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Abstract
Many real-world applications of reinforcement
learning require an agent to select optimal actions
from continuous spaces. Recently, deep neural
networks have successfully been applied to games
with discrete actions spaces. However, deep neu-
ral networks for discrete actions are not suitable
for devising strategies for games where a very
small change in an action can dramatically affect
the outcome. In this paper, we present a new self-
play reinforcement learning framework which
equips a continuous search algorithm which en-
ables to search in continuous action spaces with
a kernel regression method. Without any hand-
crafted features, our network is trained by super-
vised learning followed by self-play reinforce-
ment learning with a high-fidelity simulator for
the Olympic sport of curling. The program trained
under our framework outperforms existing pro-
grams equipped with several hand-crafted features
and won an international digital curling competi-
tion.

1. Introduction
Learning good strategies from large continuous action
spaces is important for many real-world problems includ-
ing learning robotic manipulations and playing games with
physical objects. In particular, when an autonomous agent
interacts with physical objects, it is often necessary to han-
dle large continuous action spaces.

Reinforcement learning methods have been extensively ap-
plied to build intelligent agents that can play games such
as chess (Campbell et al., 2002), checkers (Schaeffer et al.,

*Equal contribution 1Department of Computer Science and
Engineering, Ulsan National Institute of Science and Technology,
Ulsan, Republic of Korea 2Department of Brain and Cognitive
Engineering, Korea University, Seoul, Republic of Korea. Corre-
spondence to: Jaesik Choi <jaesik@unist.ac.kr>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

1992), and othello (Buro, 1999). Recently, deep convolu-
tional neural networks (CNNs) (LeCun & Bengio, 1998)
have achieved super-human performance in deterministic
games with perfect information, such as Atari games (Mnih
et al., 2015) and Go (Silver et al., 2016; 2017). In the latter
game, board positions are passed through the convolutional
layers as a 19-by-19-square image. These CNNs effectively
reduce the depth and breadth of the search tree by evaluat-
ing the positions using a value network and by sampling
actions using a policy network. However, in a continuous
action space, the space needs to be discretized. Determin-
istic discretization would cause a strong bias in the policy
evaluation and the policy improvement. Thus, such deep
CNNs for large, non-convex continuous action spaces are
not directly applicable.

To solve this issue, we conduct a policy search with an ef-
ficient stochastic continuous action search on top of policy
samples generated from a deep CNN. Our deep CNN still
discretizes the state space and the action space. However, in
the stochastic continuous action search, we lift the restric-
tion of the deterministic discretization and conduct a local
search procedure in a physical simulator with continuous
action samples. In this way, the benefits of both deep neural
networks (i.e., learning the global structure) and physical
simulators (i.e., finding precise continuous actions) can be
realized.

More specifically, we design a deep CNN called the policy-
value network, which gives the probability distribution of
actions and expected reward given an input state. The policy-
value network is jointly trained to find an optimal policy
and to estimate the reward given an input instance. During
the supervised training, the policy subnetwork is directly
learned from the moves of a reference program in each sim-
ulated run of games. The value subnetwork is learned using
d-depth simulation and the bootstrapping of the prediction
to handle a high variance of a reward obtained from a se-
quence of stochastic moves. The network is then trained
further from the games of self-play using kernel regression
to precisely handle continuous spaces and actions. This
process allows actions in the continuous domain to be ex-
plored and adjusts the policy and the value in consideration
of uncertainty of the execution.
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Figure 1. The architecture of our policy-value network. As input, a feature map (Table 2 in the supplementary material) is provided from
the state information. During the convolutional operations, the layers’ width and height are fixed at 32x32 (the discretized position of
the stones) without pooling. The details of the layer information are provided described in Figure 2. We train the policy and the value
functions in a unified network. The output of the policy head is the probability distribution of each action. The output of the value head is
the probability distribution of the final scores [-8,8].

