
Binary Partitions with Approximate Minimum Impurity

Eduardo S. Laber * 1 Marco Molinaro * 1 Felipe de A. Mello Pereira 1

Abstract
The problem of splitting attributes is one of the
main steps in the construction of decision trees. In
order to decide the best split, impurity measures
such as Entropy and Gini are widely used. In prac-
tice, decision-tree inducers use heuristics for find-
ing splits with small impurity when they consider
nominal attributes with a large number of distinct
values. However, there are no known guaran-
tees for the quality of the splits obtained by these
heuristics. To fill this gap, we propose two new
splitting procedures that provably achieve near-
optimal impurity. We also report experiments that
provide evidence that the proposed methods are
interesting candidates to be employed in splitting
nominal attributes with many values during deci-
sion tree/random forest induction.

1. Introduction
Decision Trees as well as ensemble methods that use them
(e.g. Random Forests and Gradient Boosted Trees) are
among the most popular methods for classification tasks. It
is widely known that decision trees, specially small ones,
are easy to interpret while ensemble methods usually yield
to more stable/accurate classifications.

When building a decision tree, in each node, one needs
to address two problems: which attribute shall be used
for branching, and how to split the chosen attribute, i.e.,
which values of the attribute go to each branch. For the
first problem we refer the reader to (Hothorn et al., 2006;
Nowozin, 2012). Here we consider the latter, which is a
well-studied problem (Breiman et al., 1984; Nadas et al.,
1991; Chou, 1991; Burshtein et al., 1992; Coppersmith et al.,
1999; Elomaa & Rousu, 2004). More specifically, we focus
on nominal attributes (i.e. finite set of possible values with
no additional structure such as order).

*Equal contribution 1Departamento de Informática, PUC-
RIO, Brazil. Correspondence to: Eduardo Laber <ed-
uardo.laber1@gmail.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

An important design choice is whether to use multiway
splits or binary splits. One possibility is splitting a nominal
attribute with n distinct values into n branches, one for each
value. When n is large, this option may lead to a severe data
fragmentation, which makes the classification task harder
and increases the risk of data overfit since we may have only
a few examples associated with each branch. Note that any
decision tree obtained via multiway splits can be simulated
by a decision tree that only uses binary splits. Thus, we
focus our study on binary splits.

The standard approach for deciding the split is to search for
‘pure’ partitions of the set of examples, that is, partitions in
which each branch is very homogeneous with respect to the
class distribution of its examples. To measure how impure
each branch is, impurity measures are often employed. An
impurity measure maps a vector u = (u1, . . . , uk), count-
ing how many examples of each class we have in a node
(branch), into a non-negative scalar 1. Arguably, two of the
most classical impurity measures are the Gini impurity

iGini(u) =

k∑
i=1

ui
‖u‖1

(
1− ui
‖u‖1

)
,

which is used in the CART package (Breiman et al., 1984),
and the Entropy impurity

iEntr(u) = −
k∑

i=1

ui
‖u‖1

log

(
ui
‖u‖1

)
,

that, along with its variants, is used in the C4.5 decision tree
inducer (Quinlan, 1992). Given an attribute and an impurity
measure, the goal is then to find a binary split (L∗, R∗) for
the attribute values that induces a binary partition of the set
of examples with minimum weighted impurity, where the
weights are given by the number of examples that lie into
each of the two branches.

For classification tasks with only two classes, Breiman et
al. (Breiman et al., 1984) proposed an algorithm that finds
a partition with minimum weighted impurity in O(n log n)
time for a family of impurity measures that include both Gini
and Entropy. For nominal attributes with a small number of
distinct values n, the best partition can be found in O(2n)

1In the original definition an impurity measure maps a vector
of probabilities into a non-negative scalar.

Binary Partitions with Approximate Minimum Impurity

time by an exhaustive search. However, when k > 2 and
n is large (e.g. states of a country, letters of the alphabet,
breed of an animal), these methods are not effective. Thus,
heuristics are commonly used (Nadas et al., 1991; Chou,
1991; Mehta et al., 1996; Coppersmith et al., 1999; Loh,
2009). Despite the importance of this problem, little is
known about its computational complexity and the quality
(approximation guarantee) of its heuristics. Therefore, our
goal here is contributing to fill this gap.

1.1. Problem Description

Given an impurity measure i (e.g. iGini), define I as I(v) =
‖v‖1 · i(v) for all vectors v. This scaled impurity I is called
frequency-weighted impurity measure in (Coppersmith et al.,
1999) and will be used to formalize our problem.

Consider a nominal attribute A that may take n possi-
ble values a1, . . . , an. The `-ary Partition with Minimum
Weighted Impurity Problem (`-PMWIP) can be described
abstractly as follows. We are given a collection of n vectors
V ⊂ Rk, where the ith coordinate of the jth vector counts
the number of examples in class i for which the attribute A
has value aj . We are also given a scaled impurity measure
I . The goal is to partition V into ` disjoint groups of vec-
tors V1, . . . , V` so as to minimize the sum of the weighted
impurities ∑̀

m=1

I

(∑
v∈Vm

v

)
.

