
Supplementary Material for
Data-Dependent Stability of Stochastic Gradient Descent

Ilja Kuzborskij 1 Christoph H. Lampert 2

1. Proofs
In this section we present proofs of all the statements.

Proof of Theorem 2. Indicate by S “ tziu
m
i“1 and S1 “

tz1iu
m
i“1 independent training sets sampled i.i.d. from D,

and let Spiq “ tz1, . . . , zi´1, z
1
i, zi`1, . . . , zmu, such that

z1i
iid
„D. We relate expected empirical risk and expected risk

by

E
S
E
A

”

pRSpASq
ı

“E
S
E
A

«
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m

m
ÿ
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fpAS , ziq

ff

“ E
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E
A

«

1

m
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ÿ

i“1

fpASpiq , z
1
iq

ff

“ E
S,S1

E
A

«

1

m

m
ÿ

i“1

fpAS , z
1
iq

ff

´ δ

“E
S
E
A
rRpASqs ´ δ ,

where

δ “ E
S,S1

E
A

«

1

m

m
ÿ

i“1

`

fpAS , z
1
iq ´ fpASpiq , z

1
iq
˘

ff

“
1

m

m
ÿ

i“1

E
S,z1i

E
A

“

fpAS , z
1
iq ´ fpASpiq , z

1
iq
‰

.

Renaming z1i as z and taking sup over i we get that

δ ď sup
iPrms

"

E
S,z

E
A
rfpAS , zq ´ fpASpiq , zqs

*

.

This completes the proof.

1.1. Preliminaries

We say that the Stochastic Gradient Descent (SGD) gradient
update rule is an operator Gt : H ÞÑ H, such that

Gtpwq :“ w ´ αt∇fpw, zitq ,
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and it is also a function of the training set S and a random in-
dex set I . Then,wt`1 “ Gtpwtq, throughout t “ 1, . . . , T .
Recall the use of notation wS,t to indicate the output of
SGD ran on a training set S, at step t, and define

δtpS, zq :“ }wS,t ´wSpiq,t} .

Next, we summarize a few instrumental facts about Gt and
few statements about the loss functions used in our proofs.
Definition 1 (Expansiveness). A gradient update rule is
η-expansive if for all w,v,

}Gtpwq ´Gtpvq} ď η}w ´ v} .

The following lemma characterizes expansiveness for the
gradient update rule under different assumptions on f .
Lemma 1 (Lemma 3.6 in (Hardt et al., 2016)). Assume that
f is β-smooth. Then, we have that:

1) Gt is p1` αtβq-expansive,

2) If f in addition is convex, then, for any αt ď 2
β , the

gradient update rule Gt is 1-expansive.

An important consequence of β-smoothness of f is self-
boundedness (Shalev-Shwartz & Ben-David, 2014), which
we will use on many occasions.
Lemma 2 (Self-boundedness). For β-smooth non-negative
function f we have that

}∇fpw, zq} ď
a

2βfpw, zq .

Self-boundedness in turn implies the following boundedness
of a gradient update rule.
Corollary 1. Assume that f is β-smooth and non-negative.
Then,

}w ´Gtpwq} “ αt}∇fpw, zjtq}

ď αt min

"

b

2βfpw, zjtq, L

*

.

Proof. By Lemma 2

}αt∇fpw, zjtq} ď αt

b

2βfpw, zjtq ,
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and also by Lipschitzness of f , }αt∇fpw, zjtq} ď αtL.

Next we introduce a bound that relates the risk of the output
at step t to the risk of the initialization pointw1 through the
variance of the gradient. Given an appropriate choice of step
size, this bound will be crucial at stating stability bounds
that depend on the risk at w1. The proof idea is similar to
the one of (Ghadimi & Lan, 2013). In particular, it does not
require convexity of the loss function.

Lemma 3. Suppose SGD is ran with step sizes
α1, . . . , αt´1 ď

1
β w.r.t. the β-smooth loss f . Then we

have that

t´1
ÿ

k“1

ˆ

αk ´
α2
kβ

2

˙

E
S

“

}∇RpwS,kq}
2
‰

ď Rpw1q ´Rpwtq

`
β

2

t´1
ÿ

k“1

α2
k E
S

“

}∇fpwS,k, zjkq ´∇RpwS,kq}
2
‰

.