We verify our framework with the sport of curling. Curling,
often called chess on ice, has been viewed as the most
intellectually challenging Olympic sport due to its large
action space and complicated strategies. Typically, curling
players put a stone in a large area of about 5m by 30m,
with precise interactions which are typically less than 10 cm
among stones. When discretized, the play area is divided
into a 50x300 grid. Asymmetric uncertainty is added to the
final location to which a stone is delivered.

The program trained under our framework outperforms state-
of-the-art digital curling programs, AyumuGAT’17 (Ohto &
Tanaka, 2017) and Jiritsukun’17 (Yamamoto et al., 2015).
Our program also won in the Game AI Tournaments (GAT-
2018) (Ito).

2. Related Work
In the game of go, AlphaGo Lee, the successor version of
AlphaGo Fan (Silver et al., 2016), defeated Lee Sedol, the
winner of 18 international titles. Although Go has a finite,
discrete action space, its depth of the play creates complex
branches. Based on the moves of human experts, two neural
networks in AlphaGo Lee are trained for the policy and
value functions. AlphaGo Lee uses a Monte Carlo tree
search (MCTS) for policy improvement.

AlphaGo Zero (Silver et al., 2017), which is trained via self-
play without any hand-crafted knowledge, has demonstrated
a significant improvement in performance. AlphaGo Zero
is expected to win more than 99.999% of games against
AlphaGo Lee.1 AlphaGo Zero uses a unified neural network

1Their difference in elo rating is greater than 2,000.

for the policy and value networks to train the networks
faster.

In the domain of curling, several algorithms have been pro-
posed. As a way of dealing with continuous action space,
game tree search methods (Yamamoto et al., 2015) have dis-
cretized continuous action space. The evaluation functions
are designed based on the domain knowledge and rules of
the game. With considering given execution uncertainty, the
action value is calculated as the average of the neighboring
values.

A MCTS method called KR-UCT has been successfully
applied to continuous action space (Yee et al., 2016). KR-
UCT exhibits effective selection and expansion of nodes
using neighborhood information by estimating rewards with
kernel regression (KR) and kernel density estimation (KDE)
in continuous action spaces. Given an action, the upper
confidence bound (Lai & Robbins, 1985) of the reward is
estimated based on the values nearby. KR-UCT can be
regarded as a specialized exploration of pseudo-count based
approaches (Bellemare et al., 2016).

To handle continuous action space in the bandit problem,
several algorithms have been proposed. For example, hierar-
chical optimistic optimization (HOO) (Bubeck et al., 2008)
starts by creating a cover tree and recursively divides the
action space into smaller candidate ranges at each depth. A
node in the cover tree is considered as arms of the sequential
bandit problem. The most promising node is exploited to
create estimates of finer granularity, and regions which have
not been sampled sufficiently are explored further.

An analysis of the dynamics of curling is important to build
an accurate digital curling program. For example, the fric-
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tion coefficients between the curling stones and the ice curl-
ing sheet have been analyzed (Lozowski et al., 2015), while
pebbles, the small frozen droplets of water across the play
sheet, have also been taken into account (Maeno, 2014).
Unfortunately, modeling the changes in friction on the ice
surface is not yet possible. Thus, in general, digital Curling
simulators assume a fixed friction coefficient with noise
generated from a predefined function (Ito & Kitasei, 2015;
Yee et al., 2016; Ahmad et al., 2016).

The physical behavior of the stones has been modeled using
physics simulation engines such as Box2D (Parberry, 2013),
Unity3D (Jackson, 2015) and Chipmunk 2D. Important pa-
rameters including friction coefficients and noise generation
functions are trained from games between professional play-
ers (Yee et al., 2016; Ito & Kitasei, 2015; Heo & Kim, 2013).
In this paper, we use the same parameters used in a digital
curling competition (Ito & Kitasei, 2015).

