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Abstract
Many popular dimensionality reduction proce-
dures have out-of-sample extensions, which allow
a practitioner to apply a learned embedding to ob-
servations not seen in the initial training sample.
In this work, we consider the problem of obtain-
ing an out-of-sample extension for the adjacency
spectral embedding, a procedure for embedding
the vertices of a graph into Euclidean space. We
present two different approaches to this problem,
one based on a least-squares objective and the
other based on a maximum-likelihood formula-
tion. We show that if the graph of interest is
drawn according to a certain latent position model
called a random dot product graph, then both of
these out-of-sample extensions estimate the true
latent position of the out-of-sample vertex with
the same error rate. Further, we prove a central
limit theorem for the least-squares-based exten-
sion, showing that the estimate is asymptotically
normal about the truth in the large-graph limit.

1. Introduction
Given a graph G = (V,E) on n vertices with adjacency
matrix A ∈ {0, 1}n×n, the problem of graph embedding
is to map the vertices of G to some d-dimensional vector
space S in such a way that geometry in S reflects the topol-
ogy of G. For example, we may ask that vertices with high
conductance in G be assigned to nearby vectors in S. This
is a special case of the problem of dimensionality reduction,
well-studied in machine learning and related disciplines
(van der Maaten et al., 2009). When applied to graph data,
each vertex in G is described by an n-dimensional binary
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vector, namely its corresponding column (or row) in ad-
jacency matrix A ∈ {0, 1}n×n, and we wish to associate
with each vertex v ∈ V a lower-dimensional representation,
say xv ∈ S. The two most commonly-used approaches
for graph embeddings are the graph Laplacian embedding
and its variants (Belkin & Niyogi, 2003; Coifman & Lafon,
2006) and the adjacency spectral embedding (ASE, Sussman
et al., 2012). Both of these embedding procedures produce
low-dimensional representations of the vertices in a graph
G, and the question of “which embedding is preferable?” is
dependent on the downstream task. Indeed, one can show
that neither embedding dominates the other for the purposes
of vertex classification; see, for example, Section 4.3 of
Tang & Priebe (to appear). In addition, the results in Section
4.3 of Tang & Priebe (to appear) suggest that ASE performs
better than the Laplacian eigenmaps embedding for graphs
that exhibit a core-periphery structure. Such structures are
ubiquitous in real networks, such as those arising in social
and biological sciences (Jeub et al., 2015; Leskovec et al.,
2009).

The ASE and Laplacian embedding differ in that the latter
has received far more attention, especially with respect to
questions of limit objects (Hein et al., 2005) and out-of-
sample extensions (Bengio et al., 2003). The aim of this
paper is to establish theoretical foundations for the latter
of these two problems in the case of the adjacency spectral
embedding.

2. Background and Notation
In the standard out-of-sample (OOS) extension, we are pre-
sented with training dataD = {z1, z2, . . . , zn} ⊆ X , where
X is the set of possible observations. The data D give rise
to a symmetric matrix M = [K(zi, zj)] ∈ Rn×n, where
K : X × X → R≥0 is a kernel function that measures
similarity between elements of X , so that K(y, z) is large if
y, z ∈ X are similar, and is small otherwise. Suppose that
we have computed an embedding of the data D. Let us de-
note this embedding by X ∈ Rn×d, so that the embedding
of zi ∈ D is given by the i-th row of X . Suppose that we
are given an additional observation z ∈ X , not necessarily
included in D, and we wish to embed z under the same
scheme as was used to produce X . A naı̈ve approach would
be to discard the old embedding X , consider the augmented
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collection D = D ∪ {z} and construct a new embedding
X̃ ∈ R(n+1)×d. However, in many applications, it is infea-
sible to compute this embedding again from scratch, either
because of computational constraints or because the similar-
ities {K(zi, zj) : zi, zj ∈ D} may no longer be available
after X has been computed. Thus, the OOS problem is to
embed z using only the available embedding X which was
initially learned from D and the similarities {K(zi, z)}ni=1.