We focus on binary partitions (2-PMWIP) and on a broad
class of impurity measures that includes both Gini and En-
tropy. These impurities have the form

I(v) = ‖v‖1

(
k∑

i=1

f

(
vi
‖v‖1

))
,

where f is a strictly concave function that satisfies a certain
property related to its curvature. The formal definition of
this class is postponed to Section 2.1.

1.2. Our Results

In this paper we propose new splitting procedures that prov-
ably achieve near-optimal impurity. Our starting point is
one of the results presented in (Burshtein et al., 1992; Cop-
persmith et al., 1999) that states that for every instance of
2-PMWIP, where the impurity I satisfies certain conditions,
there exists an optimal binary partition that is induced by a
homogeneous hyperplane in Rk. Building upon this result
we prove that an optimal binary partition can be obtained
by a non-homogeneous hyperplane whose normal direction
belongs to the box [0, 1]k. Then, motivated by this observa-
tion, we propose and analyze two methods that belong to a
family of algorithms that search for binary partitions with

reduced impurity by considering hyperplanes in Rk whose
normal lie in the hypercube {0, 1}k.

Our first algorithm, the Hypercube Cover (HcC for
short), is closely related with the well established Twoing
method proposed in (Breiman et al., 1984). We prove that
HcC has a 2-approximation for every impurity measure
in our class. A drawback of this method, however, is its
running time proportional to 2k. Given this limitation, we
present LargestClassAlone (LCA for short), a simple
algorithm that runs in O(nk + n log n) time and provides a
(3 +

√
3)-approximation for every impurity measure in our

class. This material is covered in Section 3. Furthermore, in
Section 4, we show that the approximation ratio of LCA for
Gini and Entropy impurities is indeed much better, being at
most 2 for the former and at most 3 for the latter. We also
show that, unless P = NP , it is not possible to find the
partition with minimum impurity in polynomial time, even
for the Entropy impurity.

To complement our theoretical findings, in Section 5 we
present a set of experiments where we compare the proposed
methods with PCext and SLIQext, the two splitting meth-
ods that obtained the best results in the study reported in
(Coppersmith et al., 1999). Our experiments provide evi-
dence that both methods proposed in this paper are interest-
ing candidates to be used in splitting nominal attributes with
many values during decision tree/ random forest induction:
HcC is preferable when the number of classes is small and
LCA is a good alternative when speed is an issue.

We believe that our set of results contributes to improv-
ing the current knowledge on a classical and still relevant
problem for both the Machine Learning and Data Mining
communities.

1.3. Related Work

There have been theoretical investigations on methods to
compute the best split efficiently (Breiman et al., 1984;
Chou, 1991; Burshtein et al., 1992; Coppersmith et al., 1999;
Kurkoski & Yagi, 2014). As mentioned above, for the 2-
class problem, Breiman et. al. (Breiman et al., 1984) pre-
sented a simple algorithm that finds the best binary partition
in O(n log n) time for impurity measures in a certain class
that includes both Gini and Entropy. The correctness of
this algorithm relies on a theorem, also proved in (Breiman
et al., 1984), which is generalized for k > 2 classes and
multiway partitions in (Chou, 1991; Burshtein et al., 1992;
Coppersmith et al., 1999). Basically, these theorems provide
necessary conditions for partitions with minimum impurity
and can be used to restrict the set of partitions that need to
be considered, as in the family of algorithms we study here.
However, despite their usefulness, these conditions do not
yield a method that has running time polynomial on n and
k.

Binary Partitions with Approximate Minimum Impurity

Some heuristics for computing suboptimal partitions are
available in the literature (Breiman et al., 1984; Nadas et al.,
1991; Mehta et al., 1996; Coppersmith et al., 1999; Loh,
2009). For none of them approximation guarantees are
available. The conclusion of the experiments reported in
(Coppersmith et al., 1999) is that PCext, one of the meth-
ods proposed in that paper, overcomes Flip Flop (Nadas
et al., 1991) and SLIQ (Mehta et al., 1996) in terms of run-
ning time and the impurity of the partitions found.

Recently, motivated by applications on signal processing
(e.g. construction of polar codes (Tal & Vardy, 2013)),
the problem of computing the quantization of the output
of a Discrete Memoryless Channel (DMC) that provides
the maximum mutual information with the DMC’s input
has attracted a considerable attention in the Information
Theory community (Tal & Vardy, 2013; Kurkoski & Yagi,
2014; Kartowsky & Tal, 2017; Pereg & Tal, 2017; Nazer
et al., 2017). Kurkoski and Yagi (Kurkoski & Yagi, 2014)
observed that this problem is equivalent to `-PMWIP when
the impurity measure is the Entropy, and proved that it can
be solved in polynomial time when k = 2. In (Gülcü et al.,
2016; Nazer et al., 2017; Pereg & Tal, 2017; Kartowsky
& Tal, 2017), upper and lower bounds on the difference
between the entropy impurity of the n-ary partition and the
optimal `-ary partition are proved. These bounds do not
imply constant approximations for the problem we consider
here.