Proof. For brevity denote fkpwq ” fpw, zjkq. By β-
smoothness of R and racalling that the SGD update rule
wk`1 “ wk ´ αk∇fkpwkq, we have

Rpwk`1q ´Rpwkq

ď ∇Rpwkq
J pwk`1 ´wkq `

β

2
}wk`1 ´wk}

2

“ ´αk∇Rpwkq
J∇fkpwkq `

βα2
k

2
}∇fkpwkq}

2

“ ´αk∇Rpwkq
J∇fkpwkq

`
βα2

k

2
}∇fkpwkq ´∇Rpwkq `∇Rpwkq}

2

“ ´
`

αk ` α
2
kβ

˘

∇Rpwkq
J∇fkpwkq

`
3α2β

2
}∇Rpwkq}

2 `
βα2

k

2
}∇fkpwkq ´∇Rpwkq}

2 .

Taking expectation w.r.t. S on both sides, recalling that
Ezk r∇fkpwkqs “ ∇Rpwkq and rearranging terms we get
ˆ

αk ´
α2β

2

˙

E
“

}∇Rpwkq}
2
‰

ď Rpwkq ´Rpwk`1q

`
βα2

k

2
E
“

}∇fkpwkq ´∇Rpwkq}
2
‰

,

and summing above over k “ 1, . . . , t´ 1 we get the state-
ment.

Lemma 4. Suppose SGD is ran with step sizes
α1, . . . , αt´1 ď

1
β on the β-smooth loss f . Assume that

the variance of stochastic gradients obeys

E
S,z

”

}∇fpwS,k, zq ´∇RpwS,kq}
2
ı

ď σ2 @k P rT s .

Then we have that

E
S

«

t´1
ÿ

k“1

αk}∇fpwS,k, zkq}

ff

ď 2

g

f

f

e

˜

t´1
ÿ

k“1

αk

¸˜

Rpw1q ´R‹ `
βσ2

2

t´1
ÿ

k“1

α2
k

¸

` σ
t´1
ÿ

k“1

αk .

Proof. First we perform the decomposition,

E
S

«

t´1
ÿ

k“1

αk}∇fpwS,k, zkq}

ff

“

t´1
ÿ

k“1

αk E
S
r}∇RpwS,kq}s

`

t´1
ÿ

k“1

αk E
S
r}∇fpwS,k, zkq ´∇RpwS,kq}s

ď

t´1
ÿ

k“1

αk E
S
r}∇RpwS,kq}s ` σ

t´1
ÿ

k“1

αk . (1)

Introduce

Qt :“
t´1
ÿ

k“1

ˆ

αk ´
α2
kβ

2

˙

.

Now we invoke the stationary-point argument to bound the
first term above as

t´1
ÿ

k“1

αk E
S

„

b

}∇Rpwkq}
2



(2)

ď

t´1
ÿ

k“1

´

1´ αkβ
2

¯

´

1´ αkβ
2

¯ ¨ αk

c

E
S

”

}∇Rpwkq}
2
ı

(By Jensen’s inequality)

ď 2
t´1
ÿ

k“1

ˆ

αk ´
α2
kβ

2

˙
c

E
S

”

}∇Rpwkq}
2
ı

(Assuming that αk ď 1
β )

“
2Qt
Qt

t´1
ÿ

k“1

ˆ

αk ´
α2
kβ

2

˙
c

E
S

”

}∇Rpwkq}
2
ı

(3)

ď 2
a

Qt

g

f

f

e

t´1
ÿ

k“1

ˆ

αk ´
α2
kβ

2

˙

E
S

”

}∇Rpwkq}
2
ı

(By Jensen’s inequality)

ď 2
a

Qt

g

f

f

eRpw1q ´Rpwtq `
βσ2

2

t´1
ÿ

k“1

α2
k .

(By Lemma 3)
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Combining this with (1) gives the statement and completes
the proof.

The following lemma is similar to Lemma 3.11 of (Hardt
et al., 2016), and is instrumental in bounding the stability
of SGD. However, we make an adjustment and state it in
expectation over the data. Note that it does not require
convexity of the loss function.

Lemma 5. Assume that the loss function fp¨, zq P r0, 1s is
L-Lipschitz for all z. Then, for every t0 P t0, 1, 2, . . .mu
we have that,

E
S,z

E
A

“

fpwS,T , zq ´ fpwSpiq,T , zq
‰

(4)

ď L E
S,z

”

E
A
rδT pS, zq | δt0pS, zq “ 0s

ı

` E
S,A
rRpASqs

t0
m
.

