltβ
∗γsκ

k

(
f(Ω)− f(gt−1)

)
,

where the first inequality is by definition of gtm, the first inequality is by the preceding paragraph, the second equality is by
definition of Lt, the second inequality is by the selection of st and that fact ‖Ω‖1 ≤ k, and the third inequality is by the
definition of weak DR ratio and the lattice identity v ∨w − v = w − v ∧w. From here,

f(g) ≥
(

1−
T∏
t=1

(
1− Ltβ

∗γsκ

k

))
f(Ω),

from which the hypothesis of Claim 4 follows: since (1 − x) ≤ e−x and
∑
t L

t = k, we have
∏T
t=1(1 − Ltβ∗γsκ/k) ≤∏T

t=1 exp((−Ltβ∗γsκ/k)) = exp(−β∗γsκ).

Proof of Claim 3. For any i, m′i ≤ m′i−1/γd: to see this, observe m′i = maxs∈S δs(g
i), m′i−1 = maxs∈S δs(g

i−1), for
some gi−1 ≤ gi. For each s ∈ S, δs(gi−1) ≤ m′i−1, so δs(gi) ≤ m′i−1/γd, and hence so is m′i. Since j` is the last uptick
in the sequence before the deletion, we know for every i > j`, m′i ≤ κm′i−1. Hence the deleted sequence proceeds from
m′j`+1 ≤ m′`/γd down to m′k`−1 ≥ κm′j` by definition of m′k` , with each term decreasing by a factor of at least κ.

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

F. Influence Maximization: A General Framework
“explicit formula for px(H,T)”. px(H,T) = Pr(H|x)Pr(T |x), with

Pr (H|x) =
∏

(x,y)∈E

p(x, y,xy)I((x,y)∈H)(1− p(x, y,xy))I((x,y)6∈H),

P r (T |x) =
∏
y∈V

p(y,xy)I(y∈T)(1− p(y,xy))I(y 6∈T).

The Independent Cascade (IC) Model. The IC model is defined as follows. Given a graph G = (V,E), with probabil-
ities p(e) associated to each edge e ∈ E. Let H be a realization of G, where each edge e is included in H with probability
p(e). Then, from an initial seed set T of activated users, a user is activated if it is reachable in H from T . Intuitively, the
weight on edge (u, v) represents the probability that u activates v (i.e user u convinces v to adopt the product). For more
information, we refer the reader to Kempe et al. (2003).

Proposition 2. There is a natural one-to-one correspondence between instances of the IM problem under IC model and a
subclass of instances of GIM.

Proof of Proposition 2. With exactly two levels, our GIM can encapsulate the classical IM problem with the IC model
(Kempe et al., 2003). Let weighted social network G = (V,E) and budget k be given, as an instance of the IM problem.
This instance corresponds to one of GIM with the same network and budget, as follows. For each edge (u, v) ∈ E, let
w(u, v) be its weight. Then we assign p(u, v, i) = w(u, v) for each i ∈ {0, 1}. Each incentive vector x is a binary vector,
indicating which users are present in the seed set; i.e. p(u, 0) = 0 and p(u, 1) = 1, for all u ∈ V . This mapping is injective
and hence invertible.

Proposition 3. There is a natural one-to-one correspondence between instances of the boosting problem and a subclass
of instances of GIM.

Proof of Proposition 3. Let social network G = (V,E), seed set S, and k ∈ N be given as an instance of the boosting
problem, where edge (u, v) ∈ E has weight p(u, v) if v is not boosted, and weight p′(u, v) if v is boosted. The corre-
sponding instance of GIM has two levels. Set p(y, 0) = p(y, 1) = 1 for all y ∈ S and set p(y, 0) = p(y, 1) = 0 for all
y 6∈ S. For each edge (u, v) ∈ E, set p(u, v, 0) = p(u, v), p(u, v, 1) = p′(u, v). Hence, spending budget to incentivize a
node from level 0 to level 1 does not affect the initial seed set, which is always S. But this incentive does work in exactly
the same way as the boosting of a node by changing its incoming edge probabilities; hence, the objective values are the
same. This mapping is injective and hence invertible.