2. Preliminaries
We start defining some notations employed throughout the
paper. An input for 2-PMWIP is a pair (V, I), where V is
a collection of non-null vectors in Rk with non-negative
integer coordinates and I is a scaled impurity measure. We
assume that the vector

∑
v∈V v has no zero coordinates

for otherwise we would have an instance with less than k
classes. For a set of vectors L, the impurity I(L) of L is
given by I(

∑
v∈L v). The impurity of a binary partition

(L,R) of the set V is then I(L) + I(R). We use optI(V) to
denote the minimum possible impurity for a binary partition
of V and, whenever the context is clear, we omit I from
optI(V). We say that a partition (L∗, R∗) is optimal for
input (V, I) iff I(L∗) + I(R∗) = optI(V).

We use bold face to denote vectors. Given two vectors
u = (u1, . . . , uk) and v = (v1, . . . , vk) we use u · v to
denote their inner product and u ◦ v = (u1v1, . . . , ukvk)
to denote their component-wise (Hadamard) product. We
use 0 and 1 to denote the vectors in Rk with all coordinates
equal to 0 and 1, respectively. For a non-null vector v ∈ Rk

+

we use π(v) = v/‖v‖1 to denote the vector obtained by
normalizing v w.r.t. to the `1 norm. We use [m] to denote
the set of the first m positive integers.

Due to space constraints we omit most of the proofs. How-
ever, all of the them can be found in the full version available
in the supplementary material.

2.1. Impurity Measures

We are interested in the class C of scaled impurity measures
I that satisfy

I(u) = ‖u‖1
dim(u)∑
i=1

f

(
ui
‖u‖1

)
, (P0)

where dim(u) is the dimension of vector u and f : R→ R
is a function satisfying the following conditions:

1. f(0) = f(1) = 0 (P1)

2. f is strictly concave in the interval [0,1] (P2)

3. For all 0 < p ≤ q ≤ 1

f(p) ≤ p

q
· f(q) + q · f

(
p

q

)
. (P3)

Impurity measures satisfying conditions (P0)-(P2) are called
frequency-weighted impurity measures with concave func-
tions (Coppersmith et al., 1999). These impurities measures
are superadditive.

Lemma 2.1 (Lemma 1 in (Coppersmith et al., 1999)). If I
satisfies (P0)-(P2) then for every vectors uL and uR in Rk

+,
we have I(uL + uR) ≥ I(uL) + I(uR).

Although property (P3) is not particularly intuitive it can be
shown that if a simple constraint (xf ′′(x) is non-increasing
in [0,1]) is imposed on the second derivative f ′′ of f then
(P3) is also satisfied.

From (Coppersmith et al., 1999) we know that both IGini

and IEntr satisfy (P0)-(P2). It is not difficult to verify that
they also satisfy (P3).

Lemma 2.2. The Gini measure IGini and the Entropy mea-
sure IEntr belong to C.

The last lemma of this subsection shows that the impurity
measures of our class satisfy a subsystem property. It will
be used in our analysis to relate the impurity of partitions
for instances with k classes with the impurity of partitions
for instances with 2 classes.

Lemma 2.3 (Subsystem Property). Let I be an impurity
measure in C. Then, for every u ∈ Rk

+ and every d ∈
[0, 1]k,

I(u) ≤ I
(

(u · d,u · (1− d))

)
+

I(u ◦ d) + I(u ◦ (1− d))

Binary Partitions with Approximate Minimum Impurity

Proof’s sketch. Note that by the definition of I , the desired
inequality is invariant to scaling u; thus, we assume without
loss of generality that ‖u‖1 = 1. The left-hand side of the
inequality is then

∑
i f(ui).

The result is then obtained by applying the following
steps: (i) The subadditivity of f is used to obtain f(ui) ≤
f(diui) + f((1 − di)ui); (ii) Property (P3) is used, with
p = diui and q = d · u, to upper bound f(diui); (iii) The
same property is used with p = (1−di)ui and q = (1−d)·u
to upper bound f(ui(1− di)) and (iv) The upper bound on
f(ui) derived in the previous steps is added over all i to get
the right-hand side of the desired inequality.

2.2. Necessary conditions for optimal partitions

We end our section of preliminaries presenting two results
that give necessary conditions for optimal partitions. The
first one, proved in (Breiman et al., 1984), yields to an
O(n log n) time algorithm for 2-PMWIP when the number
of classes k is 2. The second one works for 2-PMWIP, with
arbitrary k, and it is a reduced version of a more general
theorem that also works for `-ary partitions (Burshtein et al.,
1992; Coppersmith et al., 1999). Both results are stated
using our notation.
Theorem 2.4 (Theorem 4.5 of (Breiman et al., 1984)). Let
I be an impurity measure satisfying properties (P0)-(P2)
and let V2 ⊆ R2

+. Moreover, for every v = (v1, v2) ∈ V2 let
r(v) = v1/‖v‖1. Furthermore, let Pj be the set containing
the first j vectors of V2 when those are sorted with respect to
r(). Then (Pj , V2 \Pj), for some j ∈ [n− 1], is an optimal
partition for the instance (V2, I).
Lemma 2.5 (Hyperplanes Lemma (Burshtein et al., 1992;
Coppersmith et al., 1999)). Let I be an impurity measure
satisfying properties (P0)-(P2). If (L∗, R∗) is an optimal
partition for an instance (V, I), then there is a vector d∗ ∈
Rk such that d∗·π(v) < 0 for every v ∈ L∗ and d∗·π(v) >
0 for every v ∈ R∗.

