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Abstract

We establish a data-dependent notion of algo-
rithmic stability for Stochastic Gradient Descent
(SGD), and employ it to develop novel general-
ization bounds. This is in contrast to previous
distribution-free algorithmic stability results for
SGD which depend on the worst-case constants.
By virtue of the data-dependent argument, our
bounds provide new insights into learning with
SGD on convex and non-convex problems. In
the convex case, we show that the bound on the
generalization error depends on the risk at the
initialization point. In the non-convex case, we
prove that the expected curvature of the objective
function around the initialization point has cru-
cial influence on the generalization error. In both
cases, our results suggest a simple data-driven
strategy to stabilize SGD by pre-screening its ini-
tialization. As a corollary, our results allow us
to show optimistic generalization bounds that ex-
hibit fast convergence rates for SGD subject to a
vanishing empirical risk and low noise of stochas-
tic gradient.

1. Introduction
Stochastic gradient descent (SGD) has become one of the
workhorses of modern machine learning. In particular, it
is the optimization method of choice for training highly
complex and non-convex models, such as neural networks.
When it was observed that these models generalize better
(suffer less from overfitting) than classical machine learning
theory suggests, a large theoretical interest emerged to ex-
plain this phenomenon. Given that SGD at best finds a local
minimum of the non-convex objective function, it has been
argued that all such minima might be equally good. How-
ever, at the same time, a large body of empirical work and
tricks of trade, such as early stopping, suggests that in prac-
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tice one might not even reach a minimum, yet nevertheless
observes excellent performance.

In this work we follow an alternative route that aims to
directly analyze the generalization ability of SGD by study-
ing how sensitive it is to small perturbations in the training
set. This is known as algorithmic stability approach (Bous-
quet & Elisseeff, 2002) and was used recently (Hardt et al.,
2016) to establish generalization bounds for both convex
and non-convex learning settings. To do so they employed
a rather restrictive notion of stability that does not depend
on the data, but captures only intrinsic characteristics of the
learning algorithm and global properties of the objective
function. Consequently, their analysis results in worst-case
guarantees that in some cases tend to be too pessimistic. As
recently pointed out in (Zhang et al., 2017), deep learning
might indeed be such a case, as this notion of stability is
insufficient to give deeper theoretical insights, and a less
restrictive one is desirable.

As our main contribution in this work we establish that a
data-dependent notion of algorithmic stability, very similar
to the On-Average Stability (Shalev-Shwartz et al., 2010),
holds for SGD when applied to convex as well as non-
convex learning problems. As a consequence we obtain new
generalization bounds that depend on the data-generating
distribution and the initialization point of an algorithm. For
convex loss functions, the bound on the generalization error
is essentially multiplicative in the risk at the initialization
point when noise of stochastic gradient is not too high. For
the non-convex loss functions, besides the risk, it is also crit-
ically controlled by the expected second-order information
about the objective function at the initialization point. We
further corroborate our findings empirically and show that,
indeed, the data-dependent generalization bound is tighter
than the worst-case counterpart on non-convex objective
functions. Finally, the nature of the data-dependent bounds
allows us to state optimistic bounds that switch to the faster
rate of convergence subject to the vanishing empirical risk.

In particular, our findings justify the intuition that SGD is
more stable in less curved areas of the objective function
and link it to the generalization ability. This also backs up
numerous empirical findings in the deep learning literature
that solutions with low generalization error occur in less
curved regions. At the same time, in pessimistic scenarios,
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our bounds are no worse than those of (Hardt et al., 2016).

Finally, we exemplify an application of our bounds, and
propose a simple yet principled transfer learning scheme
for the convex and non-convex case, which is guaranteed
to transfer from the best source of information. In addition,
this approach can also be used to select a good initialization
given a number of random starting positions. This is a theo-
retically sound alternative to the purely random commonly
used in non-convex learning.

The rest of the paper is organized as follows. We revisit the
connection between stability and generalization of SGD in
Section 3 and introduce a data-dependent notion of stability
in Section 4. We state the main results in Section 5, in
particular, Theorem 3 for the convex case, and Theorem 4
for the non-convex one. Next we demonstrate empirically
that the bound shown in Theorem 4 is tighter than the worst-
case one in Section 5.2.1. Finally, we suggest application
of these bounds by showcasing principled transfer learning
approaches in Section 5.3, and we conclude in Section 7.

2. Related Work
Algorithmic stability has been a topic of interest in learning
theory for a long time, however, the modern approach on the
relationship between stability and generalization goes back
to the milestone work of (Bousquet & Elisseeff, 2002). They
analyzed several notions of stability, which fall into two cat-
egories: distribution-free and distribution-dependent ones.
The first category is usually called uniform stability and
focuses on the intrinsic stability properties of an algorithm
without regard to the data-generating distribution. Uniform
stability was used to analyze many algorithms, including
regularized Empirical Risk Minimization (ERM) (Bousquet
& Elisseeff, 2002), randomized aggregation schemes (Elis-
seeff et al., 2005), and recently SGD by (Hardt et al., 2016;
London, 2016), and (Poggio et al., 2011). Despite the fact
that uniform stability has been shown to be sufficient to
guarantee learnability, it can be too pessimistic, resulting in
worst-case rates.