Proof of Theorem 3.

Claim 5. Suppose γδs(w) ≤ δs(v), where γ = c−k∆
e c−kn , and v,w are any vectors satisfying v ≤ w, ‖v‖1 ≤ k, and

‖w − v‖1 ≤ k. Then the result of Theorem 3 follows.

Proof. Suppose the hypothesis of the claim holds.

Greedy DR ratios. We will show γ ≤ γA,Is , where γA,Is is the FastGreedy weak DR ratio on instance I. The proofs for
the other greedy DR ratios are exactly analogous.

Let g1, . . . ,gT be the greedy vectors in the definition of FastGreedy weak DR ratio. Let i ∈ {1, . . . , T}, and let v = gi.
Let w ≥ v ∈ NS such that ‖w − v‖1 ≤ k. Let {w − v} = {s1, ..., sl}. Then v +

∑l
j=1 sj = w. In addition, for every

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

m ≤ l, v +
∑m
j=1 sj = vm where vm ∈ NS , vm ≤ w. Then,

γ(f(w)− f(v)) = γ

l∑
j=1

f(v + s1 + ...+ sj)− f(v + s1 + ...+ sj−1)

= γ

l∑
j=1

δsj (v + s1 + ...+ sj−1)

= γ

l∑
j=1

δsj (vj−1)

≤
l∑

j=1

δsj (v),

by the hypothesis of the claim. Therefore γ ≤ γA,Is , since the latter is the maximum number satisfying the above inequality
for each w,gi as above.

FastGreedy DR ratio β∗. Initally, β = 1; it decreases by a factor of δ ∈ (0, 1) at most once per iteration of the while
loop of FastGreedy. Suppose β ≤ γ for some iteration i of the while loop, and let g have the value assigned immediately
after iteration i, m have the value assigned after line 3 of iteration i. Then Since a valid pivot was found for each s ∈ S
during iteration i, by property (P2) there exists gs ≤ g, δs(gs) < βκm ≤ γκm. Hence δs(g) ≤ κm, since g, gs are
vectors satisfying the conditions on γ in the hypothesis of the claim. In iteration i+ 1, m′ has the value of m from iteration
i, so the value of m computed during iteration i + 1 is at most κm′, and β does not decrease during iteration i. It follows
that β∗ ≥ γδ.

Let v ≤ w, ‖v −w‖1 ≤ k. We will consider graph realizations H that have the status of all edges determined; and seed
sets T ⊆ V .

Then,

pw+s(H,T) = K1(H,T)pv+s(H,T), and (3)
pw(H,T) = K2(H,T)pv(H,T), (4)

where K1(H,T) = K1(H)K1(T), K2(H,T) = K2(H)K2(T) with

K2(H) =
∏

(x,y)∈E

(
p(x, y,wy)

p(x, y,vy)

)I((x,y)∈H)(
1− p(x, y,wy)

1− p(x, y,vy)

)I((x,y) 6∈H)

,

K2(T) =
∏
x∈V

(
p(x,wx)

p(x,vx)

)I(x∈T)(
1− p(x,wx)

1− p(x,vx)

)I(x 6∈T)

,

and the definitions of K1(H),K1(T) are analogous to the above with vectors v + s,w + s in place of v,w.

Lemma 3. Let ∆ be the maximum in-degree in G.

K1(H,T) ≤ K2(H,T) ≤ ck∆
e ckn

Proof. (a) K1(T) ≤ K2(T): if s ∈ T ,

K1(T) = K2(T) · p(s,vs)
p(s,ws)

· p(s,ws + 1)

p(s,vs + 1)

= K2(T) · z
z′
· z
′ + α′

z + α
≤ K2(T),

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

where α′ ≤ α by DR-submodularity of i 7→ p(s, i), and p(s,vs) = z ≤ z′ = p(s,ws) by monotonicity of the same
mapping. Otherwise, if s 6∈ T ,

K1(T) = K2(T) · 1− p(s,vs)
1− p(s,ws)

· 1− p(s,ws + 1)

1− p(s,vs + 1)

= K2(T) · z
z′
· z
′ − α′
z − α ≤ K2(T),

where as before α′ ≤ α by DR-submodularity, but 1− p(s,vs) = z ≥ z′ = 1− p(s,ws).

