
Fast Maximization of Non-Submodular, Monotonic Functions on the Integer
Lattice

Alan Kuhnle 1 J. David Smith 1 Victoria G. Crawford 1 My T. Thai 1

Abstract
The optimization of submodular functions on the
integer lattice has received much attention re-
cently, but the objective functions of many ap-
plications are non-submodular. We provide two
approximation algorithms for maximizing a non-
submodular function on the integer lattice sub-
ject to a cardinality constraint; these are the first
algorithms for this purpose that have polynomial
query complexity. We propose a general frame-
work for influence maximization on the integer
lattice that generalizes prior works on this topic,
and we demonstrate the efficiency of our algo-
rithms in this context.

1. Introduction
As a natural extension of finite sets S (equivalently,
{0, 1}S), optimization of discrete functions on the integer
lattice NS has received attention recently (Alon et al., 2012;
Demaine et al., 2014; Soma & Yoshida, 2015). As an ex-
ample, consider the placement of sensors in a water net-
work (Krause et al., 2008a); in the set version, each sensor
takes a value in {0, 1}, which corresponds to whether the
sensor was placed. In the lattice version (Soma & Yoshida,
2015), each sensor has a power level in {0, . . . , b} ⊆ N, to
which the sensitivity of the sensor is correlated. As a sec-
ond example, consider the influence maximization prob-
lem (Kempe et al., 2003); instead of the binary seeding of
a user, the lattice version enables partial incentives or dis-
counts to be used (Demaine et al., 2014).

Although many results from the optimization of submod-
ular set functions have been generalized to the integer lat-
tice (Soma & Yoshida, 2015; 2016; Ene & Nguyen, 2016),
many objective functions arising from applications are not
submodular (Bian et al., 2017b; Lin et al., 2017; Das &

1University of Florida, Gainesville, Florida. Correspon-
dence to: Alan Kuhnle <kuhnle@ufl.edu>, My T. Thai
<mythai@ufl.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Kempe, 2011; Horel & Singer, 2016). In this work, we
consider maximization subject to a cardinality constraint
(MCC), where the function f to be maximized may be non-
submodular. Let k ∈ N (the budget), b ∈ (N∪{∞})S (the
box), and let f : {x ∈ NS : x ≤ b} → R+ (the objective)
be a non-negative and monotonic1 function with f(0) = 0.
Then determine

max
‖w‖1≤k

f(w), (MCC)

where w = (ws)s∈S ∈ NS , ‖w‖1 =
∑
s∈S |ws|.

Since the integer lattice may be represented as a multi-
set of size k|S|, one may use results for Problem MCC
with non-submodular set functions. In particular, the tight
ratio 1

α (1− e−αγs) of the standard greedy algorithm by
Bian et al. (2017b), where α, γs are discussed below, ap-
plies with the lattice adaptation of the standard greedy algo-
rithm (StandardGreedy) given in Alg. 1. However, this ap-
proach requires Ω(|S|k) queries of f , which is not polyno-
mial in the input2 size O(|S| log k). Even for applications
with set functions, Ω(|S|k) queries may be prohibitive, and
researchers (Leskovec et al., 2007; Mirzasoleiman et al.,
2015; Badanidiyuru & Vondrák, 2014) have sought ways
to speed up the StandardGreedy algorithm. Unfortunately,
these approaches rely upon the submodularity of f , and
there has been no analogous effort for non-submodular
functions.

To quantify the non-submodularity of a lattice function f ,
we generalize the following quantities defined for set func-
tions to the lattice: (1) the diminishing-return (DR) ratio γd
of f (Lehmann et al., 2006), (2) the weak DR ratio γs of f
(Das & Kempe, 2011), and (3) the generalized curvature α
of f (Bian et al., 2017b). Our main contributions are:

• To speed up StandardGreedy (Alg. 1), we adapt
the threshold greedy framework of Badanidiyuru &
Vondrák (2014) to non-submodular functions; this
yields an algorithm (ThresholdGreedy, Alg. 2)
with approximation ratio (1 − e−γdγs − η), for

1for all v ≤ w (coordinate-wise), f(v) ≤ f(w)
2The input is considered to be the vector b of length n = |S|

and the number k represented in log k bits (w.l.o.g. each compo-
nent of b is at most k); the function is regarded as an oracle and
hence does not contribute to input size.

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

Algorithm 1 StandardGreedy
1: Input: f ∈ Fb, k ∈ N, b ∈ NS
2: Output: g ∈ NS
3: g← 0
4: for i = 1 to k do
5: g← g + arg maxs∈S:g+s≤b δs(g)
6: return g

any η > 0, the first approximation algorithm with
polynomial query complexity for Problem MCC on
the lattice. The query complexity of the Stan-
dardGreedy algorithm is improved from Ω(nk) to
O
(
n log k logκ

(
ε2/k

))
, where κ, ε ∈ (0, 1) are pa-

rameters of ThresholdGreedy.

• We introduce the novel approximation algorithm Fast-
Greedy, which combines elements of StandardGreedy
and ThresholdGreedy to improve the performance ra-
tio to (1− e−β∗γs − η), where β∗ is at least γd and in
many cases3 is determined by the algorithm. Further-
more, FastGreedy exploits the non-submodularity of
the function to decrease its runtime in practice without
sacrificing its performance guarantee, while maintain-
ing the same worst-case query complexity as Thresh-
oldGreedy up to a constant factor.

• To demonstrate our algorithms, we introduce a general
budget allocation problem for viral marketing, which
unifies submodular influence maximization (IM) un-
der the independent cascade model (Kempe et al.,
2003) with the non-submodular boosting problem (Lin
et al., 2017) and in addition allows partial incentives.
We prove a lower bound on the DR and weak DR ra-
tios for this unified framework, and we experimentally
validate our proposed algorithms in this setting.