In this work we are interested in the data-dependent behav-
ior of SGD, thus the emphasis will fall on the distribution-
dependent notion of stability, known as on-average stability,
explored throughly in (Shalev-Shwartz et al., 2010). The
attractive quality of this less restrictive stability type is that
the resulting bounds are controlled by how stable the algo-
rithm is under the data-generating distribution. For instance,
in (Bousquet & Elisseeff, 2002) and (Devroye & Wagner,
1979), the on-average stability is related to the variance of an
estimator. In (Shalev-Shwartz & Ben-David, 2014, Sec. 13),
the authors show risk bounds that depend on the expected
empirical risk of a solution to the regularized ERM. In turn,
one can exploit this fact to state improved optimistic risk

bounds, for instance, ones that exhibit fast-rate regimes (Ko-
ren & Levy, 2015; Gonen & Shalev-Shwartz, 2017), or even
to design enhanced algorithms that minimize these bounds
in a data-driven way, e.g. by exploiting side information
as in transfer (Kuzborskij & Orabona, 2013; Ben-David &
Urner, 2013) and metric learning (Perrot & Habrard, 2015).
Here, we mainly focus on the later direction in the context of
SGD: how stable is SGD under the data-generating distribu-
tion given an initialization point? We also touch the former
direction by taking advantage of our data-driven analysis
and show optimistic bounds as a corollary.

We will study the on-average stability of SGD for both con-
vex and non-convex loss functions. In the convex setting,
we will relate stability to the risk at the initialization point,
while previous data-driven stability arguments usually con-
sider minimizers of convex ERM rather than a stochastic
approximation (Shalev-Shwartz & Ben-David, 2014; Koren
& Levy, 2015). Beside convex problems, our work also
covers the generalization ability of SGD on non-convex
problems. Here, we borrow techniques of (Hardt et al.,
2016) and extend them to the distribution-dependent setting.
That said, while bounds of (Hardt et al., 2016) are stated in
terms of worst-case quantities, ours reveal new connections
to the data-dependent second-order information. These new
insights also partially justify empirical observations in deep
learning about the link between the curvature and the gener-
alization error (Hochreiter & Schmidhuber, 1997; Keskar
et al., 2017; Chaudhari et al., 2017). At the same time,
our work is an alternative to the theoretical studies of neu-
ral network objective functions (Choromanska et al., 2015;
Kawaguchi, 2016), as we focus on the direct connection
between the generalization and the curvature.

In this light, our work is also related to non-convex opti-
mization by SGD. Literature on this subject typically studies
rates of convergence to the stationary points (Ghadimi &
Lan, 2013; Allen-Zhu & Hazan, 2016; Reddi et al., 2016),
and ways to avoid saddles (Ge et al., 2015; Lee et al., 2016).
However, unlike these works, and similarly to (Hardt et al.,
2016), we are interested in the generalization ability of
SGD, and thanks to the stability approach, involvement of
stationary points in our analysis is not necessary.

Finally, we propose an example application of our findings
in Transfer Learning (TL). For instance, by controlling the
stability bound in a data-driven way, one can choose an
initialization that leads to improved generalization. This
is related to TL where one transfers from pre-trained mod-
els (Kuzborskij & Orabona, 2016; Tommasi et al., 2014;
Pentina & Lampert, 2014; Ben-David & Urner, 2013), es-
pecially popular in deep learning due to its data-demanding
nature (Galanti et al., 2016). Literature on this topic is
mostly focused on the ERM setting and PAC-bounds, while
our analysis of SGD yields such guarantees as a corollary.
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3. Stability of Stochastic Gradient Descent
First, we introduce definitions used in the rest of the paper.

3.1. Definitions

We will denote with small and capital bold letters re-
spectively column vectors and matrices, e.g., a “

ra1, a2, . . . , ads
T P Rd and A P Rd1ˆd2 , }a} is under-

stood as a Euclidean norm and }A}2 as the spectral norm.
We denote enumeration by rns “ t1, . . . , nu for n P N.

We indicate an example space by Z and its member by
z P Z . For instance, in a supervised setting Z “ X ˆ

Y , such that X is the input and Y is the output space of
a learning problem. We assume that training and testing
examples are drawn iid from a probability distribution D
over Z . In particular, we will denote the training set as
S “ tziu

m
i“1 „ Dm.

For a parameter space H, we define a learning algorithm
as a map A : Zm ÞÑ H and for brevity we will use the
notation AS “ ApSq. In the following we assume that
H Ď Rd. To measure the accuracy of a learning algorithm
A, we have a loss function fpw, zq, which measures the
cost incurred by predicting with parameters w P H on an
example z. The risk of w, with respect to the distribution D,
and the empirical risk given a training set S are defined as

Rpwq :“ E
z„D

rfpw, zqs, and pRSpwq :“
1

m

m
ÿ

i“1

fpw, ziq .