3. Background
In this section, we briefly overview the models and algo-
rithms used in this paper.

3.1. Policy Iteration

Policy iteration is an algorithm that generates a sequence of
improving policies, by alternating between policy evaluation
and policy improvement. In large action spaces, approxima-
tion is necessary to evaluate each policy and to determine
its improvement.

POLICY IMPROVEMENT: LEARNING ACTION POLICY

Action policy pσ(a|s) can be trained using supervised learn-
ing. This action policy outputs a probability distribution
over all eligible moves a. The policy is trained on randomly
sampled state-action pairs (s, a) using stochastic gradient
ascent to maximize the likelihood of the expert action a
being selected in state s,

∆σ ∝ ∂ log pσ(a|s)
∂σ

. (1)

The action policy is trained further by using policy gradient
reinforcement learning (RL) (Sutton et al., 1999). The action
policy is then updated at each time step t by stochastic
gradient ascent in the direction that maximizes the expected
outcome:

∆ρ ∝ ∂ log pρ(at|st)
∂ρ

r(st), (2)

where r(st) is the return, which is the discounted sum of
rewards for one whole episode from the perspective of the
current player at time step t.

POLICY EVALUATION: LEARNING VALUE FUNCTIONS

The value function predicts the outcome from state s of
games played using policy p for both players,

v(s) = E[r(s)|st = s, at ∼ p]. (3)

The value function is approximated by the value estimator
vθ(s) with parameters θ. The value estimator is trained
by state-reward pairs (s, r(s)) using stochastic gradient de-
scent to minimize the mean squared error (MSE) between
the predicted regression value vθ(s) and the corresponding
outcome r(s),

∆θ ∝ ∂vθ(s)

∂θ
(r(s)− vθ(s)). (4)

3.2. Monte Carlo Tree Search

A Monte Carlo tree search (MCTS) (Browne et al., 2012;
Coulom, 2007a; Kocsis & Szepesvári, 2006) is a tree search
algorithm for decision processes for finite-horizon tasks. It
iteratively analyzes and expands nodes (states) of the search
tree based on random sampling (actions) of the search space.
From a root to a leaf node, it selects an action towards most
promising moves based on a selection function. At the leaf
node, the node is expanded by adding a new leaf to the
tree. Then, a rollout policy plays a playout until reaching a
terminal state to obtain reward. Then, the obtained reward
is used to update information of the selected nodes from the
root to the leaf.

Upper confidence bounds applied to trees (UCT) (Kocsis
& Szepesvári, 2006) is a commonly used MCTS algorithm
using an upper confidence bound (UCB) selection function.
It is computed by the Chernoff-Hoeffding bound:

arg max
a

v̄a + C

√
log
∑
b nb

na
, (5)

which is one-sided confidence interval on the expected value
v̄a with the number of visits na for each action a. The
exploration-exploitation tradeoff is controlled by the con-
stant C.

3.3. Kernel Regression

Kernel regression is a non-parametric estimator which uses
a kernel function as a weight to estimate the conditional
expectation of a random variable. Given the choice of kernel
K and data set (xi, yi)

n
i=0, kernel regression is defined as

follows:

E[y|x] =

∑n
i=0K(x, xi)yi∑n
i=0K(x, xi)

. (6)

Here, kernel K is a function which defines the weight given
a pair of two points. The denominator of kernel regression



Deep Reinforcement Learning in Continuous Action Spaces

is related to kernel density estimation which is also a non-
parametric method for estimating the probability density
function of a random variable. The kernel density is defined
by W (x) =

∑n
i=0K(x, xi).

One typical kernel function is the Gaussian probability den-
sity which is defined as follows:

K(x,x′) =
exp

(
− 1

2 (x− x′)TΣ−1(x− x′)
)√

(2π)k|Σ|
. (7)

4. Deep Reinforcement Learning in
Continuous Action Spaces

4.1. The Policy-Value Network

Recently, deep CNNs have produced remarkable perfor-
mances in playing Atari games (Mnih et al., 2015) and Go
(Silver et al., 2016). We employ a similar architecture for
curling. We pass the position of the stones on the ice sheet
as a 32x32 image and use convolutional layers to construct a
representation of the position. We use these neural networks
to reduce the effective depth and breadth of the search tree
evaluating the position using a value network and sampling
actions using a policy network as shown in Figure 1.