2. Related Work
The study of optimization of submodular set functions is
too extensive to give a comprehensive overview. On the
integer lattice, there have been many efforts to maximize
submodular functions, e.g Soma & Yoshida (2017); Bian
et al. (2017a); Gottschalk & Peis (2016). To the best of
our knowledge, we are the first to study the optimization of
non-submodular functions on the integer lattice. In the fol-
lowing discussion, we primarily restrict our attention to the
maximization of monotonic, submodular lattice functions
subject to a cardinality constraint and the maximization of
non-submodular set functions.

3When the solution g returned by FastGreedy satisfies ‖g‖1 =
k. Otherwise, an upper bound on β∗ is returned.

Reduction of Ene & Nguyen (2016). Ene & Nguyen
(2016) have given a polynomial-time reduction from the
lattice to a set that enables unified translation of submod-
ular optimization strategies to DR-submodular (i.e. DR
ratio γd = 1, see Section 3) functions on the integer lat-
tice. Since this translation is designed for DR-submodular
functions, it does not give a polynomial-time algorithm
for Problem MCC when f is non-submodular. Specifi-
cally, for the case of maximization subject to a cardinal-
ity constraint, Ene & Nguyen (2016) rely upon the thresh-
old greedy algorithm for submodular set functions (Badani-
diyuru & Vondrák, 2014), which does not work for non-
submodular functions without modifications such as the
ones in our paper.

Threshold Greedy and Lattice Optimization. To speed
up the StandardGreedy for submodular set functions,
Badanidiyuru & Vondrák (2014) introduced the threshold
greedy framework, which speeds up the StandardGreedy
algorithm for maximizing submodular set functions un-
der cardinality constraint from O(nk) function evaluations
to O

(
n
ε log n

ε

)
, and it maintains the approximation ratio

(1− 1/e− ε), for ε > 0. Soma & Yoshida (2016) adapted
the threshold approach for efficiently maximizing DR-
submodular functions on the integer lattice and provided
(1 − 1/e − ε)-approximation algorithms. Other adapta-
tions of the threshold approach of Badanidiyuru & Vondrák
(2014) to the integer lattice include (Ene & Nguyen, 2016;
Soma & Yoshida, 2015). Elenberg et al. (2017) recently
extended a similar algorithm (Sieve Streaming of Badani-
diyuru et al. (2014)) to non-submodular functions in a
somewhat similar fashion. The key difference is Sieve
Streaming makes one pass over the data using many ge-
ometrically spaced thresolds in parallel, whereas the ap-
proach of Badanidiyuru & Vondrák (2014) makes many se-
quential passes at geometrically spaced thresholds.

Our ThresholdGreedy algorithm is an adaptation of the al-
gorithm of Soma & Yoshida (2016) for DR-submodular
maximization to non-submodular functions. The non-
submodularity requires new analysis, in the following spe-
cific ways: (1) during the binary search phase, we can-
not guarantee that we find the maximum number of copies
whose average gain exceeds the threshold τ ; hence, we
must settle for any number of copies whose average gain
exceeds τ , while ensuring that the gain of adding one ad-
ditional copy falls belows τ . (2) To prove the performance
ratio, we require a combination of the DR ratio γd and the
weak DR ratio γs.

The very recent work of Qian et al. (2018) considers the
same problem as in our paper, and they define the same DR
ratio as ours; their lattice submodularity ratio is different
from the weak DR ratio, however. The algorithm (POMS)
in Qian et al. (2018) is based upon a Pareto optimization

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

technique, which is substantially different from our ap-
proach; our emphasis is on developing an approximation
algorithm with runtime logarithmic in k, while POMS has
running time Ω(k2n).

Optimization of Non-Submodular Set Functions. For
non-submodular set functions, the weak DR ratio γs was
introduced by Das & Kempe (2011) under the name sub-
modularity ratio; we generalize γs to lattice functions in
Section 3, and we show the DR ratio γd ≤ γs. Bian et al.
(2017b) introduced generalized curvature α of a set func-
tion, an analogous concept to the DR ratio as we discuss in
Section 3. Bian et al. (2017b) extended the analysis of Con-
forti & Cornuéjols (1984) to non-submodular set functions;
together with the weak DR ratio γs, they proved Standard-
Greedy has tight approximation ratio 1

α (1− e−γsα) under
cardinality constraint. The DR ratio γd is introduced as in-
verse curvature in Bogunovic et al. (2018), wherein robust
maximization of set functions is considered; the DR ratio
has also been introduced by Lehmann et al. (2006); Qian
et al. (2018).

Many other notions of non-submodular set functions have
been introduced (Krause et al., 2008b; Horel & Singer,
2016; Borodin et al., 2014; Feige & Izsak, 2013). For a
comprehensive discussion of the relation of these and addi-
tional notions to the weak DR ratio γs, we refer the reader
to Bian et al. (2017b).

3. Non-Submodularity on the Lattice
In this section, we define the lattice versions of DR ratio
γd, weak DR ratio γs, and generalized curvature α, which
are used in the approximation ratios proved in Section 4.

Notations. For each s ∈ S, let s be the unit vector with 1
in the coordinate corresponding to s, and 0 elsewhere. We
write δw(v) = f(v + w) − f(v) for v,w ∈ NS . Given
a box in the integer lattice b ∈ NS , let the set of all non-
negative, monotonic lattice functions with f(0) = 0, and
domain {x ∈ NS : x ≤ b} be denoted Fb. It is often
useful to think of a vector v ∈ NS as a multi-set containing
vs copies of s ∈ S, where vs is the value of v’s coordinate
corresponding to s. We use the notation {v} to represent
the multiset corresponding to the vector v. Finally, we de-
fine v ∨w and v ∧w for v,w ∈ NS to be the vector with
the coordinate-wise maximum and minimum respectively.
Rather than an algorithm taking an explicit description of
the function f as input, we consider the function f as an or-
acle and measure the complexity of an algorithm in terms
of the number of oracle calls or queries.