Finally, define R‹ :“ infwPHRpwq.

3.2. Uniform Stability and Generalization

On an intuitive level, a learning algorithm is said to be sta-
ble whenever a small perturbation in the training set does
not affect its outcome too much. Of course, there is a num-
ber of ways to formalize the perturbation and the extent of
the change in the outcome, and we will discuss some of
them below. The most important consequence of a stable
algorithm is that it generalizes from the training set to the
unseen data sampled from the same distribution. In other
words, the difference between the risk RpASq and the em-
pirical risk pRSpASq of the algorithm’s output is controlled
by the quantity that captures how stable the algorithm is.
So, to observe good performance, or a decreasing true risk,
we must have a stable algorithm and decreasing empirical
risk (training error), which usually comes by design of the
algorithm. In this work we focus on the stability of the
Stochastic Gradient Descent (SGD) algorithm, and thus, as
a consequence, we study its generalization ability.

Recently, (Hardt et al., 2016) used a stability argument to
prove generalization bounds for learning with SGD. Specifi-
cally, the authors extended the notion of the uniform stability

originally proposed by (Bousquet & Elisseeff, 2002), to ac-
commodate randomized algorithms.

Definition 1 (Uniform stability). A randomized algorithm
A is ε-uniformly stable if for all datasets S, Spiq P Zm such
that S and Spiq differ in the i-th example, we have

sup
zPZ,iPrms

!

E
A
rfpAS , zq ´ fpASpiq , zqs

)

ď ε .

Since SGD is a randomized algorithm, we have to cope with
two sources of randomness: the data-generating process and
the randomization of the algorithm A itself, hence we have
statements in expectation. The following theorem of (Hardt
et al., 2016) shows that the uniform stability implies gener-
alization in expectation.

Theorem 1. Let A be ε-uniformly stable. Then,
ˇ

ˇ

ˇ

ˇ

E
S,A

”

pRSpASq ´RpASq
ı

ˇ

ˇ

ˇ

ˇ

ď ε .

Thus it suffices to characterize the uniform stability of an al-
gorithm to state a generalization bound. In particular, (Hardt
et al., 2016) showed generalization bounds for SGD under
different assumptions on the loss function f . Despite that
these results hold in expectation, other forms of generaliza-
tion bounds, such as high-probability ones, can be derived
from the above (Shalev-Shwartz et al., 2010).

Apart from SGD, uniform stability has been used before
to prove generalization bounds for many learning algo-
rithms (Bousquet & Elisseeff, 2002). However, these
bounds typically suggest worst-case generalization rates,
and rather reflect intrinsic stability properties of an algo-
rithm. In other words, uniform stability is oblivious to
the data-generating process and any other side information,
which might reveal scenarios where generalization occurs
at a faster rate. In turn, these insights could motivate the
design of improved learning algorithms. In the following we
address some limitations of analysis through uniform stabil-
ity by using a less restrictive notion of stability. We extend
the setting of (Hardt et al., 2016) by proving data-dependent
stability bounds for convex and non-convex loss functions.
In addition, we also take into account the initialization point
of an algorithm as a form of supplementary information,
and we dedicate special attention to its interplay with the
data-generating distribution. Finally, we discuss situations
where one can explicitly control the stability of SGD in a
data-dependent way.

4. Data-dependent Stability Bounds for SGD
In this section we describe a notion of data-dependent al-
gorithmic stability, that allows us to state generalization
bounds which depend not only on the properties of the learn-
ing algorithm, but also on the additional parameters of the
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algorithm. We indicate such additional parameters by θ,
and therefore we denote stability as a function εpθq. In par-
ticular, in the following we will be interested in scenarios
where θ describes the data-generating distribution and the
initialization point of SGD.

Definition 2 (On-Average stability). A randomized algo-
rithm A is εpθq-on-average stable if it is true that

sup
iPrms

"

E
A

E
S,z
rfpAS , zq ´ fpASpiq , zqs

*

ď εpθq ,

where S iid
„ Dm and Spiq is its copy with i-th example re-

placed by z iid
„D.

Our definition of on-average stability resembles the notion
introduced by (Shalev-Shwartz et al., 2010). The difference
lies in the fact that we take supremum over index of replaced
example. A similar notion was also used by (Bousquet &
Elisseeff, 2002) and later by (Elisseeff et al., 2005) for anal-
ysis of a randomized aggregation schemes, however their
definition involves absolute difference of losses. The depen-
dence on θ also bears similarity to recent work of (London,
2016), however, there, it is used in the context of uniform sta-
bility. The following theorem shows that on-average -stable
random algorithm is guaranteed to generalize in expectation.

Theorem 2. Let an algorithm A be εpθq-on-average stable.
Then,

E
S
E
A

”

RpASq ´ pRSpASq
ı

ď εpθq .