As an example, consider the Laplacian eigenmaps embed-
ding (Belkin & Niyogi, 2003; Belkin et al., 2006). Given
a graph G = (V,E) with adjacency matrix A ∈ Rn×n,
the d-dimensional normalized Laplacian of G is the matrix
L = D−1/2AD−1/2, where D ∈ Rn×n is the diagonal
degree matrix, i.e., dii =

∑
j Aij is the degree of the ver-

tex i (Luxburg, 2007; Vishnoi, 2013). The d-dimensional
normalized Laplacian eigenmaps embedding of G is given
by the rows of the matrix UL ∈ Rn×d, whose columns are
the d orthonormal eigenvectors corresponding to the top d
eigenvalues of L, excepting the trivial eigenvalue 1. We
note that some authors (see, for example, Chung, 1997) use
I −D−1/2AD−1/2 to be the normalized graph Laplacian,
but since this matrix has the same eigenspace as our L, re-
sults concerning the eigenvectors of either of these matrices
are equivalent. Suppose that a vertex v is added to graph G,
to form graph G̃ with adjacency matrix

Ã =

[
A ~a
~aT 0

]
, (1)

where ~a ∈ {0, 1}n. A naı̈ve approach to embedding G̃
would be to compute the top eigenvectors of the graph Lapla-
cian of G̃ as before. However, the OOS extension problem
requires that we only use the information available in UL
and ~a to compute an embedding of the new vertex v.

Bengio et al. (2003) presented out-of-sample extensions
for multidimensional scaling (MDS, Torgerson, 1952; Borg
& Groenen, 2005), spectral clustering (Weiss, 1999; Ng
et al., 2002), Laplacian eigenmaps (Belkin & Niyogi, 2003)
and ISOMAP (Tenenbaum et al., 2000). These OOS ex-
tensions were based on a least-squares formulation of the
embedding problem, arising from the fact that the in-sample
embeddings are given by functions of the eigenvalues and
eigenfunctions. Trosset & Priebe (2008) considered a dif-
ferent OOS extension for MDS. Rather than following the
approach of Bengio et al. (2003), Trosset & Priebe (2008)
cast the MDS OOS extension as a simple modification of
the in-sample MDS optimization problem.

Let {(λt, vt)}nt=1 be the eigen-pairs of the matrix M , con-
structed from some suitably-chosen similarity function, K,
defined on pairs of observations in D ×D. In general, OOS
extensions for eigenvector-based embeddings can be derived
as in Bengio et al. (2003) as the solution of a least-squares

problem

min
f(x)∈Rd

n∑
i=1

(
K(x, xi)−

1

n

d∑
t=1

λtft(xi)ft(x)

)2

,

where {xi}ni=1 are the in-sample observations, and ft(xi) =
[vt]i is ith component of vt. Belkin et al. (2006) presented
a slightly different approach that incorporates regularization
in both the intrinsic geometry of the data distribution and
the geometry of the similarity function K. Their approach
applies to Laplacian eigenmaps as well as to regularized
least squares and SVM. The authors also introduced a Lapla-
cian SVM, in which a Laplacian penalty term is added to
the standard SVM objective function. Belkin et al. (2006)
showed that all of these embeddings have OOS extensions
that arise as the solution of a generalized eigenvalue prob-
lem. We refer the interested reader to Levin et al. (2015) for
a practical application of this OOS extension. More recent
approaches to OOS extension have avoided altogether the
need to solve a least squares or eigenvalue problem by, in-
stead, training a neural net to learn the embedding directly
(see, for example, Quispe et al., 2016; Jansen et al., 2017).

The only existing work to date on the ASE OOS extension
of which we are aware appears in Tang et al. (2013a). The
authors considered the OOS extension for ASE applied to
latent position graphs (see, for example Hoff et al., 2002), in
which each vertex is associated with an element of a vector
space and edge probabilities are given by a suitably-chosen
inner product. The authors introduced a least-squares OOS
extension for embeddings of latent position graphs and
proved a theorem, analogous to our Theorem 1, for the error
of this extension about the true latent position. Theorem 1
simplifies the proof of the result due to Tang et al. (2013a)
for the case of random dot product graphs (see Definition 1
below).

Of crucial importance in assessing OOS extensions, but
largely missing from the existing literature, is an inves-
tigation of how the OOS estimate compares with the in-
sample embedding. That is, for an out-of-sample observa-
tion z ∈ X , how well does its OOS embedding X̂z ∈ Rd,
approximate the embedding that would be obtained by con-
sidering the full sample D = D ∪ {z}? In this paper, we
address this question in the context of the adjacency spec-
tral embedding. In particular, we show in our main results,
Theorems 1 and 2, that two different approaches to the ASE
OOS extension recover the in-sample embedding at a rate
that is, in a certain sense, optimal (see the discussion at the
end of Section 4). We conjecture that analogous rate results
can be obtained for other OOS extensions such as those
presented in Bengio et al. (2003).



