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A. Effect of L2-SP Regularization on
Optimization

The effect of L2 regularization can be analyzed by doing a
quadratic approximation of the objective function around
the optimum (see, e.g. Goodfellow et al., 2017, Section
7.1.1). This analysis shows that L2 regularization rescales
the parameters along the directions defined by the eigenvec-
tors of the Hessian matrix. This scaling is equal to λi

λi+α
for

the i-th eigenvector of eigenvalue λi. A similar analysis can
be used for the L2-SP regularization.

We recall that J(w) is the unregularized objective func-
tion, and J̃(w) = J(w) + α

∥∥w −w0
∥∥2
2

is the regular-
ized objective function. Let w∗ = argminwJ(w) and
w̃ = argminwJ̃ be their respective minima. The quadratic
approximation of J(w∗) gives

H(w̃ −w∗) + α(w̃ −w0) = 0 , (1)

where H is the Hessian matrix of J w.r.t. w, evaluated at
w∗. Since H is positive semidefinite, it can be decomposed
as H = QΛQT . Applying the decomposition to Equation
(1), we obtain the following relationship between w̃ and
w∗:

QT w̃ = (Λ + αI)−1ΛQTw∗ + α(Λ + αI)−1QTw0 .
(2)

We can see that with L2-SP regularization, in the direction
defined by the i-th eigenvector of H, w̃ is a convex combi-
nation of w∗ and w0 in that direction since λi

λi+α
and α

λi+α
sum to 1.

B. Matching the State of the Art in Image
Classification

The main objective of this paper is to demonstrate that -SP
regularization in general, and L2-SP in particular, provides
a baseline for transfer learning that is significantly superior
to the standard fine-tuning technique. We do not aim at
reaching the state of the art solely with this simple technique.
However, as shown here, with some training tricks and post-
processing methods, which have been proposed elsewhere
but were not used in the paper, we can reach or even exceed
the state of the art performances, simply by changing the

regularizer to L2-SP.

Aspect Ratio. During training, respecting or ignoring the
aspect ratio of images will give different results, and usually
it would be better to keep the original aspect ratio. In the
paper, the classification experiments are all under the pre-
processing of resizing all images to 256×256, i.e. ignoring
the aspect ratio. Here we perform an ablation study to
analyze the difference between keeping and ignoring the
ratio. For simplicity, we use the same hyperparameters as
before except that the aspect ratio is kept and images are
resized with the shorter edge being 256.

Post-Processing for Image Classification. A common
post-processing method for image classification is 10-crop
testing (averaging the predictions of 10 cropped patches,
the four corner patches and the center patch as well as their
horizontal reflections).

We apply the aspect ratio and 10-crop testing techniques
to improve our results, but we believe the performance can
be improved but using additional tricks, such as random
rotation or scaling during training, more crops, multi scales
for test, etc. Table 1 shows our results. Caltech 256 - 30
outperforms the state of the art; our results in MIT Indoors
67 and Stanford Dogs 120 are very close to the state of the
art, noting that the best performing approach (Ge & Yu,
2017) used many training examples from source domain to
improve performance. On our side, we did not use any other
examples and simply changed the regularization approach
from L2 to L2-SP.

We add Foods 101 (Bossard et al., 2014) to supplement our
experiments. Foods 101 is a database that collects photos
of 101 food categories and is a much larger database than
the three we already presented, yet rough in terms of image
quality and class labels in the training set.

C. Application of L2-SP to Semantic Image
Segmentation

The paper compares different regularization approaches for
transfer in image classification. In this section, we examine
the versatility of L2-SP by applying it to image segmenta-
tion. Although the image segmentation target task, which
aims at labeling each pixel of an image with the category of
the object it belongs to, differs from the image classification
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Table 1. Average classification accuracies (in %) for L2 and L2-SP using the training tricks presented in Section B. The source database is
Places 365 for MIT Indoors 67 and ImageNet for Caltech 256, Stanford Dogs and Foods. References for the state of the art are taken from
Ge & Yu (2017), except for Foods-101 where it is taken from Martinel et al. (2016).

Caltech 256 - 30 Caltech 256 - 60 MIT Indoors 67 Stanford Dogs 120 Foods 101
L2 82.7±0.2 86.5±0.4 80.7±0.9 83.1±0.2 86.7±0.2

L2-SP 84.9±0.1 87.9±0.2 85.2±0.3 89.8±0.2 87.1±0.1
Reference 83.8±0.5 89.1±0.2 85.8 90.3 90.3

Table 2. Mean IoU scores on Cityscapes validation set. Fine-
tuning with L2, Chen et al. (2017) obtained 66.6 and 70.4 for
ResNet-101 and DeepLab respectively.

Method L2 L2-SP
ResNet-101 68.1 68.7
DeepLab 72.0 73.2

source task, it still benefits from fine-tuning.

We evaluate the effect of fine-tuning with L2-SP on
Cityscapes (Cordts et al., 2016), a dataset with an evalu-
ation benchmark for pixel-wise segmentation of real-world
urban street scenes. It consists of 5000 images with high
quality pixel-wise labeling, which are split into a training
set (2975 images), a validation set (500 images) and a test
set (1525 images), all with resolution 2048×1024 pixels.
ImageNet (Deng et al., 2009) is used as source.

As for the networks, we consider two architectures of con-
volutional networks: the standard ResNet (He et al., 2016),
which can be used for image segmentation by removing the
global pooling layer, and DeepLab-V2 (Chen et al., 2017),
which stayed top-ranked for some time on the Cityscapes
benchmark and is one of the most favored structures. We
reproduce them with L2 and L2-SP on Cityscapes under the
same setting.

Most of the training tricks used for classification apply to
segmentation, and we precise here the difference. Images
are randomly cropped to 800×800, 2 examples are used in
a batch, and batch normalization layers are frozen to keep
pre-trained statistics. We use the polynomial learning rate
policy as in Chen et al. (2017) and the base learning rate is
set to 0.0005. For testing, we use the whole image.

Table 2 reports the results on Cityscapes validation set. We
reproduce the experiments of ResNet and DeepLab that use
the standard L2 fine-tuning, and compare with L2-SP fine-
tuning, all other setup parameters being unchanged. We
readily observe that fine-tuning with L2-SP in place of L2

consistently improves the performance in mean IoU score,
for both networks.
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