(b) K1(H) ≤ K2(H): if (u, s) ∈ H ,

K1(H) = K2(H) · p(u, s,vs)
p(u, s,ws)

· p(u, s,ws + 1)

p(u, s,vs + 1)

= K2(H) · z
z′
· z
′ + α′

z + α
≤ K2(H),

where α′ ≤ α by DR-submodularity of i 7→ p(u, s, i), and p(u, s,vs) = z ≤ z′ = p(u, s,ws) by monotonicity of the
same mapping. Otherwise, if (u, s) 6∈ H ,

K1(H) = K2(H) · 1− p(u, s,vs)
1− p(u, s,ws)

· 1− p(u, s,ws + 1)

1− p(u, s,vs + 1)

= K2(H) · z
z′
· z
′ − α′
z − α ≤ K2(H),

where as before α′ ≤ α by DR-submodularity, but 1− p(u, s,vs) = z ≥ z′ = 1− p(u, s,ws).

(c) K2(H,T) ≤ ck∆
e ckn:

K2(H,T) = K2(H)K2(T) =
∏

(x,y)∈E

(
p(x, y,wy)

p(x, y,vy)

)I((x,y)∈H)(
1− p(x, y,wy)

1− p(x, y,vy)

)I((x,y)6∈H)

∏
x∈V

(
p(x,wx)

p(x,vx)

)I(x∈T)(
1− p(x,wx)

1− p(x,vx)

)I(x 6∈T)

Each of the fractions in the above product is of the form ξ(wy)/ξ(vy), where wy ≥ vy and hence can be written

ξ(wy)

ξ(vy)
=

wy−vy∏
i=1

ξ(vy + i+ 1)

ξ(vy + i)
≤ (wy − vy) max

j

ξ(j + 1)

ξ(j)
.

Hence, by the fact that ‖w − v‖1 ≤ k and the definitions of ce, cn, and the maximum in-degree ∆ in G, we have

K2(H,T) ≤ ck∆
e ckn.

Finally, by Lemma 3, we have

A(w + s)− A(w) =
∑
H,T

(
pw+s(H,T)− pw(H,T)

)
R(H,T)

=
∑
H,T

(
K1(H,T)pv+s(H,T)−K2(H,T)pv(H,T)

)
R(H,T)

≤
∑
H,T

K2(H,T)
(
pv+s(H,T)− pv(H,T)

)
R(H,T)

≤ cek∆ckn (A(v + s)− A(v)) .

Therefore, the hypothesis of Claim 5 is satisfied, and the result follows.

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

0.2 0.4 0.6 0.8
κ

200

250

300

S
ol

u
ti

on
V

al
u

e

Fast

Threshold

(a) κ

0.2 0.4 0.6 0.8
δ

200

250

300

S
ol

u
ti

on
V

al
u

e

Fast

Threshold

(b) δ

Figure 5. Performance as δ and κ are varied. Note that ThresholdGreedy does not use δ.

0.2 0.4 0.6 0.8
κ

1000

2000

3000

4000

R
u

n
n

in
g

T
im

e
(s

)

Fast

Threshold

(a) κ

0.2 0.4 0.6 0.8
δ

2000

3000

4000

R
u

n
n

in
g

T
im

e
(s

)

Fast

Threshold

(b) δ

Figure 6. Running time as δ and κ are varied. Note that ThresholdGreedy does not use δ.

G. Additional Experimental Results
G.1. Characterizing the Parameters of FastGreedy

In this section, we evaluate the impact of varying the parameters of FastGreedy: ε, δ, and κ. We note that ε only impacts
the running time and performance if it is used as a stopping condition. However, in our experiments this did not occur: the
cardinality constraint was reached first. Therefore, in our experiments FastGreedy = FastGreedy* and we are free to set
ε = 0 without changing any of our results.