(5)

Proof. We proceed with elementary decomposition, Lips-
chitzness of f , and using the fact that f is non-negative to
have that

fpwS,T , zq ´ fpwSpiq,T , zq (6)

“
`

fpwS,T , zq ´ fpwSpiq,T , zq
˘

I tδt0pS, zq “ 0u

`
`

fpwS,T , zq ´ fpwSpiq,T , zq
˘

I tδt0pS, zq ‰ 0u

ď LδT pS, zqI tδt0pS, zq “ 0u

` fpwS,T , zqI tδt0pS, zq ‰ 0u . (7)

Taking expectation w.r.t. algorithm randomization, we get
that

E
A

“

fpwS,T , zq ´ fpwSpiq,T , zq
‰

ď LE
A
rδT pS, zqI tδt0pS, zq “ 0us

` E
A
rfpwS,T , zqI tδt0pS, zq ‰ 0us . (8)

Recall that i P rms is the index where S and Spiq differ,
and introduce a random variable τA taking on the index
of the first time step where SGD uses the example zi or a
replacement z. Note also that τA does not depend on the
data. When τA ą t0, then it must be that δt0pS, zq “ 0,
because updates on both S and Spiq are identical until t0. A
consequence of this is that I tδt0pS, zq ‰ 0u ď I tτA ď t0u.
Thus the rightmost term in (8) is bounded as

E
A
rfpwS,T , zqI tδt0pS, zq ‰ 0us

ď E
A
rfpwS,T , zqI tτA ď t0us .

Now, focus on the r.h.s. above. Recall that we assume
randomization by sampling from the uniform distribution
over rms without replacement, and denote a realization by
tjiu

m
i“1. Then, we can always express our randomization

as permutation function πApSq “ tzjiu
m
i“1. In addition,

introduce an algorithm GD : Zm ÞÑ H, which is identical
toA, except that it passes over the training set S sequentially
without randomization. That said, we have that

E
A
rfpwS,T , zqI tτA ď t0us “ E

A

“

fpGDπApSq, zqI tτA ď t0u
‰

,

and taking expectation over the data,

E
S,z

”

E
A
rfpwS,T , zqI tτA ď t0us

ı

“ E
A

„

E
S,z

“

fpGDπApSq, zq
‰

I tτA ď t0u



.

Now observe that for any realization of A,
ES,z

“

fpGDπApSq, zq
‰

“ EA ES,z rfpAS , zqs because
expectation w.r.t. S and z does not change under our
randomization 1. Thus, we have that

E
A

„

E
S,z

“

fpGDπApSq, zq
‰

I tτA ď t0u



“ E
S,A
rRpASqsPpτA ď t0q .

Now assuming that τA is uniformly distributed over rms we
have that

P pτA ď t0q “
t0
m
.

Putting this together with (6) and (7), we finally get that

E
S,z

E
A

“

fpwS,T , zq ´ fpwSpiq,T , zq
‰

ď L E
S,z

”

E
A
rδT pS, zqI tδt0pS, zq “ 0us

ı

` E
S,A
rRpASqs

t0
m

ď L E
S,z

”

E
A
rδT pS, zq | δt0pS, zq “ 0s

ı

` E
S,A
rRpASqs

t0
m
.

This completes the proof.

We spend a moment to highlight the role of conditional ex-
pectation in (5). Observe that we could naively bound (4)
by the Lipschitzness of f , but Lemma 5 follows a more
careful argument. First note that t0 is a free parameter. The
expected distance in (5) between SGD outputs wS,t and
wSpiq,t is conditioned on the fact that at step t0 outputs of
SGD are still the same. This means that the perturbed point
is encountered after t0. Then, the conditional expectation
should be a decreasing function of t0: the later the perturba-
tion occurs, the smaller deviation between wS,t and wSpiq,t

we should expect. Later we use this fact to minimize the
bound (5) over t0.

1Strictly speaking we could omit EAr¨s and consider any ran-
domization by reshuffling, but we keep expectation for the sake of
clarity.
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1.2. Convex Losses

In this section we prove on-average stability for loss func-
tions that are non-negative, β-smooth, and convex.