Out-of-sample extension of graph adjacency spectral embedding

2.1. Notation

We pause briefly to establish notational conventions for this
paper. For a matrix B ∈ Rn1×n2 , we let σi(B) denote
the i-th singular value of B, so that σ1(B) ≥ σ2(B) ≥
· · · ≥ σk(B) ≥ 0, where k = min{n1, n2}. For positive
integer n, we let [n] = {1, 2, . . . , n}. Throughout this
paper, n will index the number of vertices in a hollow graph
G, the observed data, and we let c > 0 denote a positive
constant, not depending on n, whose value may change
from line to line. For an event E, we let Ec denote its
complement. We will say that event En, indexed so as
to depend on n, occurs with high probability, and write
En w.h.p. , if for some constant ε > 0, it holds for all
suitably large n that Pr[Ecn] ≤ n−(1+ε). In this paper, we
will show Pr[Ec] ≤ cn−2 any time we wish to show that
event E occurs with high probability. All our results involve
showing that some event En occurs w.h.p., and we note that
in all such cases, the Borel-Cantelli Lemma implies that
with probability 1, the event Ecn occurs for at most finitely
many n. That is, all our finite-sample results can be easily
altered to yield corresponding asymptotic results, as well.
For a function f : Z≥0 → R≥0 and a sequence of random
variables {Zn}, we will write Zn = O(f(n)) if there exists
a constant C and a number n0 such that Zn ≤ Cf(n) for
all n ≥ n0, and write Zn = O(f(n)) a.s. if the event
Zn ≤ Cf(n) occurs a.s.a.a. For a vector x ∈ Rd, we use
the unadorned norm ‖x‖ to denote the Euclidean norm of x.
For a matrix M ∈ Rn×d, we use the unadorned norm ‖M‖
to denote the operator norm

‖M‖ = max
x∈Rd:‖x‖=1

‖Mx‖

and we use ‖ · ‖2→∞ to denote the matrix operator norm

‖M‖2→∞ = max
x:‖x‖=1

‖Mx‖∞ = max
i∈[n]
‖Mi,·‖,

which can be proven via the Cauchy-Schwarz inequality
(Horn & Johnson, 2013). This latter operator norm will be
especially useful for us, in that a bound on ‖M‖2→∞ gives
a uniform bound on the rows of matrix M .

2.2. Roadmap

The remainder of this paper is structured as follows. In
Section 3, we present two OOS extensions of the ASE. In
Section 4, we prove convergence of these two OOS ex-
tensions when applied to random dot product graphs. In
Section 5, we explore the empirical performance of the two
extensions presented in Section 3, and we conclude with a
brief discussion in Section 6.

3. Out-of-sample Embedding for ASE
Given a graph G encoded by adjacency matrix A ∈
{0, 1}n×n, the adjacency spectral embedding (ASE) pro-

duces a d-dimensional embedding of the vertices ofG, given
by the rows of the n-by-d matrix

X̂ = UAS
1/2
A , (2)

where UA ∈ Rn×d is a matrix with orthonormal columns
given by the d eigenvectors corresponding to the top d
eigenvalues of A, which we collect in the diagonal ma-
trix SA ∈ Rd×d. We note that in general, one would be
better-suited to consider the matrix [ATA]1/2, so that all
eigenvalues are guaranteed to be nonnegative, but we will
see that in the random dot product graph, the model that is
the focus of this paper, the top d eigenvalues of A are posi-
tive with high probability (see, for example, either Lemma
1 in Athreya et al. (2016) or Observation 2 in Levin et al.
(2017), or refer to the technical report, (Levin et al., 2018)).

The random dot product graph (RDPG, Young & Schein-
erman, 2007) is an edge-independent random graph model
in which the graph structure arises from the geometry of a
set of latent positions, i.e., vectors associated to the vertices
of the graph. As such, the adjacency spectral embedding is
particularly well-suited to this model.

Definition 1. (Random Dot Product Graph) Let F be a
distribution on Rd such that xT y ∈ [0, 1] whenever x, y ∈
suppF , and let X1, X2, . . . , Xn be drawn i.i.d. from F .
Collect these n random points in the rows of a matrix X ∈
Rn×d. Suppose that (symmetric) adjacency matrix A ∈
{0, 1}n×n is distributed in such a way that

Pr[A|X] =
∏

1≤i<j≤n

(XT
i Xj)

Aij (1−XT
i Xj)

1−Aij . (3)

When this is the case, we write (A,X) ∼ RDPG(F, n). If
G is the random graph corresponding to adjacency matrix
A, we say that G is a random dot product graph with latent
positions X1, X2, . . . , Xn, where Xi is the latent position
corresponding to the i-th vertex.