We begin with the related concepts of DR ratio and gener-
alized curvature.

Definition 1. Let f ∈ Fb. The diminishing-return (DR)

ratio of f , γd(f), is the maximum value in [0, 1] such that
for any s ∈ S, and for all v ≤ w such that w + s ≤ b,
γd(f)δs(w) ≤ δs(v).

Definition 2. Let f ∈ Fb. The generalized curvature of
f , α(f), is the minimum value in [0, 1] such that for any
s ∈ S, and for all v ≤ w such that w + s ≤ b, δs(w) ≥
(1− α(f))δs(v).

The DR ratio extends the notion of DR-submodularity of
Soma & Yoshida (2015), which is obtained as the spe-
cial case γd = 1. Generalized curvature for set functions
was introduced in Bian et al. (2017b). Notice that α re-
sults in lower bounds on the marginal gain of s to a vector
w, while γd results in upper bounds on the same quantity:
(1 − α)δs(v) ≤ δs(w) ≤ 1

γd
δs(v), whenever v ≤ w and

the above expressions are defined. Next, we generalize the
weak DR ratio of Das & Kempe (2011) to the integer lat-
tice.

Definition 3. Let f ∈ Fb. The weak DR ratio of f , γs(f),
is the maximum value in [0, 1] such that for all v,w, such
that v ≤ w, γs(f)(f(w)− f(v)) ≤∑s∈{w−v} δs(v).

The next proposition, proved in Appendix C, shows the re-
lationship between DR ratio and weak DR ratio.

Proposition 1. For all f ∈ Fb, γd(f) ≤ γs(f). The func-
tion f is DR submodular iff γd(f) = γs(f) = 1.

In the rest of this work, we will parameterize functions by
the non-submodularity ratios defined above and partition
functions into the sets Fγd,γs,αb = {f ∈ Fb : γd(f) =
γd, γs(f) = γs, α(f) = α}.

Greedy versions. In the proofs of this paper, the full
power of the parameters defined above is not required. It
suffices to consider restricted versions, where the maxi-
mization is taken over only those vectors which appear in
the ratio proofs. We define these greedy versions in Ap-
pendix B and include more discussion in Remark 1 of Sec-
tion 4.1.

4. Algorithms
4.1. The ThresholdGreedy Algorithm

In this section, we present the algorithm ThresholdGreedy
(Alg. 2) to approximate Problem MCC with ratio 1 −
e−γgγs − η with polynomial query complexity. Appendix
D contains the proofs of all lemmas, claims, and omitted
details from this section.

Description. ThresholdGreedy operates by considering
decreasing thresholds for the marginal gain in its outer for
loop; for each threshold τ , the algorithm adds on line 2
elements whose marginal gain exceeds τ as described be-

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

low. The parameter κ ∈ (0, 1) determines the stepsize be-
tween successive thresholds; the algorithm continues until
the budget k is met (line 2) or the threshold is below a min-
imum value dependent on the parameter ε ∈ (0, 1).

Intuitively, the goal of the threshold approach (Badani-
diyuru & Vondrák, 2014) for submodular set functions is
as follows. At each threshold (i.e., iteration of the outer for
loop), add all elements whose marginal gain exceeds τ to
the solution g. On the lattice, adding all copies of s ∈ S
whose average gain exceeds τ on line 2 would require the
addition of the maximum multiple ls such that the average
marginal gain exceeds τ :

δls(g) ≥ lτ, (P1)

as in the threshold algorithm of Soma & Yoshida (2016)
for DR-submodular functions, in which the maximum l is
identified by binary search. However, since f is not DR-
submodular, it is not always the case that δs(g + ls) ≥
δs(g + (l + 1)s), for each l. For this reason, we cannot
find the maximum such l by binary search. Furthermore,
even if we found the maximum l for each s ∈ S, we could
not guarantee that all elements of marginal gain at least τ
were added due to the non-submodularity of f : an element
whose gain is less than τ when considered in the inner for
loop might have gain greater than τ after additional ele-
ments are added to the solution.

ThresholdGreedy more conservatively ensures that the
number l chosen for each s ∈ S satisfies both (P1) and

δs(g + ls) < τ, (P2)

but it is not necessarily the maximum such l.

Pivot. Any l satisfying both (P1) and (P2) is termed a
pivot4 with respect to g, s, τ . Perhaps surprisingly, a valid
pivot can be found with binary search in O(log bmax) =
O(log k) function queries, where bmax = maxs∈S bs; dis-
cussion of BinarySearchPivot and proof of this results is
provided in Appendix D, Lemma 2. By finding a pivot for
each s ∈ S, ThresholdGreedy does not attempt to add all
elements exceeding the marginal gain of threshold τ ; in-
stead, ThresholdGreedy maintains the following property
at each threshold.

Property 1. Let gτ be the solution of ThresholdGreedy
immediately after the iteration of the outer for loop corre-
sponding to threshold τ . Then for each s ∈ S, there exists
h ≤ gτ such that δs(h) < τ .

4For convenience, we also define the maximum value of l,
lmax = min{bs − gs, k − ‖g‖1} to be a pivot if lmax satisfies
(P1) only, and set δs(g + lmaxs) = 0, so that all pivots satisfy
both properties.