Theorem 1. Assume that f is convex, and that SGD’s is ran
with step sizes tαtu

T
t“1. Then, for every t0 P t0, 1, 2, . . .mu,

SGD is εpD,w1q-on-average stable with

εpD,w1q

ď
2

m

T
ÿ

t“t0`1

αt E
S,z
r}∇fpwt, zjtq}s ` E

S,A
rRpASqs

t0
m
.

Proof. For brevity denote ∆tpS, zq :“
EA rδtpS, zq | δt0pS, zq “ 0s. We start by applying
Lemma 5:

E
S,z

E
A

“

fpwS,T , zq ´ fpwSpiq,T , zq
‰

ď L E
S,z
r∆T pS, zqs ` E

S,A
rRpASqs

t0
m
. (9)

Our goal is to bound the first term on the r.h.s. as a decreas-
ing function of t0, so that eventually we can minimize the
bound w.r.t. t0. At this point we focus on the first term,
and the proof partially follows the outline of the proof of
Theorem 3.7 in (Hardt et al., 2016). The strategy will be
to establish the bound on ∆T pS, zq by using a recursive
argument. In fact we will state the bound on ∆t`1pS, zq in
terms of ∆tpS, zq and then unravel the recursion. Finally,
we will take expectation w.r.t. the data after we obtain the
bound by recursion.

To do so, we distinguish two cases: 1) SGD encounters a
perturbed point at step t, that is t “ i, and 2) the current
point is the same in S and Spiq, so t ‰ i. For the first case,
we will use data-dependent boundedness of the gradient
update rule, Corollary 1, that is

}GtpwS,tq´GtpwSpiq,tq} ď δtpS, zq`2αt}∇fpwS,t, zjtq} .

To handle the second case, we will use the expansiveness of
the gradient update rule, Lemma 1, which states that for con-
vex loss functions, the gradient update rule is 1-expansive,
so δt`1pS, zq ď δtpS, zq. Considering both cases of exam-
ple selection, and noting that SGD encounters the perturba-
tion w.p. 1

m , we write EA for a step t as

∆t`1pS, zq ď

ˆ

1´
1

m

˙

∆tpS, zq

`
1

m
p∆tpS, zq ` 2αt}∇fpwS,t, zjtq}q

“ ∆tpS, zq `
2αt}∇fpwS,t, zjtq}

m
.

Unraveling the recursion from T to t0 and plugging the
above into (9) yields

E
A

E
S,z
rδT pS, zqs

ď
2

m

T
ÿ

t“t0`1

αt E
S,z
r}∇fpwt, zjtq}s ` E

S,A
rRpASqs

t0
m
.

This completes the proof.

Next statement is a simple consequence of Theorem 1 and
Lemma 4.

Proof of Theorem 3. Consider Theorem 1 and set t0 “ 0.

εpD,w1q ď
2

m

T
ÿ

t“1

αt E
S,z
r}∇fpwS,t, zjtq}s . (10)

Bounding the sum using Lemma 4 recalling that αt “ c{
?
t,

we get

E
S

«

T
ÿ

t“1

αt}∇fpwt, zjtq}

ff

ď 2

g

f

f

e

˜

T
ÿ

t“1

αt

¸˜

Rpw1q ´R‹ `
βσ2

2

T
ÿ

t“1

α2
t

¸

` σ
T
ÿ

t“1

αt

ď 2
?

2c ¨
4
?
T ¨

a

Rpw1q ´R‹

` 2cσ

˜

4
?
T

c

β

2
`
?
T

¸

.

Combining above with (10) completes the proof.

1.3. Non-convex Losses

Our proof of a stability bound for non-convex loss functions,
Theorem 4 (in the submission file), follows a general outline
of (Hardt et al., 2016, Theorem 3.8). Namely, the outputs
of SGD run on a training set S and its perturbed version
Spiq will not differ too much, because by the time a per-
turbation is encountered, the step size has already decayed
enough. So, on the one hand, stabilization is enforced by
the diminishing the step size, and on the other hand, by how
much updates expand the distance between the gradients
after the perturbation. Since (Hardt et al., 2016) work with
uniform stability, they capture the expansiveness of post-
perturbation update by the Lipschitzness of the gradient.
In combination with a recursive argument, their bound has
exponential dependency on the Lipschitz constant of the gra-
dient. We argue that the Lipschitz continuity of the gradient
can be too pessimistic in general. Instead, we rely on a local
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data-driven argument: considering that we initialize SGD at
point w1, how much do updates expand the gradient under
the distribution of interest? The following crucial lemma
characterizes such behavior in terms of the curvature at w1.