A number of results exist showing that the adjacency spec-
tral embedding yields consistent estimates of the latent
positions in a random dot product graph (Sussman et al.,
2012; Tang et al., 2013b) and recovers community struc-
ture in the stochastic block model (Lyzinski et al., 2014).
We note an inherent nonidentifiability in the random dot
product graph, arising from the fact that for any orthogonal
matrix W ∈ Rd×d, the latent positions X ∈ Rn×d and
XW ∈ Rd×d give rise to the same distribution over graphs,
since XXT = (XW )(XW )T = E[A | X]. Owing to this
nonidentifiability, we can only hope to recover the latent
positions in X up to some orthogonal rotation. The reader
may notice that the RDPG as defined has the limitation
that it can only capture graphs with positive semi-definite
expected value. This limitation can be overcome by extend-
ing the RDPG to the generalized RDPG (Rubin-Delanchy
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et al., 2017). The results stated in the present work can,
for the most part, be extended to this generalized model,
but we restrict ourselves here to the RDPG as it appears in
Definition 1 for the sake of simplicity.

Suppose that, given adjacency matrix A, we compute em-
bedding

X̂ = [X̂1X̂2 . . . X̂n]T ,

where X̂i ∈ Rd denotes the embedding of the i-th ver-
tex. Now suppose we add a vertex v with latent position
w̄ ∈ Rd to the original graph G, obtaining an augmented
graph G̃ = ([n] ∪ {v}, E ∪ Ev), where Ev denotes the set
of edges between v and the vertices of G. One would like
to embed vertex v according to the same distribution as the
original n vertices and obtain an estimate of w̄. Let the
binary vector ~a ∈ {0, 1}n encode the edges Ev incident
upon vertex v, with entries ai = (~a)i ∼ Bernoulli(XT

i w̄).
The augmented graph G̃ then has the adjacency matrix as
in (1). As discussed earlier, the natural approach to embed-
ding vertex v is to simply re-embed the whole matrix G̃ by
computing the ASE of Ã. Suppose that we wish to avoid
such a computation, for example due to resource constraints.
The problem then becomes one of embedding the new ver-
tex v based solely on the information present in X̂ and ~a.
Two natural approaches to such an OOS extension suggest
themselves.

3.1. Linear Least Squares OOS Extension

A natural approach to OOS embedding, pursued by, for
example, Bengio et al. (2003), is to embed vertex v as the
least-squares solution to X̂w = ~a. That is, we embed the
vertex v as the vector ŵLS solving

min
w∈Rd

n∑
i=1

(
ai − X̂T

i w
)2

, (4)

where ai denotes the i-th component of the binary vector ~a
encoding the edges between v and the original n vertices.
We will denote the solution to the least-squares optimiza-
tion in Equation (4) by ŵLS, and term this the linear least
squares out-of-sample (LLS OOS) embedding.

3.2. Maximum Likelihood OOS Extension

A more principled approach to OOS extension, but perhaps
more involved computationally, is to consider the following
maximum-likelihood formulation. The entries of the vector
~a are distributed independently as ai ∼ Bernoulli(XT

i w̄),
where w̄ denotes the true latent position of OOS vertex v.
Since we do not have access to the latent positions {Xi}ni=1,
we use instead their estimates {X̂i}ni=1. This yields the
following objective:

max
w∈Rd

n∑
i=1

ai log X̂T
i w + (1− ai) log

(
1− X̂T

i w
)
. (5)

Unfortunately, this optimization problem may fail to achieve
its optimum inside the support of F . Indeed, it may not even
have a finite solution. Thus, we will instead settle for solving
the following constrained modification of Equation (5),

max
w∈T̂ε

n∑
i=1

ai log X̂T
i w + (1− ai) log

(
1− X̂T

i w
)
, (6)

where T̂ε = {w ∈ Rd : ε ≤ X̂T
i w ≤ 1 − ε, i ∈ [n]}, and

ε > 0 is a small constant. We note that this is based only
on the edges incident on the OOS vertex rather than on the
full data Ã, and uses the spectral estimates {X̂i}ni=1 rather
than the true latent positions {Xi}ni=1. Despite both of these
facts, we will term the extension given by Equation (6) as the
maximum-likelihood out-of-sample (ML OOS) extension,
and we will let ŵML denote its solution.

4. Main Results
Our main results show that both the linear least-squares and
maximum-likelihood OOS extensions in Equations (4) and
(6) recover the true latent position w̄ of v. Further, both
OOS extensions converge to w̄ at the same asymptotic rate
(i.e., up to a constant) as we would have obtained, had we
computed the ASE of Ã in (1) directly. This rate is given by
Lemma 2.5 from Lyzinski et al. (2014), which we state here
in a slightly adapted form. The lemma states, in essence,
that the ASE recovers the latent positions with error of order
n−1/2 log n, uniformly over the n vertices. We remind the
reader that ‖M‖2→∞ denotes the 2-to-∞ operator norm,
‖M‖2→∞ = maxx:‖x‖=1 ‖Mx‖∞.