3. Constant Approximations for Impurity
Measures in C

In this section we present approximation algorithms for
finding binary partitions with reduced impurity. We first
analyze a general hyperplane-based procedure, and later
specialize it to obtain different approximation algorithms.

3.1. Analysis of a general hyperplane-based procedure

A direct consequence of the Hyperplanes Lemma (Lemma
2.5) above is that the search of the optimal partition can
be reduced to the search of a direction in Rk. In fact, it is
easy to see that we can normalize these directions to be in
[0, 1]k, at the expense of working with non-homogeneous
hyperplanes, as it is shown in the next proposition.

Proposition 3.1. Let (L∗, R∗) be an optimal partition for
input (V, I) and let d∗ ∈ Rk be such that d∗ · π(v) < 0 for
every v in L∗ and d∗ · π(v) > 0 for every v in R∗.

Then, there is a direction d ∈ [0, 1]k and a constant C such
that d · π(v) < C for every v in L∗ and d · π(v) > C for
every v in R∗.

The previous observation motivates the definition of a fam-
ily of algorithms indexed by a direction d ∈ [0, 1]k. The
algorithm Bd searches for a partition with reduced impurity
by considering all the n − 1 partitions of the input set V
induced by the hyperplanes with normal d (Algorithm 1).

Algorithm 1 Bd (V : collection of vectors, I: impurity
measure)

1: For each v in V let r(v) = (d · v)/‖v‖1
2: Rank the vectors in V according to r(v)
3: for j = 1, . . . , n− 1 do
4: Pj ← subset of V containing the j vectors with the

largest value of r(·)
5: Evaluate the impurity of partition (Pj , V \ Pj)
6: end for
7: Return the partition (Pj∗ , V \ Pj∗) with the smallest

impurity found in the loop

We present a general analysis of the quality of solution
produced by algorithm Bd when d ∈ {0, 1}k. More specifi-
cally, we prove the following theorem:

Theorem 3.2. Let I(Bd) be the impurity of the partition
returned by Bd for an instance (V, I). Then, for every
direction d ∈ {0, 1}k we have

I(Bd)

opt(V)
≤ 1 +

I(u ◦ d) + I(u ◦ (1− d))

mind′∈{0,1}k {I(u ◦ d′) + I(u ◦ (1− d′))}
(1)

The bound given by this theorem is the basis for the
approximation algorithms obtained in the next subsec-
tions since it motivates the use of a direction d such that
I(u ◦ d) + I(u ◦ (1− d)) is minimized. The remainder of
this section is dedicated to prove Theorem 3.2.

One of the key ideas of the proof is to establish a relation
between the impurity of the partition obtained by Bd for
the k-class instance (V, I) and the optimal impurity for the
2-class instance obtained by collapsing all the classes cor-
responding to the coordinates of d with value 0 into one
“super class”, and all classes corresponding to the coordi-
nates of d with value 1 into another super class. Recall that
each vector v ∈ V ⊆ Rk

+, which corresponds to an attribute
value, counts in its coordinates the number of examples of
each of the k classes with the given attribute value. Then,
in the collapsed 2-class instance, this vector count becomes

Binary Partitions with Approximate Minimum Impurity

simply (
∑

i:di=1 vi,
∑

i:di=0 vi) = (v · d,v · (1 − d)).
Thus, define the operation collapsed : Rk

+ → R2
+ that

maps v 7→ (v · d,v · (1 − d)). Moreover, for a set of
vectors S, define collapsed(S) as the set obtained applying
collapsed() to each vector of S. Therefore, from a k-class
instance (V, I) and a direction d ∈ {0, 1}k, we obtain the
collapsed 2-class instance (collapsed(V), I).

The main motivation for looking at 2-class instances is that
we know from Theorem 2.4 that an optimal partition can
be obtained by sweeping the vectors according to some
order, which is very similar to what algorithm Bd is doing.
To make this connection precise, let Ad be the algorithm
obtained by modifying Line 5 of Bd so that the impurity
of the binary partition (collapsed(Pj), collapsed(V \ Pj))
is evaluated, rather than the impurity of (Pj , V \ Pj). The
following proposition states that the impurity Bd is at most
that of Ad and that essentially the latter solves optimally
the collapsed 2-class instance.

Proposition 3.3. Let (L,R) be the partition returned by
Ad for the k-class instance (V, I) and let I(Ad) be the
impurity of (L,R). Then: (i) I(Bd) ≤ I(Ad) and (ii)
(collapsed(L), collapsed(R)) is an optimal partition for
the 2-class instance (collapsed(V), I).

Given the first item of the above proposition, to prove The-
orem 3.2, it suffices to upper bound the impurity of the
partition (L,R) returned by Ad. To simplify the notation,
let u =

∑
v∈V v, uL =

∑
v∈L v, and uR =

∑
v∈R v.

Also, for a direction d in {0, 1}k let d̄ = 1 − d. The
impurity of the partition (L,R) constructed by Ad is

I(Ad) = I(uL) + I(uR).