Lemma 6. Assume that the loss function fp¨, zq is β-smooth
and that its Hessian is ρ-Lipschitz. Then,
›

›GtpwS,tq ´GtpwSpiq,tq
›

› ď p1` αtξtpS, zqq δtpS, zq

(11)

where

ξtpS, zq :“
›

›∇2fpw1, ztq
›

›

2

`
ρ

2

›

›

›

›

›

t´1
ÿ

k“1

αk∇fpwS,k, zkq

›

›

›

›

›

`
ρ

2

›

›

›

›

›

t´1
ÿ

k“1

αk∇fpwSpiq,k, zk1q

›

›

›

›

›

.

Furthermore, for any t P rT s,

E
S,z
rξtpS, zqs ď E

S,z

“
›

›∇2fpw1, ztq
›

›

2

‰

`2ρ
a

pRpw1q ´R‹q cp1` lnpT qq

`ρσ
´

a

2cβ ` cp1` lnpT qq
¯

.

Proof. Recall that the randomness of the algorithm is re-
alized through sampling without replacement from the
uniform distribution over rms. Apart from that we will
not be concerned with the randomness of the algorithm,
and given the set of random variables tjiumi“1, for brevity
we will use indexing notation z1, z2, . . . , zm to indicate
zj1 , zj2 , . . . , zjm . Next, let Spiq “ tz1iu

m
i“1, and introduce

a shorthand notation fkpwq “ fpw, zkq and fk1pwq “
fpw, z1kq. We start by applying triangle inequality to get

›

›GtpwS,tq ´GtpwSpiq,tq
›

› ď }wS,t ´wSpiq,t}

` αt
›

›∇ftpwS,tq ´∇ftpwSpiq,tq
›

› .

In the following we will focus on the second term of r.h.s.
above. Given SGD outputswS,t andwSpiq,t with t ą i, our
goal here is to establish how much do gradients grow apart
with every new update. This behavior can be characterized
assuming that gradient is Lipschitz continuous, however, we
conduct a local analysis. Specifically, we observe how much
do updates expand gradients, given that we start at some
point w1 under the data-generating distribution. So, instead
of the Lipschitz constant, expansiveness rather depends
on the curvature around w1. On the other hand, we are
dealing with outputs at an arbitrary time step t, and therefore
we first have to relate them to the initialization point w1.
We do so by using the gradient update rule and telescopic
sums, and conclude that this relationship is controlled by
the sum of gradient norms along the update path. We further

establish that this sum is controlled by the risk of w1 up to
the noise of stochastic gradients, through stationary-point
result of Lemma 4. Thus, the proof consists of two parts:
1) Decomposition into curvature and gradients along the
update path, and 2) bounding those gradients.

1) Decomposition. Introduce δt :“ wSpiq,t ´ wS,t. By
Taylor theorem we get that

∇ftpwS,tq ´∇ftpwSpiq,tq “ ∇2ftpw1qδt

`

ż 1

0

´

∇2ftpwS,t ` τδtq ´∇2ftpw1q

¯

dτδt .

Taking norm on both sides, applying triangle inequality,
Cauchy-Schwartz inequality, and assuming that Hessians
are ρ-Lipschitz we obtain

}∇ftpwS,tq ´∇ftpwSpiq,tq}

ď ρ

ż 1

0

}wS,t ´w1 ` τδt}dτ}δt} `
›

›∇2ftpw1q
›

› }δt} .

(12)

2) Bounding gradients. Using telescoping sums and
SGD update rule we get that

wS,t ´w1 ` τδt

“ wS,t ´w1 ` τ
`

wSpiq,t ´w1 `w1 ´wS,t

˘

“

t´1
ÿ

k“1

pwS,k`1 ´wS,kq ` τ
t´1
ÿ

k“1

`

wSpiq,k`1 ´wSpiq,k

˘

´ τ
t´1
ÿ

k“1

pwS,k`1 ´wS,kq

“ pτ ´ 1q
t´1
ÿ

k“1

αk∇fkpwS,kq ´ τ
t´1
ÿ

k“1

αk∇fk1pwSpiq,kq .