Lemma 1 (Adapted from Lyzinski et al. (2014), Lemma
2.5). Let X = [X1, X2, . . . , Xn]T ∈ Rn×d be the matrix
of latent positions of an RDPG, and let X̂ ∈ Rn×d denote
the matrix of estimated latent positions yielded by ASE as
in (2). Then with probability at least 1− cn−2, there exists
orthogonal matrix W ∈ Rd×d such that

‖X̂ −XW‖2→∞ ≤
c log n

n1/2
.

That is, it holds with high probability that for all i ∈ [n],

‖X̂i −WTXi‖ ≤
c log n

n1/2
.

In what follows, we let A ∈ {0, 1}n×n denote the random
adjacency matrix of an RDPGG, and letX1, X2, . . . , Xn ∈
Rd denote its latent positions, collected in matrix X =
[X1, X2, . . . , Xn]T ∈ Rn×d. That is, (A,X) ∼
RDPG(F, n). We use X̂ = [X̂1, X̂2, . . . , X̂n]T ∈ Rn×d
to denote the matrix whose rows are the estimated latent
positions, obtained via ASE as in (2). We let w̄ denote the
true latent position of the OOS vertex v.
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Theorem 1. With notation as above, let ŵLS denote the
least-squares estimate of w̄, i.e., the solution to (4). Then
there exists an orthogonal matrix W ∈ Rd×d such that

‖WŵLS − w̄‖ ≤ cn−1/2 log n w.h.p.

Proof. The proof of this result relies upon a classic result
for solutions of perturbed linear systems to establish that
with high probability, ‖WŵLS − wLS‖ ≤ cn−1/2 log n,
where W ∈ Rd×d is the orthogonal matrix guaranteed by
Lemma 1 andwLS is the LS estimate based on the true latent
positions {Xi} rather than on the estimates {X̂i}. A basic
Hoeffding inequality to show that with high probability,
‖wLS − w̄‖ ≤ cn−1/2 log n, where again W ∈ Rd×d is
the orthogonal matrix in Lemma 1. A triangle inequality
applied to ‖WŵLS− w̄‖ combined with a union bound over
the two high-probability events just described yields the
result. A detailed version of this proof can be found in the
technical report (Levin et al., 2018).

As mentioned in Section 3, we would like to consider a
maximum-likelihood OOS extension based on the likeli-
hood ˆ̀(w) =

∑n
i=1 ai log X̂T

i w+ (1−ai) log(1− X̂T
i w).

Toward this end, we would ideally like to use the solution
to the optimization problem

arg max
w∈Rd

ˆ̀(w),

but to ensure a sensible solution, we instead consider

ŵML = arg max
w∈T̂ε

ˆ̀(w), (7)

where we remind the reader that T̂ε = {w ∈ Rd : ε ≤
X̂T
i w ≤ 1 − ε, i = 1, 2, . . . , n}. Theorem 2 shows that

ŵML recovers the true latent position of the OOS vertex,
up to rotation, with error decaying at the same rate as that
obtained in Theorem 1 for the LS OOS extension.

Theorem 2. With notation as above, let ŵML be the esti-
mate defined in Equation (7), and let ε > 0 be such that
x, y ∈ suppF implies ε < xT y < 1 − ε. Denote the true
latent position of the OOS vertex v by w̄ ∈ suppF . Then
for all n suitably large, there exists an orthogonal matrix
W ∈ Rd×d such that with high probability,

‖WŵML − w̄‖ ≤ cn−1/2 log n w.h.p.,

and this matrix W is the same one guaranteed by Lemma 1.

Proof. By a standard argument from convex optimization,
alongside the definition of T̂ε, one can thow that for suitably
large n,

‖WŵML − w̄‖ ≤
c‖∇ˆ̀(WT w̄)‖

n
w.h.p.

By the triangle inequality one can then show that

‖∇ˆ̀(WT w̄)‖ ≤ c
√
n log n w.h.p.

A detailed proof can be found in (Levin et al., 2018).

Remark 1. Given our in-sample embedding X̂ and the vec-
tor of edge indicators ~a, we can think of the OOS extension
as an estimate of w̄, the latent position of the OOS vertex
v. Lemma 1 implies that if we took the naı̈ve approach
of applying ASE to the adjacency matrix Ã in (1), our es-
timate would have error of order at most O(n−1/2 log n).
Theorems 1 and 2 imply that the OOS estimate obtains the
same asymptotic estimation error, without recomputing the
embedding of Ã.

In addition to the bounds in Theorems 1 and 2, we can show
that the least-squares OOS extension satisfies a stronger
property, namely the following central limit theorem.