5. Main Results
Before presenting our main results in this section, we
discuss algorithmic details and assumptions. We will
study the following variant of SGD: given a training set
S “ tziu

m
i“1

iid
„ Dm, step sizes tαtu

T
t“1, random indices

I “ tjtu
T
t“1, and an initialization point w1, perform up-

dates

wt`1 “ wt ´ αt∇fpwt, zjtq

for T ď m steps. Moreover we will use the notation wS,t

to indicate the output of SGD ran on a training set S, at
step t. We assume that the indices in I are sampled from
the uniform distribution over rms without replacement, and
that this is the only source of randomness for SGD. In
practice this corresponds to permuting the training set before
making a pass through it, as it is commonly done in practical
applications. We also assume that the variance of stochastic
gradients obeys

E
S,z

”

}∇fpwS,t, zq ´∇RpwS,tq}
2
ı

ď σ2 @t P rT s .

Next, we introduce statements about the loss functions f
used in the following.

Definition 3 (Lipschitz f ). A loss function f is L-Lipschitz
if }∇fpw, zq} ď L, @w P H and @z P Z . Note that this
also implies that |fpw, zq ´ fpv, zq| ď L}w ´ v} .

Definition 4 (Smooth f ). A loss function is β-smooth if
@w,v P H and @z P Z , }∇fpw, zq ´ ∇fpv, zq} ď
β}w ´ v} , which also implies fpw, zq ´ fpv, zq ď
∇fpv, zqJpw ´ vq ` β

2 }w ´ v}2 .

Definition 5 (Lipschitz Hessians). A loss function f has a ρ-
Lipschitz Hessian if @w,v P H and @z P Z , }∇2fpw, zq´
∇2fpv, zq}2 ď ρ}w ´ v} .

The last condition is occasionally used in analysis of
SGD (Ge et al., 2015) and holds whenever f has a bounded
third derivative. All presented theorems assume that the
loss function is non-negative, Lipschitz, and β-smooth. Ex-
amples of such commonly used loss functions are the lo-
gistic/softmax losses and neural networks with sigmoid ac-
tivations. Convexity of loss functions or Lipschitzness of
Hessians will only be required for some results, and we will
denote it when necessary. Proofs for all the statements in
this section are given in the arXiv version of the paper1.

5.1. Convex Losses

First, we present a new and data-dependent stability result
for convex losses.

Theorem 3. Assume that f is convex, and that SGD’s step
sizes satisfy αt “ c?

t
ď 1

β , @t P rT s. Then SGD is
εpD,w1q-on-average stable with

εpD,w1q “ O

˜

a

c pRpw1q ´R‹q ¨
4
?
T

m
` cσ

?
T

m

¸

.

Under the same assumptions, taking step size of order
Op1{

?
tq, Theorem 3.7 of (Hardt et al., 2016) implies a

uniform stability bound ε “ Op
?
T {mq. Our bound differs

since it involves a multiplicative risk at the initialization
point. Thus, our bound corroborates the intuition that when-
ever we start at a good location of the objective function,
the algorithm is more stable and thus generalizes better.
However, this is only the case, whenever the variance of
stochastic gradient σ2 is not too large. In the deterministic
case, and of Rpw1q “ R‹, the theorem confirms that SGD,
in expectation, does not need to make any updates and is
therefore perfectly stable. On the other hand, when the vari-
ance σ2 is large enough to make the second summand in
Theorem 3 dominant, the bound does not offer improvement
compared to (Hardt et al., 2016). Note, that a result of this
type cannot be obtained through the more restrictive uni-
form stability, precisely because such bounds on the stability
must hold even for a worst-case choice of data distribution
and initialization. In contrast, the notion of stability we

1https://arxiv.org/abs/1703.01678

https://arxiv.org/abs/1703.01678
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employ depends on the data-generating distribution, which
allowed us to introduce dependency on the risk.

Furthermore, consider that we start at arbitrary location w1:
assuming that the loss function is bounded for a concrete H
and Z , the rate of our bound up to a constant is no worse
than that of (Hardt et al., 2016). Finally, one can always
tighten this result by taking the minimum of two bounds.

5.2. Non-convex Losses

Now we state a new stability result for non-convex losses.

Theorem 4. Assume that fp¨, zq P r0, 1s and has a ρ-
Lipschitz Hessian, and that step sizes of a form αt “

c
t

satisfy c ď min
!

1
β ,

1
4p2β lnpT qq2

)

. Then SGD is εpD,w1q-
on-average stable with

εpD,w1q ď
1` 1

cγ

m

`

2cL2
˘

1
1`cγ

ˆ

E
S,A
rRpASqs ¨ T

˙

cγ
1`cγ

,

(1)

where

γ :“ Õ
´

min
!

β, E
z

“
›

›∇2fpw1, zq
›

›

2

‰

`∆‹1,σ2

)¯

, (2)

∆‹1,σ2 :“ ρ
´

cσ `
a

c pRpw1q ´R‹q
¯

.