From the Subsystem Property (Lemma 2.3) we get

I(Ad) ≤ I
(
(d · uL, d̄ · uL)

)
+ I(d ◦ uL) + I(d̄ ◦ uL)

+ I
(
(d · uR, d̄ · uR)

)
+ I(d ◦ uR) + I(d̄ ◦ uR)

= opt(collapsed(V)) + I(d ◦ uL) + I(d̄ ◦ uL)+

I(d ◦ uR) + I(d̄ ◦ uR), (2)

where the last identity follows from the item (ii) of Proposi-
tion 3.3 because (d · uL, d̄ · uL) =

∑
v∈collapsed(L) v and

(d · uR, d̄ · uR) =
∑

v∈collapsed(R) v.

Now we need to upper bound the last four terms in the RHS
of the equation (2). Using the superadditivity of I (Lemma
2.1) we have

I(Ad) ≤ opt(collapsed(V)) + I(d ◦ u) + I(d̄ ◦ u) (3)

Now we devise lower bounds on opt(V). The first lower
bound captures the intuitive fact that the impurity in the
multi-class problem is at least as large as that in the col-
lapsed 2-class problem.

Lemma 3.4. For any input V and d ∈ {0, 1}k, we have
opt(V) ≥ opt(collapsed(V)).

For our second lower bound, we consider the relaxed prob-
lem where each example corresponds to a distinct attribute
value and the full class distribution is equal to that of V .
Formally, from the original instance (V, I) we consider the
instance (V ′, I), where V ′ contains ui copies of the stan-
dard basis vector ei for i = 1, . . . , k.

Let opt(V ′) be the optimal solution to this relaxed problem.
It is clear that opt(V ′) ≤ opt(V), since any partition for
the collection V can be realized in the collection V ′.

It follows from Lemma 2.5 that in the optimal partition of
V ′ all vectors associated with the same class (standard basis
vectors) end up on the same side of the partition. Thus,
the optimal solution for instance (V ′, I) corresponds to a
partition of the set of classes, and so

opt(V) ≥ opt(V ′) =

min
d′∈{0,1}k

{I(u ◦ d′) + I(u ◦ (1− d′))} .

Thus, by using the upper bound given by equation (3), the
lower bound given by Lemma 3.4 and the previous inequal-
ity we obtain that the RHS of inequality (1) is an upper
bound on the approximation ratio of algorithm Ad. This
bound together with the first item of Proposition 3.3 estab-
lish Theorem 3.2.

3.2. The Hypercube Cover procedure

The HcC method simply returns the best Bd among all
possible directions d ∈ {0, 1}k, hence it equals Bd′ for d′

satisfying
I(Bd′) = min

d∈{0,1}k
I(Bd).

To find d′, the algorithm examines all the 2k binary vectors
in {0, 1}k.

Given the general analysis provided by Theorem 3.2, it
follows directly that HcC has the following approximation
guarantee.
Theorem 3.5. HcC is a 2-approximation algorithm for ev-
ery impurity measure in C.

We shall mention that HcC is closely related with the
Twoing method proposed in (Breiman et al., 1984). In
fact, Twoing considers all 2k possibilities of grouping the
k classes into 2 super classes and, for each possibility, opti-
mally solves the 2-class problem; the best partition w.r.t. the
2-class problem is then returned. In our notation, Twoing
executes algorithm Ad, rather than Bd, for all directions
d ∈ {0, 1}k and returns the partition, among the 2k gener-
ated, with minimum impurity with respect to the collapsed
problem.

Binary Partitions with Approximate Minimum Impurity

It is also interesting to note that in (Breiman et al., 1984)
it was proved that if Twoing considers the Gini impurity
for solving its 2-class problems then it finds a partition of
attribute values that optimizes a specific objective function
for the k-class problem that is significantly different from
IGini.

3.3. LargestClassAlone: an O(nk + n log n)-time
constant approximation

A limitation of HcC is its running time, which is exponen-
tial on the number of classes k. To address this issue, we
show that a simple algorithm with O(nk+n log n) running
time has a constant approximation for our class of impurity
measures.

Recall that we are using u to denote
∑

v∈V v. Given u, let
i∗ be the index of the coordinate corresponding to the largest
value in u, that is, ui∗ ≥ ui for all i. Moreover, let ei∗ be
the direction where all coordinates are 0 but coordinated i∗

whose value is 1. We use LargestClassAlone (LCA
for short) to denote the algorithm Bei∗ . The next result,
which also relies on Theorem 3.2, shows that LCA has a
constant approximation for our class.

Theorem 3.6. LCA is an (3 +
√

3)−approximation for
every impurity measure in the class C.

4. Improved Approximations for Gini and
Entropy

Here we show that we can obtain better approximations,
with polynomial running time on n and k, when we focus
on specific impurity measures. We consider both Gini and
Entropy.

The key idea for the improvement is to characterize the
direction that minimizes the denominator of the upper bound
on the approximation ration given by Theorem 3.2. It will
be interesting to observe how Gini and Entropy behave
significantly different in this sense, with the latter favoring
balanced partition.

4.1. Gini

We prove that LCA is a 2-approximation algorithm for
IGini. To achieve this goal we show that, when I =
IGini, ei∗ is a direction that minimizes the expression
I(u ◦ d′) + I(u ◦ (1 − d′)) that appears on the denom-
inator of the righthand side of inequality (1).

Lemma 4.1. The direction ei∗ satisfies

IGini(u ◦ ei∗) + IGini(u ◦ (1− ei∗)) =

min
d∈{0,1}k

{IGini(u ◦ d) + IGini(u ◦ (1− d))}.