Plugging above into the integral of (12) we have

ż 1

0

›

›

›

›

›

t´1
ÿ

k“1

αk
`

pτ ´ 1q∇fkpwS,kq ´ τ∇fk1pwSpiq,kq
˘

›

›

›

›

›

dτ

ď
1

2

›

›

›

›

›

t´1
ÿ

k“1

αk∇fkpwS,kq

›

›

›

›

›

`
1

2

›

›

›

›

›

t´1
ÿ

k“1

αk∇fk1pwSpiq,kq

›

›

›

›

›

ď
1

2

t´1
ÿ

k“1

αk}∇fkpwS,kq} `
1

2

t´1
ÿ

k“1

αk}∇fk1pwSpiq,kq} .

Plugging this result back into (12) completes the proof of the
first statement. The second statement comes from Lemma 4
with αt “ c{t.

Next, we need the following statement to prove our stability
bound.
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Proposition 1 (Bernstein-type inequality). Let Z be a zero-
mean real-valued r.v., such that |Z| ď b and ErZ2s ď σ2.
Then for all |c| ď 1

2b , we have that E
“

ecZ
‰

ď ec
2σ2

.

Proof. Stated inequality is a consequence of a Bernstein-
type inequality for moment generating functions, Theorem
2.10 in (Boucheron et al., 2013). Observe that zero-centered
r.v. Z bounded by b satisfies Bernstein’s condition, that is

|ErpZ ´ErZsqqs| ď
q!

2
σ2bk´2 for all integers q ě 3 .

This in turn satisfies condition for Bernstein-type inequality
stating that

E rexp pcpZ ´ ErZsqqs ď exp

ˆ

c2σ2{2

1´ b|c|

˙

.

Choosing |c| ď 1
2b verifies the statement.

Now we are ready to prove Theorem 4, which bounds the
εpD,w1q-on-average stability of SGD.

Proof of Theorem 4. For brevity denote

r :“ E
S,A
rRpASqs

and

∆tpS, zq :“ E
A
rδtpS, zq | δt0pS, zq “ 0s .

By Lemma 5, for all t0 P rms,

E
S,z

E
A

“

fpwS,T , zq ´ fpwSpiq,T , zq
‰

(13)

ď L E
S,z
r∆T pS, zqs ` r

t0
m
. (14)

Most of the proof is dedicated to bounding the first term
in (14). We deal with this similarly as in (Hardt et al., 2016).
Specifically, we state the bound on ∆T pS, zq by using a re-
cursion. In our case, however, we also have an expectation
w.r.t. the data, and to avoid complications with dependen-
cies, we first unroll the recursion for the random quantities,
and only then take the expectation. At this point the proof
crucially relies on the product of exponentials arising from
the recursion, and all relevant random quantities end up
inside of them. We alleviate this by Proposition 1. Finally,
we conclude by minimizing (14) w.r.t. t0. Thus we have
three steps: 1) recursion, 2) bounding Erexpp¨ ¨ ¨ qs, and 3)
tuning of t0.

1) Recursion. We begin by stating the bound on ∆T pS, zq
by recursion. Thus we will first state the bound on
∆t`1pS, zq in terms of ∆tpS, zq, and other relevant quanti-
ties and then unravel the recursion. As in the convex case,
we distinguish two cases: 1) SGD encounters the perturbed
point at step t, that is t “ i, and 2) the current point is
the same in S and Spiq, so t ‰ i. For the first case, we
will use worst-case boundedness of Gt, Corollary 1, that is,
}GtpwS,tq ´GtpwSpiq,tq} ď δtpS, zq ` 2αtL . To handle
the second case we will use Lemma 6, namely,
›

›GtpwS,tq ´GtpwSpiq,tq
›

› ď p1` αtξtpS, zqq δtpS, zq .

In addition, as a safety measure we will also take into ac-
count that the gradient update rule is at most p1 ` αtβq-
expansive by Lemma 1. So we will work with the function
ψtpS, zq :“ min tξtpS, zq, βu instead of ξtpS, zq. and de-
compose the expectation w.r.t. A for a step t. Noting that
SGD encounters the perturbed example with probability 1

m ,

∆t`1pS, zq ď

ˆ

1´
1

m

˙

p1` αtψtpS, zqq∆tpS, zq

`
1

m
p2αtL`∆tpS, zqq

“

ˆ

1`

ˆ

1´
1

m

˙

αtψtpS, zq

˙

∆tpS, zq `
2αtL

m

ď exp pαtψtpS, zqq∆tpS, zq `
2αtL

m
, (15)

where the last inequality follows from 1`x ď exppxq. This
inequality is not overly loose for x P r0, 1s, and, in our case
it becomes instrumental in handling the recursion.