In particular, γ characterizes how the curvature at the ini-
tialization point affects stability, and hence the general-
ization error of SGD. Since γ heavily affects the rate
of convergence in (1), and in most situations smaller γ
yields higher stability, we now look at a few cases of
its behavior. Consider a regime such that γ is of the or-
der Θ̃

´

Er}∇2fpw1, zq}2s `
a

Rpw1q ` σ
¯

, or in other
words, that stability is controlled by the curvature, the risk
of the initialization point w1, and the variance of the stochas-
tic gradient σ2. This suggests that starting from a point in a
less curved region with low risk should yield higher stability,
and therefore as predicted by our theory, allow for faster
generalization. In addition, we observe that the considered
stability regime offers a principled way to pre-screen a good
initialization point in practice, by choosing the one that
minimizes spectral norm of the Hessian and the risk.

Next, we focus on a more specific case. Suppose
that we choose a step size αt “ c

t such that γ “

Θ̃
`

Er}∇2fpw1, zq}2s
˘

, yet not too small, so that the empir-
ical risk can still be decreased. Then, stability is dominated
by the curvature around w1. Indeed, lower generalization
errors on non-convex problems, such as training deep neural
networks, have been observed empirically when SGD is
actively guided (Hochreiter & Schmidhuber, 1997; Good-
fellow et al., 2016; Chaudhari et al., 2017) or converges to
solutions with low curvature (Keskar et al., 2017). How-
ever, to the best of our knowledge, Theorem 4 is the first

to establish a theoretical link between the curvature of the
loss function and the generalization ability of SGD in a
data-dependent sense.

Theorem 4 immediately implies the following statement that
further reinforces the effect of the initialization point on the
generalization error, assuming that ESrRpASqs ď Rpw1q.

Corollary 1. Under conditions of Theorem 4 we have that
SGD is εpD,w1q-on-average stable with

εpD,w1q “ O

˜

1` 1
cγ

m
pRpw1q ¨ T q

cγ
1`cγ

¸

. (3)

We take a moment to discuss the role of the risk term
in pRpw1q ¨ T q

cγ
1`cγ . Observe that εpD,w1q Ñ 0 as

Rpw1q Ñ 0, in other words, the generalization error ap-
proaches zero as the risk of the initialization point vanishes.
This is an intuitive behavior, however, uniform stability does
not capture this due to its distribution-free nature. Finally,
we note that (Hardt et al., 2016, Theorem 3.8) showed a
bound similar to (1), however, in place of γ their bound has
a Lipschitz constant of the gradient. The crucial difference
lies in term γ which is now not merely a Lipschitz constant,
but rather depends on the data-generating distribution and
initialization point of SGD. We compare to their bound by
considering the worst case scenario, namely, that SGD is
initialized in a point with high curvature, or altogether, that
the objective function is highly curved everywhere. Then,
at least our bound is no worse than the one of (Hardt et al.,
2016), since γ ď β. Finally, it should be noted that our
bound can be compared to the one of (Hardt et al., 2016)
only in a setting of a single pass. In a multiple-pass case,
data-dependent analysis in a current form would not hold,
since the output of SGD would not be independent from a
newly observed example after the first pass. On the other
hand, our results focus on the gains due to data-dependent
initialization.

Theorem 4 also allows us to prove an optimistic generaliza-
tion bound for learning with SGD on non-convex objectives.
Corollary 2. Under conditions of Theorem 4 we have that
the output of SGD obeys

E
S,A

”

RpASq ´ pRSpASq
ı

“

O

˜

1` 1
cγ

m
¨max

#

ˆ

E
S,A

”

pRSpASq
ı

¨ T

˙

cγ
1`cγ

,

ˆ

T

m

˙cγ
+¸

.

An important consequence of Corollary 2, is that for
a vanishing expected empirical risk, in particular for
ES,Ar pRSpASqs “ O

`

T cγ

m1`cγ

˘

, the generalization error be-
haves as O

`

T cγ

m1`cγ

˘

. Considering the full pass, that is
m “ OpT q, we have an optimistic generalization error
of order O p1{mq instead of Opm´

1
1`cγ q. We note that
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Figure 1. Comparison of data-dependent and uniform generaliza-
tion bounds evaluated by training a neural network.

PAC bounds with similar optimistic message (although not
directly comparable), but without curvature information can
also be obtained through empirical Bernstein bounds as
in (Maurer & Pontil, 2009). However, a PAC bound does
not suggest a way to minimize non-convex empirical risk in
general, where SGD is known to work reasonably well.