A direct consequence of the previous lemma and Theorem
3.2 is that LCA gives a 2-approximation for IGini.

Theorem 4.2. LCA is a 2-approximation for the Gini im-
purity measure.

A natural question is whether the analysis is tight. The
instance V = {(x, 0, 0), (0, x, 0), (c, 0, c)}, x >> c > 0,
shows that this is the case for algorithm Aei∗ . For LCA
(which is Bei∗) we are not aware whether the approximation
is tight or not. The worst example we know has impurity
4/3 larger than the optimal one.

4.2. Entropy

In this section we show that, for the Entropy impurity, LCA
achieves an approximation ratio better than the one given
by Theorem 3.6.

Let us define the balance of a direction d in {0, 1}k with
respect to u as min{u ·d,u · (1−d)}. The next lemma im-
plies that the most balanced direction with respect to u is the
one that minimizes the denominator on the approximation
ratio given by inequality (1).

Lemma 4.3. Let d and d′ be directions in {0, 1}k. Then,

IEnt(u ◦ d) + IEnt(u ◦ (1− d)) <

IEnt(u ◦ d′) + IEnt(u ◦ (1− d′)) (4)

if and only if d is more balanced than d′ with respect to u,
that is, min{d ·u, (1−d) ·u} > min{d′ ·u, (1−d′) ·u}.

Let d∗ be the most balanced direction in {0, 1}k with re-
spect to u. The previous result together with Theorem 3.2
guarantee that algorithm Bd∗ is a 2-approximation for the
Entropy impurity. The direction d∗ can be constructed in
O(k

∑
v∈V ‖v‖1) time using an algorithm for the subset

sum problem (Cormen et al., 1998).

Theorem 4.4. There exists a 2-approximation algorithm for
the entropy impurity measure that runs inO(k

∑
v∈V ‖v‖1)

time.

For LCA we manage to prove the following bound.

Theorem 4.5. LCA is a 3-approximation for the Entropy
impurity measure.

Given Lemma 4.3, a straightforward reduction from PAR-
TITION problem shows that 2-PMWIP is NP-hard even
when I is the Entropy measure.

Theorem 4.6. The 2-PMWIP for the Entropy impurity mea-
sure is NP-Hard.

The complexity of the problem for the case where I is the
scaled Gini impurity measure remains open.

Binary Partitions with Approximate Minimum Impurity

5. Experiments
To complement our theoretical study we report a number
of experiments with the methods proposed/analyzed in the
previous sections.

5.1. Evaluation of Splits Impurity

Our first set of experiments is very similar to the set pre-
sented in (Coppersmith et al., 1999) except for a few details.
All experiments are Monte Carlo simulations with 10,000
runs, each using a randomly-generated contingency table
for the given number of values n and classes k. By a contin-
gency table we mean a matrix where each row corresponds
to a distinct vector of the input V . Each table was created
by uniformly picking a number in {0, . . . , 7} for each entry.
This guarantees a substantial probability of a row/column
having some zero frequencies, which is common in practice.
Differing from (Coppersmith et al., 1999), if all the entries
corresponding to a value or a class are zero, we re-generate
the contingency table, since otherwise the number of actual
values and classes would not match n and k.

We compared the following splitting methods: HcC, LCA,
SLIQext and PCext. SLIQext is a variant, presented in
(Coppersmith et al., 1999), of the SLIQ method proposed
in (Mehta et al., 1996). It starts with the partition (V, ∅)
and then it greedily moves, from the ’left’ to the ’right’
partition, the vector that yields to the partition with mini-
mum impurity until the the partition (∅, V) is reached; the
best partition found in this process is returned. PCext is a
method proposed in (Coppersmith et al., 1999) that defines
the partition for the vectors in V by using a hyperplane in
Rk whose normal direction is the principal direction of a
certain contingency table associated with the instance. Ac-
cording to the experiments reported in (Coppersmith et al.,
1999), PCext and SLIQext outperformed other available
methods, such as the Flip Flop method (Nadas et al.,
1991), in terms of the impurity of the partitions found.

Table 1 and 2 show, for different values of n and k, the
percentage of times each method is at least as good as the
other competitors for Gini and Entropy, respectively. We
only show results for k ≤ 9 because, for larger values
of k, HcC becomes non-practical due to its running time.
Furthermore, we do not present results for small values of
n because, in this case, the optimal partition can be found
reasonably quick through an exhaustive search, hence there
is no motivation for heuristics.

In general, we observe an advantage of HcC for both the
impurity measures, being much more evident for Entropy
impurity. We also observe that LCA presents the worst
results. Additional experiments where we set the maximum
possible value in the contingency table to 2 and 15, rather
than to 7, presented similar behavior.

Table 1. Percentage of wins for PCExt, HcC, SLIQext and LCA
for Gini impurity. The best result for each configuration is bold
faced.