Theorem 3. Let (A,X) ∼ RDPG(F, n) be a d-
dimensional RDPG. Let w̄ ∈ suppF and ŵLS ∈ Rd be,
respectively, the latent position and the least-squares embed-
ding from (4) of an OOS vertex v. There exists a sequence
of orthogonal d× d matrices {Vn}∞n=1 such that

√
n(V Tn ŵLS − w̄)

L−→ N (0,Σw̄),

where Σw̄ ∈ Rd×d is given by

Σw̄ = ∆−1E
[
XT

1 w̄(1−XT
1 w̄)X1X

T
1

]
∆−1, (8)

and ∆ = EX1X
T
1 .

Proof. This theorem follows from an adaptation of Theorem
1 in (Levin et al., 2017) A detailed proof can be found in
(Levin et al., 2018).

If the OOS vertex is distributed according to F , we have the
following corollary by integrating w̄ with respect to F .

Corollary 1. Let (A,X) ∼ RDPG(F, n) be a d-
dimensional RDPG, and let w̄ be distributed according to
F , independent of (A,X). Then there exists a sequence of
orthogonal d× d matrices {Vn}∞n=1 such that

√
n(V Tn ŵLS − w̄)

L−→
∫
N (0,Σw)dF (w),

where Σw is defined as in Equation (8) above.

We conjecture that a CLT analogous to Theorem 3 holds for
the ML OOS extension.
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Figure 1. Empirical distribution of the LLS OOS estimate for 100 independent trials for number of vertices n = 50 (left), n = 100
(middle) and n = 500 (right). Each plot shows the positions of 100 independent OOS embeddings, indicated by crosses, and colored
according to cluster membership. Contours indicate two generalized standard deviations of the multivariate normal (i.e., 68% and 95% of
the probability mass) about the true latent positions, which are indicated by solid circles. We note that even with merely 100 vertices, the
normal approximation is already quite reasonable.

5. Experiments
In this section, we briefly explore our results through sim-
ulations. We leave a more thorough experimental exam-
ination of our results, particularly as they apply to real-
world data, for future work. We first give a brief ex-
ploration of how quickly the asymptotic distribution in
Theorem 3 becomes a good approximation. Toward this
end, let us consider a simple mixture of point masses,
F = Fλ,x1,x2

= λδx1
+(1−λ)δx2

, where x1, x2 ∈ R2 and
λ ∈ (0, 1). This corresponds to a two-block stochastic block
model (Holland et al., 1983), in which the block probability
matrix is given by [

xT1 x1 xT1 x2

xT1 x2 xT2 x2

]
.

Corollary 1 implies that if all latent positions (including
the OOS vertex) are drawn according to F , then the OOS
estimate should be distributed as a mixture of normals cen-
tered at x1 and x2, with respective mixing coefficients λ
and 1− λ.

To assess how well the asymptotic distribution predicted by
Theorem 3 and Corollary 1 holds, we generate RDPGs with
latent positions drawn i.i.d. from distribution F = Fλ,x1,x2

defined above, with

λ = 0.4, x1 = (0.2, 0.7)T , and x2 = (0.65, 0.3)T .

For each trial, we draw n+ 1 independent latent positions
from F , and generate a binary adjacency matrix from these
latent positions. We let the (n+1)-th vertex be the OOS ver-
tex. Retaining the subgraph induced by the first n vertices,
we obtain an estimate X̂ ∈ Rn×2 via ASE, from which
we obtain an estimate for the OOS vertex via the LS OOS
extension as defined in (4). We remind the reader that for
each RDPG draw, we initially recover the latent positions

only up to a rotation. Thus, for each trial, we compute a
Procrustes alignment (Gower & Dijksterhuis, 2004) of the
in-sample estimates X̂ to their true latent positions. This
yields a rotation matrix R, which we apply to the OOS
estimate. Thus, the OOS estimates are sensibly compara-
ble across trials. Figure 1 shows the empirical distribution
of the OOS embeddings of 100 independent RDPG draws,
for n = 50 (left), n = 100 (center) and n = 500 (right)
in-sample vertices. Each cross is the location of the OOS
estimate for a single draw from the RDPG with latent posi-
tion distribution F , colored according to true latent position.
OOS estimates with true latent position x1 are plotted as
blue crosses, while OOS estimates with true latent position
x2 are plotted as red crosses. The true latent positions x1

and x2 are plotted as solid circles, colored accordingly. The
plot includes contours for the two normals centered at x1

and x2 predicted by Theorem 3 and Corollary 1, with the
ellipses indicating the isoclines corresponding to one and
two (generalized) standard deviations.

