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1. Proof of Theorem 2
Proof. Our proof technique is similar to (Gretton et al.,
2012)’s for MMD. Define g(D) = |MMCEm(D) −
MMCE(P )|. The maximum change in g(D) when one sam-
ple (ri, ci) is replaced by a random other sample is 2

√
K
m in

the expression for MMCEm. Applying McDiarmid inequal-
ity, we get that

Pr(g(D)− ED[g(D)] > ε) < exp(−mε
2

2K
) (1)

Next we upper bound ED[g(D)] starting from the definition
of MMCE.
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In the above σi denotes random variables that can take
values +1 or -1 with equal probability and the last in-
equality is due to (Bartlett & Mendelson, 2002),Lemma
22. Combining Equation 1 and the above we get that

Pr(g(D) > 4
√

K
m + ε) < exp(−mε

2

2K ) Rearranging terms
and substituting δ on the RHS proves the inequality.
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Dataset Model Improvement
Accuracy ECE

MNIST LeNet 5 +0.02% -0.30%
CIFAR 10 Resnet 50 -0.02% -2.05%
CIFAR 10 Resnet 110 +0.01% -2.50%
CIFAR 100 Resnet 32 +1.20% -2.58%

Table 1. The change in ECE and accuracy compared to Baseline
when fine-tuning a pre-trained model using MMCE.

2. Proof of Theorem 3
Proof. Starting from the RHS,
ECE(P (r, c)) = Er

[
|r − p(c=1,r)

p(r) |
]

= Er
[
| r·p(c=0,r)−(1−r)·p(c=1,r)

p(r) |
]

=
∫
r
|r · p(c = 0, r)− (1− r) · p(c = 1, r)|dr

Now, we can rewrite

MMCE(P (r, c)) = sup
f∈F

∑
c

∫
r

(c− r) · f(r)dP (r, c)

=

∫
r

(
(1− r) · p(c = 1, r)− r · p(c = 0, r)

)
· f(r)dr

It is easy to see that M(DL, P (r, c)) = ECE(P (r, c))
where DL = {f | ||f ||∞ ≤ L}. We pick f(r) =
L · sign((1 − r) · p(c = 1, r) − r · p(c = 0, r)). Note
that the set DL also includes discontinuous functions. In
contrast MMCE(P ) = M(FK , P ) where FK is the space
of continuous functions in RKHS with maximum kernel
value limited to K. FK is included in DL when L ≥

√
K.

This proves our required result.

3. Finetuning using MMCE
Table 1 shows the ECE and Accuracy numbers for some
models when MMCE is used to finetune them, post-training.

4. Comparison of Running times
Table 2 summarizes the running time per epoch for training
using MMCE+NLL and NLL objectives. MMCE, on an
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average, doesn’t create an overhead of more than 10% over
the baseline.

Dataset Model Baseline MMCE
CIFAR 10 Resnet 50 4.6s 4.7s
CIFAR 10 Resnet 110 10.5s 11.1s
CIFAR 100 W. Resnet 28-10 48.0s 55.0s
CIFAR 100 Resnet 32 11.5s 11.5s
20 Newsgroups Global Pool 5.7s 6.0s
IMDB Reviews HAN 226.0s 227.0s
UCI HAR LSTM 0.6s 0.7s

Table 2. Running time per epoch in seconds for Baseline and
MMCE methods for different models and datasets
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