Methods n
k 3 5 7 9

HcC 97.3 99.2 99.9 100.0
PCext 12 91.2 88.0 86.6 85.0

SliqExt 89.9 81.9 78.3 75.5
LCA 42.8 19.1 11.5 8.5
HcC 73.9 65.8 73.3 85.3

PCext 25 72.7 62.4 58.8 53.2
SliqExt 78.8 64.6 57.9 52.5
LCA 24.3 5.9 2.0 0.8
HcC 51.4 33.1 31.0 33.9

PCext 50 50.6 41.1 40.7 37.8
SliqExt 68.1 53.1 47.1 42.9
LCA 16.0 3.3 1.0 0.4

Table 2. Percentage of wins for PCExt, HcC, SLIQext and LCA
for Entropy impurity. The best result for each configuration is bold
faced.

Methods n
k 3 5 7 9

HcC 98.3 99.4 100 100
PCext 12 80.2 74.2 73.2 72.4

SliqExt 87.5 78.2 75.2 72.8
LCA 33.5 13.6 8.3 6.8
HcC 83.3 76.9 81.0 87.7

PCext 25 54.4 42.7 39.2 37.7
SliqExt 71.8 57.1 52.1 47.1

LCA 18.5 5.3 2 1.3
HcC 70.0 57.4 53.5 52.5

PCext 50 29.5 22.0 21.7 22.1
SLIQext 55.1 42.5 38.8 36.2

LCA 13.4 3.7 1.6 0.8

It is also interesting to observe how far the impurity of
the partition generated by a splitting method may be with
respect to the best partition found by the other methods. To
measure this distance, let us define the relative excess (in
percentage) of a partition P w.r.t. a partition Q as 100 ×
(I(P)/I(Q)− 1). The maximum relative excess observed
for the partitions generated by HcC, with respect to the
partitions generated by the other methods, was 2% and
1.9% for Gini and Entropy, respectively. For SLIQext, the
maximum relative excess observed was 9.4% for Gini and
14% for Entropy. For PCext, we observed 3.7% for Gini
and 21.6% for Entropy. Finally, for LCA, we had 22.3% for
Gini and 43.6% for Entropy. These numbers suggest that
the risk of finding a ‘bad’ partition is smaller when HcC is
used, specially for the Entropy impurity.

Table 3 presents a comparison between the running time of
the 4 methods for each configuration of n and k. The num-
bers are relative to the running time of LCA, which is the
fastest of them. Among the other three methods, PCext ob-

Binary Partitions with Approximate Minimum Impurity

Table 3. Each entry is the ratio between the average running time
of the method and the average running time of LCA, which is the
fastest of them.

Methods n
k 3 5 7 9

HcC 1.6 6.8 30.8 138.4
PCext 12 3.5 3.3 3.2 3.5

SliqExt 5.4 5.5 6.3 7.2
HcC 1.7 8.9 41.2 174.7

PCext 25 5.1 5.6 6 6.1
SliqExt 21.6 24.5 28 30

HcC 2.2 10.8 45.4 181.5
PCext 50 8.6 10.1 10 10.2

SLIQext 90.6 101.2 104.7 107.6

tained the best results. As expected, HcC is very competitive
for small values of k and it becomes less competitive when
k grows. For the slowest configuration, n = 50 and k = 9,
HcC took, in average, 0.38 seconds. We can also observe
that SLIQext becomes less competitive as n grows. All
the experiments were executed on a PC Intel i7-6500U CPU
with 2.5GHz and 8GB of RAM. The algorithms were imple-
mented in Python 3 using numpy and and are available in
https://github.com/felipeamp/icml-2018.

5.2. Decision tree induction

We also carried out a set of experiments to evaluate how the
methods behave when they are used in decision tree induc-
tion. Here we just present a summary of these experiments –
a more complete complete description can be found in the
supplementary material.

We employed 11 datasets in total. Eight of them are from
the UCI repository: Mushroom, KDD98, Adult, Nurs-
ery, Covertype, Cars, Contraceptive and Poker (Lichman,
2013). Two others are available in Kaggle: San Francisco
Crime and Shelter Animal Outcome (SF-OpenData; Austin-
Animal-Center). The last dataset was created by translat-
ing texts from the Reuters database (Lichman, 2013) into
phonemes, using the CMU pronouncing dictionary (CMU).
We shall note that these datasets were also used in (Laber
& de A. Mello Pereira, 2018) where methods for splitting
nominal attributes that do not rely on impurity measures are
proposed.

We chose these datasets because they have at least 1000
samples and they either contain multi-valued attributes or
attributes that can be naturally aggregated to produce multi-
valued attributes. For datasets Cars, CoverType, Nursery
and Contraceptive we add new nominal attributes that were
obtained by aggregating some of the original ones. Addi-
tional details are given in the supplementary material.

In this second set of experiments we build decision trees
with depth at most 16. We employed a 95% one-tailed

Table 4. The table at the top (bottom) shows the number of datasets
in which LCA (HcC) had statistically better/worse accuracy than
the other methods. In each entry they are represented by the
numbers following the plus/minus signs, respectively.

PCExt HcC SliqExt
Gini +3 -3 +1 -3 +8 -3
Entropy +4 -0 +4 -0 +7 -2

PCExt LCA SliqExt
Gini +2 -2 +3 -1 +8 -3
Entropy +2 -1 +0 -4 +7 -2

paired t-student test to compare the accuracy attained by the
methods over 20 3-fold stratified cross-validations. Table 4
shows how LCA and HcC compare with each of the other
methods with regards to the number of datasets in which
they had statistically better/worse accuracy. As an example,
the entry associated with Entropy/PCExt in the top Table 4
shows that out of the 11 datasets, for the Entropy impurity,
LCA was statistically better in 4 datasets while PCExt was
better in none.