Examining Figure 1, we see that even with only 100 vertices,
the mixture of normal distributions predicted by Theorem 3
holds quite well, with the exception of a few gross outliers
from the blue cluster. With n = 500 vertices, the approx-
imation is particularly good. Indeed, the n = 500 case
appears to be slightly under-dispersed, possibly due to the
Procrustes alignment. It is natural to wonder whether a sim-
ilarly good fit is exhibited by the ML-based OOS extension.
We conjectured at the end of Section 4 that a CLT similar to
that in Theorem 3 would also hold for the ML-based OOS
extension as defined in Equation (7). Figure 2 shows the
empirical distribution of 100 independent OOS estimates,
under the same experimental setup as Figure 1, but using the
ML OOS extension rather than the linear least-squares ex-
tension. The plot supports our conjecture that the ML-based
OOS estimates are also approximately normally distributed
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Figure 2. Empirical distribution of the ML OOS estimate for 100 independent trials for number of vertices n = 50 (left), n = 100
(middle) and n = 500 (right). Each plot shows the positions of 100 independent OOS embeddings, indicated by crosses, and colored
according to cluster membership. Contours indicate two generalized standard deviations of the multivariate normal (i.e., 68% and 95% of
the probability mass) about the true latent positions, which are indicated by solid circles. Once again, even with merely 100 vertices, the
normal approximation is already quite reasonable, supporting our conjecture that the ML OOS estimates also distributed as a mixture of
normals according to the latent position distribution F .

about the true latent positions.

Figure 1 suggests that we may be confident in applying
the large-sample approximation suggested by Theorem 3
and Corollary 1. Applying this approximation allows us to
investigate the trade-offs between computational cost and
classification accuracy, to which we now turn our attention.
The mixture distribution Fλ,x1,x2

above suggests a task in
which, given an adjacency matrix A, we wish to classify the
vertices according to which of two clusters or communities
they belong. That is, we will view two vertices as belonging
to the same community if their latent positions are the same
(Holland et al., 1983, i.e., the latent positions specify an
SBM,). More generally, one may view the task of recover-
ing vertex block memberships in a stochastic block model
as a clustering problem. Lyzinski et al. (2014) showed that
applying ASE to such a graph, followed by k-means clus-
tering of the estimated latent positions, correctly recovers
community memberships of all the vertices (i.e., correctly
assigns all vertices to their true latent positions) with high
probability.

For concreteness, let us consider a still simpler mixture
model, F = Fλ,p,q = λδp+ (1−λ)δq , where 0 < p < q <

1, and draw an RDPG (Ã,X) ∼ RDPG(F, n+m), taking
the first n vertices to be in-sample, with induced adjacency
matrix A ∈ Rn×n. That is, we draw the full matrix

Ã =

[
A B
BT C

]
,

where C ∈ Rm×m is the adjacency matrix of the subgraph
induced by them OOS vertices andB ∈ Rn×m encodes the
edges between the in-sample vertices and the OOS vertices.
The latent positions p and q encode a community structure
in the graph Ã, and, as alluded to above, a common task
in network statistics is to recover this community structure.

Let w̄(1), w̄(2), . . . , w̄(m) ∈ {p, q} denote the true latent po-
sitions of the m OOS vertices, with respective least-squares
OOS estimates ŵ(1)

LS , ŵ
(2)
LS , . . . , ŵ

(m)
LS , each obtained from

the in-sample ASE X̂ ∈ Rn of A. We note that one could
devise a different OOS embedding procedure that makes use
of the subgraph C induced by these m OOS vertices, but
we leave the development of such a method to future work.
Corollary 1 implies that each ŵ(t)

LS for t ∈ [m] is marginally
(approximately) distributed as

ŵ
(t)
LS ∼ λN (p, (n+ 1)−1σ2

p) + (1−λ)N (q, (n+ 1)−1σ2
q ),

where

σ2
p = ∆−2

(
λp2(1− p2)p2 + (1− λ)pq(1− pq)q2

)
,

σ2
q = ∆−2

(
λpq(1− pq)p2 + (1− λ)q2(1− q2)q2

)
,

and ∆ = λp2 + (1− λ)q2.

Classifying the t-th OOS vertex based on ŵ(t)
LS via likelihood

ratio thus has (approximate) probability of error

ηn,p,q = λ(1− Φ

(√
n+ 1(xn+1,p,q − p)

σp

)
+ (1− λ)Φ

(√
n+ 1(xn+1,p,q − q)

σq

)
,

where Φ denotes the cdf of the standard normal and xn,p,q
is the value of x solving

λσ−1
p exp{n(x− p)2/(2σ2

p)}
= (1− λ)σ−1

q exp{n(x− q)2/(2σ2
q )},

and hence our overall error rate when classifying the m
OOS vertices will grow as mηn+1,p,q .
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As discussed previously, the OOS extension allows us to
avoid the expense of computing the ASE of the full matrix

Ã =

[
A B
BT C

]
.