Algorithm 2 ThresholdGreedy
1: Input: f ∈ Fb, k ∈ N, κ, ε ∈ (0, 1).
2: Output: g ∈ NS
3: g← 0, M ← maxs∈S f(s).
4: for

(
τ = M ; τ ≥ κε2M

k ; τ ← κτ
)

do
5: for s ∈ S do
6: l←BinarySearchPivot(f,g,b, s, k, τ)
7: g← g + ls
8: if ‖g‖1 = k then
9: return g

10: return g

Performance ratios. Next, we present the main result
of this section, the performance guarantee involving the
DR and weak DR ratios. Observe that the query com-
plexity of ThresholdGreedy is polynomial in the input size
O(n log k).

Theorem 1. Let an instance of Problem MCC be given,
with f ∈ Fγd,γs,αb . If g is the solution returned by Thresh-
oldGreedy and Ω is an optimal solution to this instance,
then

f(g) ≥
(
1− e−κγdγs − ε

)
f(Ω).

The query complexity of ThresholdGreedy is
O
(
n log k logκ

(
ε2/k

))
.

If η > 0 is given, the assignment κ = (1 − η/2), ε = η/2
yields performance ratio at least 1− e−γdγs − η.

Proof. If γd < ε, the ratio holds trivially; so assume γd ≥
ε. The proof of the following claim requires an application
of the DR ratio.

Claim 1. Let g be produced by a modified version of
ThresholdGreedy that continues until ‖g‖1 = k. If we
show f(g) ≥ (1− e−κγdγs)f(Ω), the results follows.

Thus, for the rest of the proof let g be as described in Claim
1. Let gt be the value of g after the tth execution of line 2
of ThresholdGreedy. Let lt be the tth pivot, such that gt =
gt−1+ltst. The next claim lower bounds the marginal gain
in terms of the DR ratio and the previous threshold.

Claim 2. For each s ∈ {Ω− gt−1 ∧Ω},

ltγdκδs(g
t−1) ≤ f(gt)− f(gt−1).

Proof. Let τ be the threshold at which ltst is added to
gt−1; let s ∈ {Ω − gt−1 ∧ Ω}. If τ is the first threshold,
γdδs(g

t−1) ≤ δs(0) ≤ τ < τ
κ . If τ is not the first thresh-

old, τ ′ = τ/κ is the previous threshold value of the pre-
vious iteration of the outer for loop. By Property 1, there

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

exists h ≤ gτ ′ ≤ gt−1, such that δs(h) < τ ′. By the
definition of DR ratio, γdδs(gt−1) ≤ δs(h) < τ ′ = τ/κ.

In either case, by the fact that property (P1) of a pivot holds
for lt, we have

f(gt)− f(gt−1) ≥ ltτ ≥ ltγdκδs(gt−1).

Since |Ω| ≤ k, we have by Claim 2

f(gt)− f(gt−1) ≥ ltγdκ

k

∑
s∈{Ω−(gt−1∧Ω)}

δs(g
t−1)

=
ltγdκ

k

∑
s∈{Ω∨gt−1−gt−1}

δs(g
t−1)

≥ ltγdγsκ

k

(
f(Ω ∨ gt−1)− f(gt−1)

)
≥ ltγdγsκ

k

(
f(Ω)− f(gt−1)

)
,

where the equality follows from the lattice identity v ∨
w − v = w − v ∧ w for all v,w ∈ NS , the second
inequality is by definition of the weak DR ratio, and the
third inequality is from monotonicity. From here, we obtain
f(g) ≥

(
1−∏T

t=1

(
1− ltγdγsκ

k

))
f(Ω), from which the

hypothesis of Claim 1 follows.

Query complexity. The for loop on line 2 (Alg. 2)
iterates at most logκ ε

2/k times; each iteration requires
O(n log k) queries, by Lemma 2.

For additional speedup, the inner for loop of FastGreedy
may be parallelized, which divides the factor of n in the
query complexity by the number of threads but worsens
the performance ratio; in addition to γd, γs, the generalized
curvature α is required in the proof.

Corollary 1. If the inner for loop of ThresholdGreedy
is parallelized, the performance ratio becomes 1 −
e−(1−α)γdγs − η, for η > 0.

Remark 1. A careful analysis of the usage of γd,γs in the
proof of Theorem 1 shows that the full power of the defi-
nitions of these quantities is not required. Rather, it is suf-
ficient to consider ThresholdGreedy versions of these pa-
rameters, as defined in Appendix B. In the same way, we
also have FastGreedy version of γs based upon the proof of
Theorem 2. The FastGreedy version of the DR ratio is an
integral part of how the algorithm works and is calculated
directly by the algorithm, as we discuss in the next section.

4.2. The FastGreedy Algorithm

The proof of the performance ratio of ThresholdGreedy re-
quires both the submodularty ratio γs and the DR ratio γd.
In this section, we provide an algorithm (FastGreedy, Alg.

3) that achieves ratio 1− e−β∗γs − η, with factor β∗ ≥ γd
that it can determine during its execution. Appendix E pro-
vides proofs for all lemmas, claims, and omitted details.

Description. FastGreedy employs a threshold framework
analogous to ThresholdGreedy. Each iteration of the outer
while loop of FastGreedy is analogous to an iteration of
the outer for loop in ThresholdGreedy, in which elements
are added whose marginal gain exceeds a threshold. Fast-
Greedy employs BinarySearchPivot to find pivots for each
s ∈ S for each threshold value τ . Finally, the parameter ε
determines a minimum threshold value.