5.2.1. TIGHTNESS OF NON-CONVEX BOUNDS

Next we empirically assess the tightness of our non-convex
generalization bounds on real data. In the following exper-
iment we train a neural network with three convolutional
layers interlaced with max-pooling, followed by the fully
connected layer with 16 units, on the MNIST dataset. This
totals in a model with 18K parameters. Figure 1 compares
our data-dependent bound (1) to the distribution-free one
of (Hardt et al., 2016, Theorem 3.8). As as a reference we
also include an empirical estimate of the generalization error
taken as an absolute difference of the validation and train-
ing average losses. Since our bound also depends on the
initialization point, we plot (1) for multiple “warm-starts”,
ie.with SGD initialized from a pre-trained position. We
consider 7 such warm-starts at every 200 steps, and report
data-dependent quantities used to compute (1) just beneath
the graph. Our first observation is that, clearly, the data-
dependent bound gives tighter estimate, by roughly one
order of magnitude. Second, simulating start from a pre-
trained position suggests even tighter estimates: we suspect
that this is due to decreasing validation error which is used
as an empirical estimate for Rpw1q which affects bound (1).

We compute an empirical estimate of the expected Hes-
sian spectral norm by the power iteration method using an
efficient Hessian-vector multiplication method (Pearlmut-
ter, 1994). Since bounds depend on constants L, β, and
ρ, we estimate them by tracking maximal values of the

gradient and Hessian norms throughout optimization. We
compute bounds with estimates pL “ 78.72, pβ “ 1692.28,
pρ “ 3823.73, and c “ 10´3.

5.3. Application to Transfer Learning

One example application of data-dependent bounds pre-
sented before lies in Transfer Learning (TL), where we are
interested in achieving faster generalization on a target task
by exploiting side information that originates from different
but related source tasks. The literature on TL explored many
ways to do so, and here we will focus on the one that is most
compatible with our bounds. More formally, suppose that
the target task at hand is characterized by a joint probability
distribution D, and as before we have a training set S iid

„Dm.
Some TL approaches also assume access to the data sampled
from the distributions associated with the source tasks. Here
we follow a conservative approach – instead of the source
data, we receive a set of source hypotheses twsrc

k u
K
k“1 Ă H,

trained on the source tasks. The goal of a learner is to come
up with a target hypothesis, which in the optimistic sce-
nario generalizes better by relying on source hypotheses.
In the TL literature this is known as Hypothesis Transfer
Learning (HTL) (Kuzborskij & Orabona, 2016), that is, we
transfer from the source hypotheses which act as a proxy to
the source tasks and the risk Rpwsrc

k q quantifies how much
source and target tasks are related. In the following we will
consider SGD for HTL, where the source hypotheses act as
initialization points. First, consider learning with convex
losses: Theorem 3 depends on Rpw1q, thus it immediately
quantifies the relatedness of source and target tasks. So it is
enough to pick the point that minimizes the stability bound
to transfer from the most related source. Then, bounding
Rpwsrc

k q by pRSpw
src
k q through Hoeffding bound along with

union bound gives with high probability that

min
kPrKs

εpD,wsrc
k q ď min

kPrKs
O

˜

pRSpw
src
k q `

c

logpKq

m

¸

.

Hence, the most related source is the one that simply mini-
mizes empirical risk. Similar conclusions where drawn in
HTL literature, albeit in the context of ERM. Matters are
slightly more complicated in the non-convex case. We take
a similar approach, however, now we minimize stability
bound (3), and for the sake of simplicity assume that we
make a full pass over the data, so T “ m. Minimizing the
following empirical upper bound select the best source.

Proposition 1. Let pγ˘k “ Θ
´

1
m

řm
i“1 }∇2fpwsrc

k , ziq}2 `
b

pRSpw
src
k q ˘

4
a

logpKq{m
¯

. Then with high probability
the generalization error of wsrc

k is bounded by

min
kPrKs

O

¨

˝

ˆ

1`
1

cpγ´k

˙

pRSpw
src
k q

cpγ
`
k

1`cpγ
`
k ¨

a

logpKq

m
1

1`cpγ
`
k

˛

‚ .
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Note that pγ˘k involves estimation of the spectral norm of the
Hessian, which is computationally cheaper to evaluate com-
pared to the complete Hessian matrix (Pearlmutter, 1994).
This is particularly relevant for deep learning, where compu-
tation of the Hessian matrix can be prohibitively expensive.

6. Proof Outline of Theorem 4
In this section we discuss the proof of Theorem 4, which
bounds data-dependent stability for non-convex losses.

We say that the SGD gradient update rule is an operator
Gt : H ÞÑ H, such that

Gtpwq :“ w ´ αt∇fpw, zitq ,

and it is also a function of the training set S and a random in-
dex set I . Then, wt`1 “ Gtpwtq, throughout t “ 1, . . . , T .
Recall the use of notation wS,t to indicate the output of
SGD ran on a training set S, at step t, and define

δtpS, zq :“ }wS,t ´wSpiq,t} .

The following propoperty of Gt will be central to our proof.
Definition 6 (Expansiveness). A gradient update rule is
η-expansive if for all w,v, }Gtpwq´Gtpvq} ď η}w´v} .