THE SHARED LAYERS

Our policy-value network takes the following inputs; the
stones’ location, the order to tee2, the number of shots, and
flags to indicate whether each grid cell inside of the house3

is occupied by any stone. After the first convolutional block,
the nine residual blocks (He et al., 2016) follow, which are
shared during training procedure.

THE POLICY HEAD

The policy head pθ outputs p which is the probability distri-
bution of actions for selecting the best shot out of 32x32x2
discretized actions (clockwise or counter-clockwise spin).
In supervised training, the network is trained to follow ac-
tions of the reference program AyumuGAT’16 (Section 6.2).
In reinforcement learning (self-play) the network is trained
to follow the actions generated by Algorithm 1. The policy
head has two more convolutional layers (to make a total 21
convolutional layers) where ReLU activation is used. The
best policy is trained and selected in the last layer using the
softmax activation function.

THE VALUE HEAD

The value head vθ outputs the probability distribution of
each score at the conclusion of each end, in which both
teams throw eight stones in turn. Thus, +8 and -8 are re-

2The center point of the house.
3The three concentric circles where points are scored.

Figure 2. A detail description of our policy-value network. The
shared network is composed of one convolutional layer and nine
residual blocks. Each residual block (explained in b) has two
convolutional layer with batch normalization (Ioffe & Szegedy,
2015) followed by the addition of the input and the residual block.
Each layer in the shared network uses 3x3 filters. The policy head
has two more convolutional layers, while the value head has two
fully connected layers on top of a convolutional layer. For the
activation function of each convolutional layer, ReLU (Nair &
Hinton) is used.

spectively the maximum and minimum scores. The value
head has two fully connected layers on top of a convolu-
tional layer (a total of 20 convolutional layers and 2 fully
connected layers). The last layer of the value head out-
puts a vector v, the probability distribution of 17 different
outcomes [−8, 8] using the softmax activation function.

4.2. Continuous Action Search

When the action space is not discretized, it is difficult to
specify or select an action from the huge continuous space.
When the action space is discretized, it could lead to a signif-
icant loss of information. Our search algorithm starts from
actions initialized by the policy network in the discretized
space. It then explores and evaluates actions with the value
network using an Upper Confidence Bound (UCB) in the
continuous space.

The search procedure of our algorithm follows the MCTS
algorithm (selection, expansion, simulation, and backprop-
agation), specifically UCT (Kocsis & Szepesvári, 2006),
which uses the UCB as the selection function. For infor-
mation sharing between actions, we used kernel regression
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Algorithm 1 KR-DL-UCT
1: pθ ← the policy network
2: vθ ← the value network
3: st ← the current state
4: At ← a set of visited actions in st
5: expanded← false
6: if st is terminal then
7: return Score(st), false

8: at ← argmaxa∈At
E[v̄a|a] + C

√
log Σb∈AtW (b)

W (a)

9: if
√∑

a∈At
na < |At| then

10: st+1 ← TakeAction(st, at)
11: re ~ward, expanded← KR-DL-UCT(st)
12: if not expanded then
13: a′t ← argminK(at,a)>γW (a)
14: At ← At ∪ a′t
15: st+1 ← TakeAction(st, a

′
t)

16: At+1←∪ki=1 {a
(i)
init} s.t. a(i)

init∼πa|st+1
// Policy net

17: re ~ward← vθ(st+1|st, a′t) // Value net
18: ~vat ← 1

nat+1 (nat~vat + re ~ward)

19: nat ← nat + 1
20: return re ~ward, true

based UCT (KR-UCT) (Yee et al., 2016). In KR-UCT, the
expected value and the number of visits is estimated by
kernel density estimation and kernel regression respectively.