As its threshold, FastGreedy uses τ = βκm, where m is
the maximum marginal gain found on line 3, parameter κ
is the intended stepsize between thresholds as in Thresh-
oldGreedy, and β is an upper bound on the DR ratio γd, as
described below. This choice of τ has the following advan-
tages over the approach of ThresholdGreedy: (1) since the
threshold is related to the maximum marginal gain m, the
theoretical performance ratio is improved; (2) the use of β
to lower the threshold ensures the same5 worst-case query
complexity as ThresholdGreedy and leads to substantial re-
duction of the number of queries in practice, as we demon-
strate in Section 6.

FastGreedy DR ratio β∗. If FastGreedy is modified6 to
continue until ‖g‖1 = k, let the final, smallest value β∗ of
β be termed the FastGreedy DR ratio on the instance. The
FastGreedy DR ratio β∗ is at least the DR ratio γd of the
function, up to the parameter δ:

Lemma 1. Let parameters κ, δ, ε ∈ (0, 1) be given.
Throughout the execution of FastGreedy on an instance of
Problem MCC with f ∈ Fγd,γsb , β ≥ γdδ. Since ε can be
arbitrarily small, β∗ ≥ γdδ.

Proof. Initally, β = 1; it decreases by a factor of δ ∈ (0, 1)
at most once per iteration of the while loop. Suppose β ≤
γd for some iteration i of the while loop, and let g have the
value assigned immediately after iteration i, m have the
value assigned after line 3 of iteration i. Since a valid pivot
was found for each s ∈ S during iteration i, by property
(P2) there exists gs ≤ g, δs(gs) < βκm ≤ γdκm. Hence
δs(g) ≤ κm, by the definition of DR ratio. In iteration
i + 1, m′ has the value of m from iteration i, so the value
of m computed during iteration i+ 1 is at most κm′, and β
does not decrease during iteration i+ 1.

Performance ratio. Next, we present the main result of
this section. In contrast to ThresholdGreedy, the factor of

5Up to a constant factor, which depends on γd.
6This modification can be accomplished by setting ε to ensure

the condition on line 3 is always true on this instance.

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

Algorithm 3 FastGreedy
1: Input: f ∈ Fb, k ∈ N, κ, δ, ε ∈ (0, 1).
2: Output: g ∈ NS
3: g ← 0, M ← maxs∈S f(s), m ← M,m′ ← M/κ,
β ← 1

4: while m ≥Mε2/k do
5: m← maxs∈S δs(g)
6: if m > κm′ then
7: β ← βδ
8: m′ ← m
9: τ ← βκm

10: for s ∈ S do
11: l←BinarySearchPivot(f,g,b, s, k, τ)
12: g← g + ls
13: if ‖g‖1 = k then
14: return g
15: return g

γd in the performance ratio has been replaced with β∗; at
the termination of the algorithm, the value of β∗ is an out-
put of FastGreedy if the solution g satisfies ‖g‖1 = k. In
any case, by Lemma 1, the performance ratio is at worst the
same as that of ThresholdGreedy.

Theorem 2. Let an instance of Problem MCC be given,
with f ∈ Fγd,γsb . Let g be the solution returned by Fast-
Greedy with parameters κ, δ, ε ∈ (0, 1), and let Ω be an
optimal solution to this instance; also, suppose γd ≥ ε. Let
β∗ be the FastGreedy DR ratio on this instance. Then,

f(g) ≥
(

1− e−κβ∗γs − ε
)
f(Ω)

The worst-case query complexity of FastGreedy is
O
((

logδ(γd) logκ(γd) + logκ ε
2/k
)
n log k

)
.

If η > 0 is given, the assignment κ = (1 − η/2), ε = η/2
yields performance ratio at least 1− e−β∗γs − η.

Proof of query complexity. The performance ratio is
proved in Appendix E. Let m′1, . . . ,m

′
K be the sequence

of m′ values in the order considered by the algorithm.
By Lemma 1, m′j > κm′j−1 at most Γ = logδ γd times;
label each such index j an uptick, and let j1, . . . , jl be the
indices of each uptick in order of their appearance. Also,
let ki be the first index after ji such that m′ki ≤ κm′ji−1,
for each i ∈ {1, . . . , l}.
Next, we will iteratively delete from the sequence of m′

values. Initially, let ` = l be the last uptick in the sequence;
delete all termsm′j` , . . . ,m

′
k`−1 from them′ sequence. Set

` = `− 1 and repeat this process until ` = 0.

Claim 3. For each ` selected in the iterative deletion above,
there are at most logκ γd values deleted from the sequence.

By Claim 3 and the bound on the number of upticks, we
have deleted at most logκ γd logδ γd thresholds m′ from
the sequence; every term in the remaining sequence satis-
fies m′j ≤ κm′j−1; hence, the remaining sequence contains
at most logκ ε

2/k terms, by its initial and terminal values.
The query complexity follows from the number of queries
per value of m′, which is O(n log k) by Lemma 2.

5. Influence Maximization: A General
Framework

In this section, we provide a non-submodular framework
for viral marketing on a social network that unifies the clas-
sical influence maximization (Kempe et al., 2003) with the
boosting problem (Lin et al., 2017).

Overview. The goal of influence maximization is to se-
lect seed users (i.e. initially activated users) to maximize
the expected adoption in the social network, where the to-
tal number of seeds is restricted by a budget, such that the
expected adoption in the social network is maximized. The
boosting problem is, given a fixed seed set S, to incentivize
(i.e. increase the susceptibility of a user to the influence
of his friends) users within a budget such that the expected
adoption with seed set S increases the most.

Our framework combines the above two scenarios with a
partial incentive: an incentive (say, x% off the purchase
price) increases the probability a user will purchase the
product independently and increases the susceptibility of
the user to the influence of his friends. Hence, our prob-
lem asks how to best allocate the budget between (partially)
seeding users and boosting the influence of likely extant
seeds. Both the classical influence maximization and the
non-submodular boosting problem can be obtained as spe-
cial cases, as shown in Appendix F.