Figures 5 & 6 show the impact of δ & κ on performance and running time. Note that performance remains similar until
κ or δ drops below 0.6. However, the running time plummets to nearly half of what it is at 0.95 in each case, resulting in
a similar-quality solution in significantly less time. A natural follow-up question from this figures is: what happens when
both parameters are varied at once? Fig. 7 details the answer. In particular, we note that the steep drop in running time
remains present, and there is a reasonable gain to be had by dropping both parameters at once – up to a point.

We further notice some interesting patterns in these heat-maps. When κ is near 0, the selection of δ does not appear to
matter. This is likely due to the role each parameter plays: κ plays a critical role in identifying a DR-violation, at which
point δ is the rate by which β is reduced to compensate. When κ is small, it takes commensurately larger violations for δ
to apply. These larger violations are not seen in our simulations, and thus δ has no impact when κ is very small.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
δ

0.
95

0.
85

0.
75

0.
65

0.
55

0.
45

0.
35

0.
25

0.
15

0.
05

κ

50

100

150

200

250

300

(a) Solution Quality

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
δ

0.
95

0.
85

0.
75

0.
65

0.
55

0.
45

0.
35

0.
25

0.
15

0.
05

κ

600

1200

1800

2400

3000

(b) Running Time

Figure 7. Performance and running time of FastGreedy as κ and δ are simultaneously varied.

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

H. Implementation Notes
The facebook dataset originally is undirected; we replace each edge u↔ v with two edges u→ v and v → u.

We calculated the FastGreedy ratio using the values κ = 0.95, β∗ = 0.9, γs = 0.69857, ε = 0. The values of κ and ε are
taken from the parameters used to run the algorithm (ε can be 0 since the algorithm always returned g with ‖g‖1 = k), and
the values of β∗ and γs are the minimum over all instances where FastGreedy Submodularity Ratio was computed.

H.1. Evaluating δs(g)

As mentioned in Section 6, we evaluate the objective on a set of 10,000 Monte Carlo samples. However, for performance
reasons we do not evaluate the marginal gain δs(g) directly by computing each of f(g + s) and f(g) and then subtracting.
Instead, we compute the expected number of activations across the sample set were s to be added. We accomplish this as
follows.

First, we mantain a state associated with the vector g. This state contains a number of variables for logging purposes, in
addition to two of note for our discussion here: samples and active. The former is the list of sampled graphs, each
represented as a pair of vectors of floating point numbers corresponding to random thresholds assigned to each node and
edge. The latter is a list of sets of nodes currently active in each sampled graph under solution vector g. These active sets
are computed only when a new element (or elements) are added to the solution vector and are computed directly by (a)
computing the set of externally activated nodes by checking if the random threshold is sufficient to activate the node; then
(b) propagating across any active edges according to their thresholds. The code for this is contained in the active nodes
function of src/bin/inf.rs in the code distribution.

Given this representation, to estimate the marginal gain of ` copies of a node s on each sample Si as follows:

1. Check if the node is already active on Si. If so, return 0 for this sample.

2. Check if the node would be externally activated if added to the solution. If not, return 0.

3. Check if the node would be activated by neighboring nodes if added to the solution. If not, return 0.

4. Compute the set of nodes that would be newly activated if s becomes active via breadth-first-search from s. Return
this number c.

Each would-be-activated check is accomplished by comparing the activation probability of the node or edge to the random
threshold associated with it in the sample. Then the expected marginal gain is the average result across all samples Si.
When an element (with multiplicity) is chosen to be inserted into the solution, we add it to the solution vector, discard
and recompute all samples, and then recompute the active set on each sample from scratch. This is in line with prior
Monte-Carlo-based solutions for IM (Kempe et al., 2003).

While in theory it is possible to consider the marginal gain of an arbitrary vector v, in our implementation we restrict
the values it can take to v = `s, where s is the unit vector for node s. This simplifies each of the steps above. The
implementation of the above is contained in the functions delta and scaled delta in src/bin/inf.rs.