Given the results on the previous section, we were not ex-
pecting a strong performance from LCA. However, to our
surprise, LCA was quite competitive, performing better
than some of the other methods in these datasets, specially
for the Entropy impurity measure. HcC, as expected, had a
good performance. These results suggest that LCA is also
an interesting alternative, specially when speed is an issue.

6. Final Remarks
In this paper we proved that the 2-PMWIP is NP-Hard and
we devised algorithms with constant approximation guar-
antee for it. Furthermore, we reported experiments that
suggest that our methods proposed are good candidates to
be used in splitting nominal attributes with many values
during decision tree/random forest induction. HcC has the
advantage of generating partitions with lower impurity than
other available methods while LCA has the advantage of
being very fast.

Some interesting questions remain open. The main one
concerns the existence of a FPTAS for 2-PMWIP, that is,
an algorithm that for every ε > 0 obtains an approximation
(1+ε) with running time polynomial on n and 1/ε. Another
interesting question regards the existence of algorithms with
provably approximation for the L-PMWIP, the most gen-
eral problem where the values of an attribute have to be
partitioned into at most L groups.

Binary Partitions with Approximate Minimum Impurity

References
Austin-Animal-Center. Shelter animal outcomes dataset.
kaggle.com/c/shelter-animal-outcomes.

Breiman, L., Friedman, J. J., Olshen, R. A., and Stone, C. J.
Classification and Regression Trees. Wadsworth, 1984.

Burshtein, D., Pietra, V. D., Kanevsky, D., and Nadas, A.
Minimum impurity partitions. Ann. Statist., 1992.

Chou, P. A. Optimal partitioning for classification and
regression trees. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13(4), 1991.

CMU. Cmu pronouncing dictionary. www.speech.cs.
cmu.edu/cgi-bin/cmudict.

Coppersmith, Don, Hong, Se June, and Hosking, Jonathan
R. M. Partitioning nominal attributes in decision trees.
Data Min. Knowl. Discov, 3(2):197–217, 1999.

Cormen, T.H., Leiserson, C.E., and Rivest, R.L. Introduc-
tion to Algoritms. McGraw-Hill Book Company, 1998.

Elomaa, Tapio and Rousu, Juho. Efficient multisplitting
revisited: Optima-preserving elimination of partition can-
didates. Data Min. Knowl. Discov, 8(2):97–126, 2004.

Gülcü, Talha Cihad, 0005, Min Ye, and Barg, Alexander.
Construction of polar codes for arbitrary discrete memo-
ryless channels. In ISIT, pp. 51–55. IEEE, 2016.

Hothorn, Torsten, Hornik, Kurt, and Zeileis, Achim. Unbi-
ased recursive partitioning. Journal of Computational and
Graphical Statistics, 15(3):651–674, September 2006.
ISSN 1061-8600 (print), 1537-2715 (electronic).

Kartowsky, Assaf and Tal, Ido. Greedy-merge degrading
has optimal power-law. CoRR, abs/1703.04923, 2017.
URL http://arxiv.org/abs/1703.04923.

Kurkoski, Brian M. and Yagi, Hideki. Quantization of
binary-input discrete memoryless channels. IEEE Trans.
Information Theory, 60(8):4544–4552, 2014.

Laber, E. S. and de A. Mello Pereira, F. Splitting criteria
for classification problems with multi-valued attributes
and large number of classes. Pattern Letters Recognition,
2018.

Lichman, M. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

Loh. Improving the precision of classification trees. The
Annals of Applied Statistics, 2009.

Mehta, M., Agrawal, R., and Rissanen, J. SLIQ: A fast scal-
able classifier for data mining. Lecture Notes in Computer
Science: Proc. 5th Int. Conf. on Extending Database Tech-
nology, 1996.

Nadas, A., Nahamoo, D., Picheny, M. A., and Powell, J.
An iterative ip-op approximation of the most informative
split in the construction of decision trees. ieeeassp, pp.
565–568, 1991.

Nazer, Bobak, Ordentlich, Or, and Polyanskiy, Yury.
Information-distilling quantizers. In ISIT, pp. 96–100.
IEEE, 2017.

Nowozin, Sebastian. Improved information gain estimates
for decision tree induction. In ICML, 2012.

Pereg, Uzi and Tal, Ido. Channel upgradation for non-binary
input alphabets and macs. IEEE Trans. Information The-
ory, 63(3):1410–1424, 2017.

Quinlan, J. Ross. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1992.

SF-OpenData. San francisco crime dataset. kaggle.com/
c/sf-crime.

Tal, Ido and Vardy, Alexander. How to construct polar
codes. IEEE Trans. Information Theory, 59(10):6562–
6582, 2013.

kaggle.com/c/shelter-animal-outcomes
www.speech.cs.cmu.edu/cgi-bin/cmudict
www.speech.cs.cmu.edu/cgi-bin/cmudict
http://arxiv.org/abs/1703.04923
http://archive.ics.uci.edu/ml
kaggle.com/c/sf-crime
kaggle.com/c/sf-crime