E(v̄a|a)=

∑
b∈At

K(a, b)v̄bnb∑
b∈At

K(a, b)nb
, W (a)=

∑
b∈At

K(a, b)nb (8)

For the selection, this information sharing enables our model
to make decisions by considering the result of similar ac-
tions. By sampling actions within the execution uncertainty
of the selected action at and choosing less explored space,
an action can be selected to lead an effective expansion.
The details of Algorithm 1 with respect to the steps for an
MCTS is described below.4

Selection As a selection function, our algorithm uses a vari-
ation of the UCB formula (line 8). The scores and the
number of visits for each node are estimated using the infor-
mation from already visited sibling nodes b which are in At.
They are denoted by E(v̄a|a) and W (a) respectively. The
expected probability distribution of values v̄a is weighted by
the winning percentage, which is described in Section 5.3.
For an one-end game, which is used for self-play games, the
expected value of the distribution would be v̄a. For the final
selection, the algorithm chooses the most visited node and
selects the corresponding action.

a∗ = arg max
a∈At

W (a). (9)

4Source codes are available at https://github.com/
leekwoon/KR-DL-UCT

Expansion Before expanding a node, we used progressive
widening (Coulom, 2007b; Yee et al., 2016) (line 9) to over-
come the problem of vanilla UCT in a large action space
(e.g. continuous space), in which exploring all possible
actions results in a shallow search. With this approach, a
new node is expanded only when existing nodes are visited
a sufficient number of times.

From the selected action at, actions are sampled that satisfy
the inequality ‘K(at, a) > γ’ and an action which mini-
mizes W (a) is selected from among these (line 13). In our
implementation, we generate samples from the Gaussian
kernel by setting the mean to at with a specified variance, in-
stead of setting the hard bound γ. This sampling allows our
algorithm to explore and search for actions in the continuous
space.

TakeAction(st, at) requests the curling simulator to gener-
ate the next state by delivering a stone at given the current
state st, and then the simulator returns the position of all
remaining stones (line 10, 15).

For all expanded states, including the root, our algorithm
initializes the k actions (line 16) for each state with the
policy πa,

πa|st+1
=

p(a|st+1)1/τ

Σbp(b|st+1)1/τ
. (10)

With the temperature parameter τ , the k initial actions are
sampled using the unbiased distribution πa|st+1

.

Simulation To evaluate the initialized or expanded states,
our value network vθ is used instead of a simulation for sev-
eral depth following a default policy (e.g. random policy).
Without any domain knowledge (i.e., rule-based strategies),
this makes the search procedure faster (i.e., it does not need
to simulate for a certain depth) than using hand-crafted func-
tions. For the given new state st+1, a vector of probabilities
is returned with a score ranging between [-8,8] (line 17). At
the terminal state, the score is measured and returned as an
one-hot vector (line 6-7).

Backpropagation With the new value vector reward, our
algorithm updates vat and nat along the selected path (lines
18-19).

5. Learning Pipeline
5.1. Supervised Learning

During supervised training, we jointly train our policy-value
network using 0.4 million state-action pairs (s, a) from the
reference program (Section 6.2). The policy subnetwork
is directly learned from a move a at state s in the training
data. Instead of the final game outcome (win or lose), the
value subnetwork is learned by d-depth simulations and
bootstrapping of the prediction to handle the high variance
in rewards resulting from a sequence of stochastic moves.

https://github.com/leekwoon/KR-DL-UCT
https://github.com/leekwoon/KR-DL-UCT
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Thus, our framework does not use any hand-crafted rollout
policy.

We sample m state-action pairs (s, a) from the training
data. For each state-action pair (st, at), we generate d-depth
state st+d randomly by considering execution uncertainty on
at+d−1 only. Using the value subnetwork, st+d is evaluated
and prediction zt is used for learning the value.