Our model is related to the formulation of Demaine
et al. (2014); however, they employ a submodular
threshold-based model, while our model is inherently non-
submodular due to the boosting mechanism (Lin et al.,
2017). Also, GIM is related to the submodular budgeted
allocation problem of Alon et al. (2012), in which the influ-
ence of an advertiser increases with the amount of budget
allocated; the main difference with GIM is that we modify
incoming edge weights with incentives instead of outgoing,
which creates the boosting mechanism responsible for the
non-submodularity.

Model. Given a social network G = (V,E), and a prod-
uct p, we define the following model of adoption. The al-
location of budget to u is thought of as a discount towards
purchasing the product; this discount increases the proba-
bility that this user will adopt or purchase the product. Fur-
thermore, this discount increases the susceptibility of the

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

user to influence from its (incoming) social connections.

Formally, an incentive level xu is chosen for each user
u. With independent probability p(u,xu), user u initially
activates or adopts the product; altogether, this creates a
probabilistic initial set S of activated users. Next, through
the classical Independent Cascade (IC) model7 of adop-
tion, users influence their neighbors in the social network;
wherein the weight p(v, u,xu) for edge (v, u) is deter-
mined by the incentive level xu of user u as well as the
strength of the social connection from v to u.

We write px(H,T) to denote the probability of full graph
realization H and seed set T when x gives the incentive
levels for each user. We write R(H,T) to denote the size
of the reachable set from T in realization H . The expected
activation in the network given a choice x of incentive lev-
els is given by I(x) =

∑
T⊆V

∑
H⊆G p

x(H,T)R(H,T),
where an explicit formula for px(H,T) is given in Ap-
pendix F. Finally, let A(x) = I(x)− I(0).

Definition 4 (Generalized Influence Maximization (GIM)).
Let social network G = (V,E) be given, together with
the mappings i 7→ p(u, i), i 7→ p(u, v, i), for all u ∈
V, (u, v) ∈ E, for each i ∈ {0, . . . , L}, where L is the
number of incentive levels. Given budget k, determine in-
centive levels x, with ‖x‖1 ≤ k, such that A(x) is maxi-
mized.

Bound on non-submodularity. Next, we provide a
lower bound on the greedy DR ratios (see Appendix B). We
emphasize that the assumption that the probability map-
pings as a function of incentive level be submodular does
not imply the objective A(x) is DR-submodular. Theorem
3 is proved in Appendix F.

Theorem 3. Let I be an instance of GIM, with bud-
get k. Let ce = max(u,v)∈E,i∈L

p(u,v,i+1)
p(u,v,i) , cn =

maxx∈V,i∈L
p(x,i+1)
p(x,i) . Suppose for all (u, v) ∈ E,w ∈ V ,

the mappings i 7→ p(u, v, i), i 7→ p(w, i) are submodular
set functions. Then, the greedy DR ratios defined in Ap-
pendix B and the FastGreedy DR ratio are lower bounded
by c−k∆

e c−kn , where ∆ is the maximum in-degree in G.

6. Experimental Evaluation
In this section, we evaluate our proposed algorithms for
the GIM problem defined in Section 5. Source code for
the implementation is available at https://gitlab.
com/emallson/lace. We evaluate our algorithms as
compared with StandardGreedy; by the naive reduction of
the lattice to sets in exponential time, this algorithm is
equivalent to performing this reduction and running the
standard greedy for sets, the performance of which for

7The IC model is defined in Appendix F.

20 40 60 80 100
K – Maximum # of deterministic seeds

300

400

500

600

700

S
ol

u
ti

on
V

al
u

e

Fast

Standard

Threshold

(a) GrQc (10 levels)

20 30 40 50
K – Maximum # of deterministic seeds

120

140

160

180

200

S
ol

u
ti

on
V

al
u

e

Fast

Threshold

(b) Facebook (100 levels)

Figure 1. Activation A(g) for the solution returned by each algo-
rithm.

non-submodular set functions was analyzed by Bian et al.
(2017b).

In Section 6.1, we describe our methodology; in Section
6.2, we compare the algorithms and non-submodularity pa-
rameters. In Appendix G.1, we explore the behavior of
FastGreedy as the parameters δ, κ, and ε are varied.

6.1. Methodology

Our implementation uses Monte Carlo sampling to esti-
mate the objective value A(x), with 10 000 samples used.
As a result, each function query is relatively expensive.

We evaluate on two networks taken from the SNAP dataset
(Leskovec & Krevl, 2014): ca-GrQc (“GrQc”; 15k nodes,
14.5K edges) and facebook (“Facebook”; 4k nodes,
176K edges). Unless otherwise specified, we use 10 rep-
etitions per datapoint and display the mean. The width of
shaded intervals is one standard deviation. Standard greedy
is omitted from some figures where running time is pro-
hibitive. Unless noted otherwise, we use default settings of
ε = 0.05, δ = 0.9, κ = 0.95. We use a uniform box con-
straint and assign each user the same number of incentive
levels; the maximum incentive level for a user corresponds
to giving the product to the user for free and hence deter-
ministically seeds the user; we adopt linear models for the
mappings i 7→ p(u, i), i 7→ p(u, v, i). We often plot ver-
sus K, which is defined as the maximum number of deter-
ministic seeds; for example, if k = 200 with 10 incentive
levels, then K = 20.