Now, observe that relation xt`1 ď atxt ` bt with xt0 “
0 unwinds from T to t0 as xT ď

řT
t“t0`1 bt

śT
k“t`1 ak.

Consequently, having ∆t0pS, zq “ 0, we unwind (15) to get

∆T pS, zq ď
T
ÿ

t“t0`1

˜

T
ź

k“t`1

exp

ˆ

cψkpS, zq

k

˙

¸

2cL

mt

“

T
ÿ

t“t0`1

exp

˜

c
T
ÿ

k“t`1

ψkpS, zq

k

¸

2cL

mt
. (16)

2) Bounding Erexpp¨ ¨ ¨ qs. We take expectation w.r.t. S
and z on both sides and focus on the expectation of the
exponential in (16). First, introduce µk :“ ES,zrψkpS, zqs,
and proceed as

E
S,z

«

exp

˜

c
T
ÿ

k“t`1

ψkpS, zq

k

¸ff

“ E
S,z

«

exp

˜

c
T
ÿ

k“t`1

ψkpS, zq ´ µk
k

¸ff

exp

˜

c
T
ÿ

k“t`1

µk
k

¸

.

(17)
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Observe that zero-mean version of ψkpS, zq is bounded as

T
ÿ

k“t`1

|ψkpS, zq ´ µk|

k
ď 2β lnpT q ,

and assume the setting of c as c ď 1
2p2β lnpT qq2 . By Proposi-

tion 1, we have

E

«

exp

˜

c
T
ÿ

k“t`1

ψkpS, zq ´ µk
k

¸ff

ď exp

¨

˝c2 E

»

–

˜

T
ÿ

k“t`1

ψkpS, zq ´ µk
k

¸2
fi

fl

˛

‚

“ exp

¨

˝

c

2
E

»

–

˜

1

2β lnpT q

T
ÿ

k“t`1

ψkpS, zq ´ µk
k

¸2
fi

fl

˛

‚

ď exp

˜

c

2
E

«ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

k“t`1

ψkpS, zq ´ µk
k

ˇ

ˇ

ˇ

ˇ

ˇ

ff¸

ď exp

˜

c

2

T
ÿ

k“t`1

E r|ψkpS, zq ´ µk|s
k

¸

ď exp

˜

c
T
ÿ

k“t`1

µk
k

¸

.

Getting back to (17) we conclude that

E
S,z

«

exp

˜

c
T
ÿ

k“t`1

ψkpS, zq

k

¸ff

ď exp

˜

c
T
ÿ

k“t`1

2µk
k

¸

.

(18)

Next, we give an upper-bound on µk, that is µk ď

min tβ,ES,zrξkpS, zqsu. Finally, we bound ES,zrξkpS, zqs
using the second result of Lemma 6, which holds for any
k P rT s, to get that µk ď γ, with γ defined in the statement
of the theorem.

3) Tuning of t0. Now we turn our attention back to (16).
Considering that we took an expectation w.r.t. the data, we
use (18) and the fact that µk ď γ to get that

E
S,z
r∆T pS, zqs ď

T
ÿ

t“t0`1

exp

˜

2cγ
T
ÿ

k“t`1

1

k

¸

2cL

mt

ď

T
ÿ

t“t0`1

exp

ˆ

2cγ ln

ˆ

T

t

˙˙

2cL

mt

“
2cL

m

`

T 2cγ
˘

T
ÿ

t“t0`1

t´2cγ´1

ď
1

2cγ

2cL

m

ˆ

T

t0

˙2cγ

.

Plug the above into (14) to get

E
S,z

E
A

“

fpwS,T , zq ´ fpwSpiq,T , zq
‰

ď
L2

γm

ˆ

T

t0

˙2cγ

` r
t0
m
. (19)

Let q “ 2cγ. Then, setting

t0 “

ˆ

2cL2

r

˙

1
1`q

T
q

1`q

minimizes (19). Plugging t0 back we get that (19) equals to

1` 1
q

m

`

2cL2
˘

1
1`q prT q

q
1`q .

This completes the proof.