The policy-value network fθ(s) is adjusted to maximize the
similarity of two pairs of vectors (p,v) and (π, z), where π
and z are the policy and the value of the reference program.
To maximize the similarity of the neural network pair (p,v)
to the pair (π, z), we use stochastic gradient descent on the
multi-task loss function l, which sums the cross-entropy
losses with a batch size of 256 examples, a momentum of
0.9, and a L2 regularization parameter c of 0.0001.

(p,v)=fθ(s), (11)

l=−zT logv−πT logp + c||θ||2. (12)

Here, we set πa = 1 for the action a selected by the refer-
ence program. We find that eliminating a part of the action
space beyond the backline5 was very effective in learning
strong shots, like takeout6 shots. Combining the policy and
value networks in the policy-value network (a multi-task
learning scheme) was also effective in improving perfor-
mance. The network was trained for roughly 100 epochs.
The learning rate was initialized at 0.01 and reduced twice
prior to termination.

5.2. Self-Play Reinforcement Learning

Policy improvement starts with a sample policy followed by
executions of the MCTS using the proposed KR-DL-UCT
algorithm. The searched policy is then projected back into
the function space of the policy subnetwork.

The outcomes of self-play games are also projected back
into the function space of the value subnetwork. These
projection steps are achieved by training the policy-value
network parameters to match the search probabilities and
self-play game outcomes.

Classification based modified policy iteration (CBMPI)
(Scherrer et al., 2015) is severely limited in evaluating pol-
icy in continuous action spaces because CBMPI cannot be
used unless the action set is discretized. We handle this
problem by exploring actions using a physics simulator in
the continuous action space.

For each time-step t in self-play games, with root state
st, our KR-DL-UCT returns two vectors, zt and πt. zt
represents the estimated probability distribution of the game
score obtained from similar actions computed by kernel

5A line beyond the house area.
6An action to make a stone that hits another stone to remove it.

regression, while πt represents the probability distribution
of actions and is proportional to the estimated visit counts
based on kernel density estimation, πa ∝W (a)1/τ , where
τ is a temperature parameter.

The parameters θ of the policy-value network are initialized
by supervised learning (Section 5.1) and continually updated
by data (s,π, z) sampled uniformly (with a fixed size) at
random from the most recent history of the self-play. Here,
we use the same loss function as in supervised learning.

5.3. Learning Long Term Strategies

The game of curling differs from typical turn-based two
player games like Go and chess, because curling usually
consists of eight or ten rounds called ends. The winner
is decided based on the accumulated scores after finishing
all ends. Thus, a strategy optimized for one-end games
(8 turns per team) would not be the best strategy to win a
multi-end game (Ahmad et al., 2016). Both the position and
other features, such as the number of remaining ends and
the difference between the accumulated scores, should be
considered.

To select the best strategy in multi-end games, we construct
a winning percentage table, WP table, which is updated
using data from self-play games. The table is consist of two
entries; the number of remaining ends n, and the difference
between the accumulated scores until the current end δ. For
example, Pwin(n=1, δ=− 1) is the winning probability
(for the team who shoots first of the end) when one end
remains and the difference of the accumulated scores is
-1 (i.e., the team is down by one point). Using an one-
end score distribution and Pwin(n, δ), Pwin(n+1, δ) can
be computed iteratively.

The expected winning percentage of multi-end games is
efficiently computed from the WP table and the probability
distribution of the one-end score [−8, 8].

6. Experimental Results
6.1. Simulated Curling

Curling is a two-team, zero-sum game. The goal is to throw
a stone down a sheet of ice toward the house (the scoring
area). Games are divided into rounds called ends, in which
each team alternates throwing a total of eight stones each.
When each end finishes, the team with the stone closest to
the center of the house, called the tee, scores points. The
number of points they receive is calculated by the number
of stones in the house those are closer to the tee than any
opponent stone.