6.2. Results

In this section, we demonstrate the following: (1) our
algorithms exhibit virtually identical quality of solution
with StandardGreedy, (2) our algorithms query the func-
tion much fewer times, which leads to dramatic runtime
improvement over StandardGreedy, (3) FastGreedy fur-
ther reduces the number of queries of ThresholdGreedy
while sacrificing little in solution quality, and (4) the non-
submodularity parameters on a small instance are com-

https://gitlab.com/emallson/lace
https://gitlab.com/emallson/lace

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

20 40 60 80 100
K – Maximum # of deterministic seeds

150

200

250

F
u

n
ct

io
n

Q
u

er
ie

s
(T

h
ou

sa
n

d
s)

50 100

2500

5000

Fast

Threshold

Standard

(a) GrQc (10 levels)

20 30 40 50
K – Maximum # of deterministic seeds

200

250

300

F
u

n
ct

io
n

Q
u

er
ie

s
(T

h
ou

sa
n

d
s)

Fast

Threshold

(b) Facebook (100 levels)

Figure 2. Total function queries on the GrQc and Facebook net-
works.

20 40 60 80 100
K – Maximum # of deterministic seeds

10

20

30

R
un

ni
ng

T
im

e
(T

ho
us

an
ds

of
se

c.
)

Fast

Standard

Threshold

(a) GrQc (10 levels)

20 30 40 50
K – Maximum # of deterministic seeds

50

100

150

R
un

ni
ng

T
im

e
(T

ho
us

an
ds

of
se

c.
)

Fast

Threshold

(b) Facebook (100 levels)

Figure 3. Runtime on the GrQc and Facebook networks with 100
levels.

puted, which provides evidence that our theoretical perfor-
mance ratios are useful.

Quality of Solution In Fig. 1(a), we plot A(g) for the
solution returned by each algorithm on the GrQc network
with 10 incentive levels; the difference in quality of solu-
tion returned by the three algorithms is negligible. In Fig.
1(b), we plot the same for the Facebook network with 100
incentive levels; on Facebook, we drop StandardGreedy
due to its prohibitive runtime. FastGreedy is observed to
lose a small (up to 3%) factor, which we consider accept-
able in light of its large runtime improvement, which we
discuss next.

Number of Queries Next, we present in Fig. 2 the num-
ber of function queries8 each algorithm requires on the
GrQc and Facebook networks. StandardGreedy required
up to 20M queries on Facebook, hence it is not shown in
Fig. 2(b). Both of our algorithms provide a large improve-
ment over StandardGreedy; in particular, notice that Stan-
dardGreedy increases linearly with k, while both of the oth-
ers exhibit logarithmic increase in agreement with the theo-
retical query complexity of each. Furthermore, FastGreedy
uses at least 14.5% fewer function queries than Threshold-
Greedy and up to 43% fewer as k grows.

8Our implementation is in terms of the marginal gain. The
number of function queries shown is the number of times the
marginal gain function was called.

20 40 60 80 100
K – Maximum # of deterministic seeds

0.6

0.7

0.8

0.9

β
∗ 10 levels

100 levels

(a) GrQc

6 8 10
k

0.00

0.25

0.50

0.75

1.00

FastGreedy DR Ratio β∗

FastGreedy SM Ratio γs

(b) BA network

Figure 4. (a): The value of FastGreedy DR ratio β∗ on the GrQc
dataset. (b): FastGreedy submodularity ratio γs and FastGreedy
DR Ratio β∗ on a small, random BA network.

Non-Submodularity Parameters The value of the Fast-
Greedy DR ratio β∗ on GrQc is shown in Fig. 4(a); no-
tice that it is relatively stable as the budget increases from
K = 20 to 100, although there is substantial drop from
10 incentive levels to 100; this may be explained as an in-
crease in the non-submodularity resulting from inaccurate
sampling of A, since it is more difficult to detect differ-
ences between the finer levels. Still, on all instances tested,
β∗ > 0.6, which suggests the worst-case performance ratio
of FastGreedy is not far from that of StandardGreedy.

Finally, we examine the various non-submodularity param-
eters on a very small instance which admits their computa-
tion: a random Barabasi-Albert network with 10 nodes and
10 incentive levels. We compute the FastGreedy version
of the submodularity ratio γs defined in Appendix B by di-
rect enumeration and consider the FastGreedy DR ratio β∗.
Results are shown in Fig. 4(b). The value of β∗ is close
to 1 and remains constant with increasing budget k, while
the FastGreedy submodularity ratio decreases slowly with
k. With β∗ and the FastGreedy γs, we can compute the
worst-case performance ratio of FastGreedy across these
instances: 0.449692.

7. Conclusions
In this work, we provide two approximation algorithms
for maximizing non-submodular functions with respect to
a cardinality constraint on the integer lattice with poly-
nomial query complexity. Since set functions are a spe-
cial case, our work provides faster algorithms for the same
problem with set functions than the standard greedy al-
gorithm, although the performance ratio degrades from at
least 1−e−γs to 1−e−β∗γs , where β∗ is the FastGreedy DR
Ratio. We propose a natural application of non-submodular
influence maximization, for which we lower bound the rel-
evant non-submodularity parameters and validate our algo-
rithms.

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

Acknowledgement
This work was supported in part by US NSF EFRI
1441231, CCF 1422116, and DTRA HDTRA1-14-1-0055.

References
Alon, Noga, Gamzu, Iftah, and Tennenholtz, Moshe. Op-

timizing budget allocation among channels and influ-
encers. Proceedings of the 21st International Conference
on World Wide Web (WWW), pp. 381–388, 2012.

Badanidiyuru, Ashwinkumar and Vondrák, J. Fast algo-
rithms for maximizing submodular functions. Proceed-
ings of the 25th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 1497–1514, 2014.

Badanidiyuru, Ashwinkumar, Mirzasoleiman, Baharan,
Karbasi, Amin, and Krause, Andreas. Streaming Sub-
modular Maximization: Massive Data Summarization
on the Fly. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
Data Mining (KDD), pp. 671–680, 2014.