The following lemma characterizes expansiveness for the
gradient update rule under different assumptions on f .
Lemma 1 ((Hardt et al., 2016)). Assume that f is β-smooth.
Then, we have that Gt is p1` αtβq-expansive.

The following lemma is similar to Lemma 3.11 of (Hardt
et al., 2016), and is instrumental in bounding the stability
of SGD. However, we make an adjustment and state it in
expectation over the data. Note that it does not require
convexity of the loss function.
Lemma 2. Assume that the loss function fp¨, zq P r0, 1s is
L-Lipschitz for all z. Then, for every t0 P t0, 1, 2, . . .mu
we have that,

E
S,z

E
A

“

fpwS,T , zq ´ fpwSpiq,T , zq
‰

(4)

ď L E
S,z

”

E
A
rδT pS, zq | δt0pS, zq “ 0s

ı

` E
S,A
rRpASqs

t0
m
.

(5)

We spend a moment to highlight the role of conditional ex-
pectation. Observe that we could naively bound (4) by the
Lipschitzness of f , but Lemma 2 follows a more careful ar-
gument. First note that t0 is a free parameter. The expected
distance in (5) between SGD outputs wS,t and wSpiq,t is
conditioned on the fact that at step t0 outputs of SGD are
still the same. This means that the perturbed point is en-
countered after t0. Then, the conditional expectation should
be a decreasing function of t0: the later the perturbation
occurs, the smaller deviation between wS,t and wSpiq,t we
should expect. Eventually we minimize (5) over t0.

6.1. Non-convex Losses

Our proof of a stability bound for non-convex loss functions,
Theorem 4, follows a general outline of (Hardt et al., 2016,
Theorem 3.8). Namely, the outputs of SGD run on a train-
ing set S and its perturbed version Spiq will not differ too
much, because by the time a perturbation is encountered,
the step size has already decayed enough. So, on the one
hand, stabilization is enforced by the diminishing the step
size, and on the other hand, by how much updates expand
the distance between the gradients after the perturbation.
Since (Hardt et al., 2016) work with uniform stability, they
capture the expansiveness of post-perturbation update by
the Lipschitzness of the gradient. In combination with a
recursive argument, their bound has exponential dependency
on the Lipschitz constant of the gradient. We argue that the
Lipschitz continuity of the gradient can be too pessimistic
in general. Instead, we rely on a local data-driven argument:
considering that we initialize SGD at point w1, how much
do updates expand the gradient under the distribution of
interest? The following crucial lemma characterizes such
behavior in terms of the curvature at w1.

Lemma 3. Assume that the loss function fp¨, zq is β-smooth
and that its Hessian is ρ-Lipschitz. Then,
›

›GtpwS,tq ´GtpwSpiq,tq
›

› ď p1` αtξtpS, zqq δtpS, zq

Furthermore, for any t P rT s,

E
S,z
rξtpS, zqs “ Õ

ˆ

E
S,z

“
›

›∇2fpw1, ztq
›

›

2

‰

`∆‹1,σ2

˙

,

∆‹1,σ2 :“ ρ
´

cσ `
a

c pRpw1q ´R‹q
¯

.

Next, we need the following statement.

Proposition 2 (Bernstein-type inequality). Let Z be a zero-
mean real-valued r.v., such that |Z| ď b and ErZ2s ď σ2.
Then for all |c| ď 1

2b , we have that E
“

ecZ
‰

ď ec
2σ2

.

Now we are ready to prove Theorem 4.

Sketch proof of Theorem 4. We start from Lemma 2. Most
of the proof is dedicated to bounding the first term in (5).
We deal with this similarly as in (Hardt et al., 2016). Specif-
ically, we state the bound on EA rδT pS, zq|δt0pS, zq “ 0s
by using a recursion. In our case, however, we also have an
expectation w.r.t. the data, and to avoid complications with
dependencies, we first unroll the recursion for the random
quantities, and only then take the expectation. At this point
the proof crucially relies on the product of exponentials aris-
ing from the recursion, and all relevant random quantities
end up inside of them. We alleviate this by Proposition 2.
Finally, we conclude by minimizing (5) w.r.t. t0. Thus we
have three steps: 1) recursion, 2) bounding Erexpp¨ ¨ ¨ qs,
and 3) tuning of t0.
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1) Recursion. We begin by stating the bound on
EA rδT pS, zq|δt0pS, zq “ 0s by recursion. Thus we will
first state the bound on EA rδt`1pS, zq|δt0pS, zq “ 0s in
terms of EA rδtpS, zq|δt0pS, zq “ 0s, and other relevant
quantities and then unravel the recursion. We distinguish
two cases: 1) SGD encounters the perturbed point at step
t, that is t “ i, and 2) the current point is the same in
S and Spiq, so t ‰ i. For the first case, we will use
worst-case boundedness of Gt, that is, we observe that
}GtpwS,tq ´ GtpwSpiq,tq} ď δtpS, zq ` 2αtL. To handle
the second case we will use Lemma 3, namely,
›

›GtpwS,tq ´GtpwSpiq,tq
›

› ď p1` αtξtpS, zqq δtpS, zq .