When curling is played on an actual ice sheet, deciding the
best strategy given the game situation is difficult because
the ice conditions continuously change and each player has



Deep Reinforcement Learning in Continuous Action Spaces

FIRST PLAY SECOND PLAY TOTAL
PROGRAM WIN DRAW LOSE WIN DRAW LOSE WINNING PERCENTAGE

GCCSGAT’17 53 25 22 73 19 8 74.0 ± 6.22%
AYUMUGAT’16 56 8 36 69 8 23 66.5 ± 6.69%
AYUMUGAT’17 43 15 42 65 17 17 62.3 ± 6.87%
JIRITSUKUNGAT’16 80 4 16 87 7 6 86.3 ± 4.88%
JIRITSUKUNGAT’17 38 12 50 58 18 24 55.5 ± 7.04%

Table 1. The 8-end game results for KR-DRL-MES against other programs alternating the opening player each game. The matches are
held by following the rules of the latest GAT competition.

different characteristics.

In this paper, we use simulated curling software (Ito & Kita-
sei, 2015) which assumes a stationary curling sheet. Thus,
ice conditions are assumed to remain unchanged, the sweep-
ing7 is not considered, and asymmetric Gaussian noise is
added to the every shot. The simulator is implemented using
the Box2D physics library, which deals with the trajectory
of the stones and their collisions.

6.2. Dataset

We use data from the public program AyumuGAT’16 (Ohto
& Tanaka, 2017), which is based on a high-performance
MCTS algorithm and a champion program of the Game AI
Tournaments digital curling championship in 2016 (GAT-
2016) (Ito).

6.3. Domain Knowledge

The following is the only domain knowledge we used.

• In a game of curling, there is an official rule called the
free-guard zone8 (FGZ) rule.9 To handle this rule, we
encode the number of turns for each end.

• The input features describing the position of the stones
are represented as a 32x32 image. To overcome the
loss of information from the discretization, we add
additional features for each stone: whether the stone is
in the house and their order in terms of their distance
to the center of the house.

• The strategy in game of curling is invariant under re-
flection; thus, we utilize this knowledge to augment
the data.

Any form of domain knowledge beyond the information
listed above is not used. We summarize input features used

7An activity, brushing the ice surface after throwing a stone, to
adjust stone’s trajectory close to the intended one.

8Area between the tee line and the hog line which the stone
must completely cross to be considered in play, excluding the
house.

9The rule states that an opponent’s rock resting in the free-
guard zone cannot be removed from play until the first four rocks
of an end have been played.

in the policy-value networks in the supplementary material.

6.4. Settings

Our first algorithm, kernel regression-deep learning (KR-
DL), is trained as described in Section 5.1. Our second
algorithm, kernel regression-deep reinforcement learning
(KR-DRL), follows the learning pipeline in Section 5.2.
During self-play, each shot is selected after 400 simulations.
For a continuous search, we set C = 0.1 and k = 20. For
the first three shots during which the FGZ rule is applied,
we set τ = 1 to allow for more stones to be in playground
during an end. Otherwise, we set τ = 0.33 to follow the
promising actions with high probability.

During a week of data collection, using 5 GPUs, 5 million
game positions were generated and KR-DRL, initialized
by KR-DL, was continually updated using data (s,π, z)
sampled uniformly at random from the most recent one
million positions during self-play. Finally, the WP table
(Section 5.3) generated from KR-DRL self-play is used for
our third algorithm, kernel regression-deep reinforcement
learning-multi ends strategy (KR-DRL-MES).