Bian, An, Levy, Kfir Y., Krause, Andreas, and Buhmann,
Joachim M. Non-monotone Continuous DR-submodular
Maximization: Structure and Algorithms. In Advances
in Neural Information Processing Systems (NIPS), pp.
486–496, 2017a.

Bian, Andrew An, Buhmann, Joachim M., Krause, An-
dreas, and Tschiatschek, Sebastian. Guarantees for
Greedy Maximization of Non-submodular Functions
with Applications. In Proceedings of the 34th Interna-
tional Conference on Machine Learning (ICML), 2017b.

Bogunovic, Ilija, Zhao, Junyao, and Cevher, Volkan. Ro-
bust Maximization of Non-Submodular Objectives. In
Proceedings of the 21st International Conference on Ar-
tificial Intelligence and Statistics (AISTATS), 2018.

Borodin, Allan, Le, Dai Tri Man, and Ye, Yuli. Weakly
Submodular Functions. arXiv preprint arXiv:1401.6697,
2014.

Conforti, Michele and Cornuéjols, Gérard. Submodu-
lar set functions, matroids and the greedy algorithm:
Tight worst-case bounds and some generalizations of the
Rado-Edmonds theorem. Discrete Applied Mathematics,
7(3):251–274, 1984.

Das, Abhimanyu and Kempe, David. Submodular meets
Spectral: Greedy Algorithms for Subset Selection,
Sparse Approximation and Dictionary Selection. Pro-
ceedings of the 28th International Conference on Ma-
chine Learning (ICML), 2011.

Demaine, Erik D., Hajiaghayi, Mohammad T., Mahini,
Hamid, Malec, David L., Raghavan, S., Sawant, Anshul,
and Zadimoghadam, Morteza. How to Influence Peo-
ple with Partial Incentives. Proceedings of the 23rd In-
ternational Conference on World Wide Web (WWW), pp.
937–948, 2014.

Elenberg, Ethan R., Dimakis, Alexandros G., Feldman,
Moran, and Karbasi, Amin. Streaming Weak Sub-
modularity: Interpreting Neural Networks on the Fly.
In Advances in Neural Information Processing Systems
(NIPS), 2017.

Ene, Alina and Nguyen, Huy L. A Reduction for Opti-
mizing Lattice Submodular Functions with Diminishing
Returns. arXiv preprint arXiv:1606.08362v1, 2016.

Feige, Uriel and Izsak, Rani. Welfare Maximization and
the Supermodular Degree. In Proceedings of the 4th con-
ference on Innovations in Theoretical Computer Science
(ITCS), pp. 247–256, 2013.

Gottschalk, Corinna and Peis, Britta. Submodular Func-
tion Maximization over Distributive and Integer Lattices.
arXiv preprint arXiv:1505:05423, 2016.

Horel, Thibaut and Singer, Yaron. Maximization of Ap-
proximately Submodular Functions. In Advances in Neu-
ral Information Processing Systems (NIPS), 2016.

Kempe, David, Kleinberg, Jon, and Tardos, Éva. Maxi-
mizing the spread of influence through a social network.
In Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), pp. 137–146, 2003.

Krause, Andreas, Leskovec, Jure, Guestrin, Carlos, Van-
Briesen, Jeanne M., and Faloutsos, Christos. Efficient
sensor placement optimization for securing large water
distribution networks. Journal of Water Resources Plan-
ning and Management, 134(6):516–526, 2008a.

Krause, Andreas, Singh, Ajit, and Guestrin, Carlos. Near-
Optimal Sensor Placements in Gaussian Processes: The-
ory, Efficient Algorithms and Empirical Studies. In Jour-
nal of Machine Learning Research, volume 9, pp. 235–
284, 2008b.

Lehmann, Benny, Lehmann, Daniel, and Nisan, Noam.
Combinatorial auctions with decreasing marginal utili-
ties. Games and Economic Behavior, 55(2):270–296,
2006.

Leskovec, Jure and Krevl, Andrej. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice

Leskovec, Jure, Krause, Andreas, Guestrin, Carlos, Falout-
sos, Christos, VanBriesen, Jeanne, and Glance, Na-
talie. Cost-effective Outbreak Detection in Networks.
In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), pp. 420–429, 2007.

Lin, Yishi, Chen, Wei, and Lui, John C.S. Boosting in-
formation spread: An algorithmic approach. Proceed-
ings of the International Conference on Data Engineer-
ing (ICDE), pp. 883–894, 2017.

Mirzasoleiman, Baharan, Badanidiyuru, Ashwinkumar,
Karbasi, Amin, Vondrak, Jan, and Krause, Andreas.
Lazier Than Lazy Greedy. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence (AAAI),
pp. 1812–1818, 2015.

Qian, Chao, Zhang, Yibo, Tang, Ke, and Yao, Xin. On
Multiset Selection with Size Constraints. In Proceed-
ings of the Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI), pp. 1395–1402, 2018.

Soma, Tasuku and Yoshida, Yuichi. A Generalization of
Submodular Cover via the Diminishing Return Property
on the Integer Lattice. Advances in Neural Information
Processing Systems (NIPS), 2015.

Soma, Tasuku and Yoshida, Yuichi. Maximizing Mono-
tone Submodular Functions over the Integer Lattice. In ,
Integer Programming and Combinatorial Optimization,
pp. 325–336, Cham, 2016. Springer International Pub-
lishing.

Soma, Tasuku and Yoshida, Yuichi. Non-monotone DR-
Submodular Function Maximization. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelli-
gence (AAAI), pp. 898–904, 2017.