In addition, as a safety measure we will also take into ac-
count that the gradient update rule is at most p1 ` αtβq-
expansive by Lemma 1. So we will work with the function
ψtpS, zq :“ min tξtpS, zq, βu instead of ξtpS, zq. Now,
introduce ∆tpS, zq :“ EArδtpS, zq | δt0pS, zq “ 0s, and
decompose the expectation w.r.t. A for a step t. Noting that
SGD encounters the perturbed example with probability 1

m ,

∆t`1pS, zq ď

ˆ

1´
1

m

˙

p1` αtψtpS, zqq∆tpS, zq

`
1

m
p2αtL`∆tpS, zqq

“

ˆ

1`

ˆ

1´
1

m

˙

αtψtpS, zq

˙

∆tpS, zq `
2αtL

m

ď exp pαtψtpS, zqq∆tpS, zq `
2αtL

m
, (6)

where the last inequality follows from 1`x ď exppxq. This
inequality is not overly loose for x P r0, 1s, and, in our case
it becomes instrumental in handling the recursion.

Now, observe that relation xt`1 ď atxt ` bt with xt0 “
0 unwinds from T to t0 as xT ď

řT
t“t0`1 bt

śT
k“t`1 ak.

Consequently, having ∆t0pS, zq “ 0, we unwind (6) to get

∆T pS, zq ď
T
ÿ

t“t0`1

˜

T
ź

k“t`1

exp

ˆ

cψkpS, zq

k

˙

¸

2cL

mt

“

T
ÿ

t“t0`1

exp

˜

c
T
ÿ

k“t`1

ψkpS, zq

k

¸

2cL

mt
. (7)

2) Bounding Erexpp¨ ¨ ¨ qs. We take expectation w.r.t. S
and z on both sides and focus on the expectation of the ex-
ponential in (7). First, introduce µk :“ ES,zrψkpS, zqs, and
observe that the zero-mean version of ψkpS, zq is bounded
as

řT
k“t`1

1
k |ψkpS, zq ´ µk| ď 2β lnpT q. Assuming the

setting of c ď 1
2p2β lnpT qq2 , we apply Proposition 2 and get

E
S,z

«

exp

˜

c
T
ÿ

k“t`1

ψkpS, zq

k

¸ff

ď exp

˜

c
T
ÿ

k“t`1

2µk
k

¸

,

(8)

where we bounded variance by µk thanks to the setting
of c. Next, we give an upper-bound on µk, that is µk ď
min tβ,ES,zrξkpS, zqsu. Finally, we bound ES,zrξkpS, zqs
using the second result of Lemma 3, which holds for any
k P rT s, to get that µk ď γ, with γ defined in (2).

3) Tuning of t0. Now we turn our attention back to (7).
Considering that we took an expectation w.r.t. the data, we
use (8) and the fact that µk ď γ to get that

E
S,z
r∆T pS, zqs ď

T
ÿ

t“t0`1

exp

˜

2cγ
T
ÿ

k“t`1

1

k

¸

2cL

mt

ď

T
ÿ

t“t0`1

exp

ˆ

2cγ ln

ˆ

T

t

˙˙

2cL

mt
ď

L

γm

ˆ

T

t0

˙2cγ

.

Plug the above into (5) to get

E
S,z

E
A

“

fpwS,T , zq ´ fpwSpiq,T , zq
‰

ď
L2

γm

ˆ

T

t0

˙2cγ

`
t0
m
. (9)

Let q “ 2cγ. Then, setting t0 “
`

2cL2
˘

1
1`q T

q
1`q min-

imizes (9). Plugging t0 back we get that (9) equals to
1` 1

q

m

`

2cL2
˘

1
1`q T

q
1`q . This completes the proof.

7. Conclusions and Future Work
In this work we proved data-dependent stability bounds
for SGD and revisited its generalization ability. We pre-
sented novel bounds for convex and non-convex smooth
loss functions, partially controlled by data-dependent quan-
tities, while previous stability bounds for SGD were de-
rived through the worst-case analysis. In particular, for
non-convex learning, we demonstrated theoretically that
generalization of SGD is heavily affected by the expected
curvature around the initialization point. We demonstrated
empirically that our bound is indeed tighter compared to
the uniform one. In addition, our data-dependent analysis
also allowed us to show optimistic bounds on the general-
ization error of SGD, which exhibit fast rates subject to the
vanishing empirical risk of the algorithm’s output.

In future work we further intend to explore our theoreti-
cal findings experimentally and evaluate the feasibility of
the transfer learning based on the second-order information.
Another direction lies in making our bounds adaptive. So far
we have presented bounds that have data-dependent compo-
nents, however the step size cannot be adjusted depending
on the data, e.g. as in (Zhao & Zhang, 2015). This was
partially addressed by (London, 2016), albeit in the context
of uniform stability, and we plan to extend this idea to the
context of data-dependent stability.
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