1.3.1. OPTIMISTIC RATES FOR LEARNING WITH
NON-CONVEX LOSS FUNCTIONS

Next we will prove an optimistic bound based on Theo-
rem 4, in other words, the bound that demonstrates fast
convergence rate subject to the vanishing empirical risk.
First we will need the following technical statement.

Lemma 7. (Cucker & Zhou, 2007, Lemma 7.2) Let
c1, c2, . . . , cl ą 0 and s ą q1 ą q2 ą . . . ą ql´1 ą 0.
Then the equation

xs ´ c1x
q1 ´ c2x

q2 ´ ¨ ¨ ¨ ´ cl´1x
ql´1 ´ cl “ 0

has a unique positive solution x‹. In addition,

x‹ ď max
!

plc1q
1

s´q1 , plc2q
1

s´q2 , ¨ ¨ ¨ , plcl´1q
1

s´ql´1 , plclq
1
s

)

.

Next we prove a useful technical lemma similarly as
in (Orabona, 2014, Lemma 7).

Lemma 8. Let a, c ą 0 and 0 ă α ă 1. Then the inequality

x´ axα ´ c ď 0

implies

x ď max
!

2
α

1´α a
1

1´α , p2cq
α
a
)

` c .

Proof. Consider a function hpxq “ x´ axα ´ c. Applying
Lemma 7 with s “ 1, l “ 2, c1 “ a, c2 “ c, and q1 “ α
we get that hpxq “ 0 has a unique positive solution x‹ and

x‹ ď max
!

p2aq
1

1´α , 2c
)

. (20)

Moreover, the inequality hpxq ď 0 is verified for x “ 0, and
limxÑ`8 hpxq “ `8, so we have that hpxq ď 0 implies
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x ď x‹. Now, using this fact and the fact that hpx‹q “ 0,
we have that

x ď x‹ “ a px‹q
α
` c ,

and upper-bounding x‹ by (20) we finally have

x ď amax
!

p2aq
α

1´α , p2cq
α
)

` c ,

which completes the proof.

Proof of Corollary 2. Consider Theorem 4 and observe that
it verifies condition of Lemma 8 with x “ ES,A rRpASqs,
c “ ES,A

”

pRSpASq
ı

, α “ cγ
1`cγ , and

a “
1` 1

cγ

m

`

2cL2
˘

1
1`cγ T

cγ
1`cγ .

Note that α{p1´ αq “ cγ and 1{p1´ αq “ 1` cγ. Then,
we obtain that

E
S,A

”

RpASq ´ pRSpASq
ı

ď max

#

2cγ

˜

1` 1
cγ

m

¸1`cγ
`

2cL2
˘

T cγ ,

ˆ

2 E
S,A

”

pRSpASq
ı

˙

cγ
1`cγ

˜

1` 1
cγ

m

`

2cL2
˘

1
1`cγ T

cγ
1`cγ

¸+

“ max

#

ˆ

2`
2

cγ

˙1`cγ
`

cL2
˘

ˆ

T cγ

m1`cγ

˙

,

1` 1
cγ

m

`

2cL2
˘

1
1`cγ

ˆ

2 E
S,A

”

pRSpASq
ı

¨ T

˙

cγ
1`cγ

+

.

This completes the proof.

Proof of Proposition 1. Consider minimizing the bound
given by Corollary 1 (in the submission file) over a dis-
crete set of source hypotheses twsrc

k u
K
k“1,

min
kPrKs

εpD,wsrc
k q

ď min
kPrKs

O

˜

1` 1
cγk

m
pRpwsrc

k q ¨ T q
cγk

1`cγk

¸

, (21)

and let

γk “ O
´

E
z„D

“

}∇2fpwsrc
k , zq}2

‰

`

b

Rpwsrc
k q

¯

,

pγk “
1

m

m
ÿ

i“1

}∇2fpwsrc
k , ziq}2 `

b

pRSpw
src
k q .

By Hoeffding inequality, with high probability, we have that
|γk ´ pγk| ď O

´

1
4
?
m

¯

. Now we further upper bound (21)

by upper bounding Rpwsrc
k q and apply union bound to get

min
kPrKs

εpD,wsrc
k q

ď min
kPrKs

O

¨

˝

ˆ

1`
1

cpγ´k

˙

pRSpw
src
k q

cpγ
`
k

1`cpγ
`
k ¨

a

logpKq

m
1

1`cpγ
`
k

˛

‚ ,

where pγ˘k “ pγk ˘
1

4
?
m

. This completes the proof.
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