We compare our proposed algorithms with vanilla KR-UCT
and programs which received first, second prize and third
prize in the 2016 and 2017 GAT (Ito). For the vanilla KR-
UCT, we used the same hyperparameter with 1,600 simu-
lation as in (Yee et al., 2016). Unfortunately, the generator
that creates list of promising shot from particular state is
not publicly available, we used different generator based on
handmade simple policy function (Ohto & Tanaka, 2017),
such as drawing shot to the center of house, or hitting the
opponent stone for the rollout policy and initialization of
candidate actions. All the matches held with the rules of the
last GAT competition: all programs are allowed about 3.4
seconds computation time per move and play 8-end game
with known Gaussian execution uncertainty.

6.5. Results

First, to demonstrate the significance of our work, we com-
pare the performance of a program trained by our proposed
algorithm (KR-DL-UCT) with a baseline program trained
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Figure 3. Learning curve for KR-DL-UCT and DL-UCT. The plot
shows the winning percentages of 2,000 two-end games against
DL-UCT with supervised learning only, 1,000 games as the first
player and 1,000 games as the second player respectively. We
compute the winning percentages by increasing the number of
training shots.

by UCT only (DL-UCT).

We initialize both models with the supervised learning and
then train further from shots of self-play games with two
different algorithms. For the case of DL-UCT, each shot is
selected with a constant (Silver et al., 2016) determining
the level of exploration (Cpuct = 1.0). We evaluate the
programs with the winning percentages of two-end games
against DL-UCT with supervised learning only. We also
compared programs by increasing the number of training
shots generated by self-play games.

Figure 3 shows the performance of KR-DL-UCT compared
to DL-UCT. We could observe that KR-DL-UCT outper-
forms DL-UCT even without the self-play RL. With the
supervised training only, KR-DL-UCT wins 53.23% against
DL-UCT. KR-DL-UCT expedites the training procedure by
improving the overall performance compared to DL-UCT
under the self-play RL framework. After gathering 5 mil-
lion shots from self-play, KR-DL-UCT wins 66.05% which
is significantly higher than the winning percentage of DL-
UCT.

Second, to evaluate our algorithm, we run an internal match
among our proposed algorithm and other programs follow-
ing GAT-2017 rules. Each algorithm played an equal num-
ber of games with and without the hammer shot against each
opponent in the first end.

Figure 4 presents the Elo ratings of the programs trained
by our framework (KR-DL, KR-DRL and KR-DRL-MES)
and existing programs (KR-UCT, JiritsukunGAT’16, Ayu-
muGAT’16, GCCSGAT’17, AyumuGAT’17 and Jiritsukun-
GAT’17). The vanilla KR-UCT does not perform well com-
pared to other programs optimized with many hand-crafted
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Figure 4. Elo rating and winning percentages of our models and
GAT rankers. Each match has 200 games (each program plays 100
pre-ordered games), because the player which has the last shot (the
hammer shot) in each end would have an advantage. Programs
colored blue are our proposed programs.

features. Our first model, KR-DL, trained using supervised
learning from the shots of AyumuGAT’16 does not perform
better than the reference program. KR-DRL, trained fur-
ther from self-play reinforcement learning, outperforms the
reference program and other recently successful programs.
KR-DRL-MES, equipped with long-term strategy, achieves
the state-of-the-art performance.

We play games between our KR-DRL-MES and notable
programs. Table 1 presents details of the match results. Our
KR-DRL-MES wins against AyumuGAT’16 and Ayumu-
GAT’17 by a significant margin. Only JiritsukunGAT’17
which uses a deep neural network and hand-crafted features,
shows a similar level of performance but KR-DRL-MES is
still the victor.

In the supplementary material, we provide a video of a game
played between KR-DRL-MES and JiritsukunGAT’17.

7. Conclusion
We present a new framework which incorporates a deep
neural network for learning game strategy with a kernel-
based Monte Carlo tree search from a continuous space.
Without the use of any hand-crafted feature, our policy-
value network is successfully trained using supervised learn-
ing followed by reinforcement learning with a high-fidelity
simulator for the Olympic sport of curling. The program
trained under our framework outperforms existing programs
equipped with several hand-crafted features and won an
international digital curling competition.
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