The LLS OOS extension is computationally inexpensive,
requiring only the computation of the matrix-vector prod-
uct S−1/2

A UTA~a, with a time complexity O(d2n) (assum-
ing one does not precompute the product S−1/2

A UTA ). The
eigenvalue computation required for embedding Ã is far
more expensive than the LLS OOS extension. Nonethe-
less, if one were intent on reducing the OOS classifica-
tion error ηn+1,p,q, one might consider paying the com-
putational expense of embedding Ã to obtain estimates
w̃(1), w̃(2), . . . , w̃(m) of the m OOS vertices. That is, we
obtain estimates for the m OOS vertices by making them in-
sample vertices, at the expense of solving an eigenproblem
on the (m + n)-by-(m + n) adjacency matrix. Of course,
the entire motivation of our approach is that the in-sample
matrix A may not be available. Nonetheless, a comparison
against this baseline, in which all data is used to compute
our embeddings, is instructive.

Theorem 1 in Athreya et al. (2016) implies that the w̃(t)

estimates based on embedding the full matrix Ã are (approx-
imately) marginally distributed as

w̃(t) ∼ λN (p, (n+m)−1σ2
p)+(1−λ)N (q, (n+m)−1σ2

q ),

with classification error

ηn+m,p,q = λΦ

(
p− xn+m,p,q

σp

)
+ (1− λ)Φ

(
xn+m,p,q − q

σq

)
,

where xn+m,p,q is the value of x solving

λσ−1
p exp{(m+ n)(x− p)2/(2σ2

p)} =

(1− λ)σ−1
q exp{(m+ n)(x− q)2/(2σ2

q )},

and it can be checked that ηn+m,q,p < ηn,q,p when m > 1.
Thus, at the cost of computing the ASE of Ã, we may obtain
a better estimate. How much does this additional compu-
tation improve classification the OOS vertices? Figure 3
explores this question.

Figure 3 compares the error rates of the in-sample and OOS
estimates as a function of m and n in the model just de-
scribed, with λ = 0.4, p = 0.6 and q = 0.61. The plot de-
picts the ratio of the (approximate) in-sample classification
error η(n+m),p,q to the (approximate) OOS classification er-
ror η(n+1),p,q , as a function of the number of OOS vertices
m, for differently-sized in-sample graphs, n = 100, 1000,
and 10000. We see that over several magnitudes of graph
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Figure 3. Ratio of the OOS classification error to the in-sample
classification error as a function of the number of OOS vertices m,
for n = 100 vertices, n = 1000 vertices and n = 10000 vertices.
We see that for m ≤ 100, the expensive in-sample embedding
does not improve appreciably on the OOS classification error.
However, when many hundreds or thousands of OOS vertices are
available simultaneously (i.e., m ≥ 100), we see that the in-sample
embedding may improve upon the OOS estimate by a significant
multiplicative factor.

size, the in-sample embedding does not improve appreciably
over the OOS embedding except when multiple hundreds
of OOS vertices are available. When hundreds or thousands
of OOS vertices are available simultaneously, we see in the
right-hand side of Figure 3 that the in-sample embedding
classification error may improve upon the OOS classifica-
tion error by a large multiplicative factor. Whether or not
this improvement is worth the additional computational ex-
pense will, depend upon the available resources and desired
accuracy, but this suggests that the additional expense asso-
ciated with performing a second ASE computation is only
worthwhile in the event that hundreds or thousands of OOS
vertices are available simultaneously. This surfeit of OOS
vertices is rather divorced from the typical setting of OOS
extension problems, where one typically wishes to embed
at most a few previously unseen observations.

6. Discussion and Conclusion
We have presented a theoretical investigation of two OOS
extensions of the ASE, one based on a linear least squares es-
timate and the other based on a plug-in maximum-likelihood
estimate. We have also proven a central limit theorem for
the LLS-based extension, and simulation suggests that this
CLT is a good approximation even with just a few hundred
vertices. We conjecture that a similar CLT holds for the ML-
based OOS extension, a conjecture supported by similar
simulation data. Finally, we have given a brief illustration
of how this OOS extension and the approximation it intro-
duces might be weighed against the computational expense
of recomputing a full graph embedding by examining how
vertex classification error depends on the size of the set of
OOS vertices. We leave a more thorough exploration of this
trade-off for future work.
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