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Abstract
We introduce submodular hypergraphs, a family
of hypergraphs that have different submodular
weights associated with different cuts of hyper-
edges. Submodular hypergraphs arise in cluster-
ing applications in which higher-order structures
carry relevant information. For such hypergraphs,
we define the notion of p-Laplacians and derive
corresponding nodal domain theorems and k-way
Cheeger inequalities. We conclude with the de-
scription of algorithms for computing the spectra
of 1- and 2-Laplacians that constitute the basis of
new spectral hypergraph clustering methods.

1. Introduction
Spectral clustering algorithms are designed to solve a relax-
ation of the graph cut problem based on graph Laplacians
that capture pairwise dependencies between vertices, and
produce sets with small conductance that represent clusters.
Due to their scalability and provable performance guaran-
tees, spectral methods represent one of the most prevalent
graph clustering approaches (Chung, 1997; Ng et al., 2002).

Many relevant problems in clustering, semisupervised learn-
ing and MAP inference (Zhou et al., 2007; Hein et al., 2013;
Zhang et al., 2017) involve higher-order vertex dependen-
cies that require one to consider hypergraphs instead of
graphs. To address spectral hypergraph clustering problems,
several approaches have been proposed that typically op-
erate by first projecting the hypergraph onto a graph via
clique expansion and then performing spectral clustering
on graphs (Zhou et al., 2007). Clique expansion involves
transforming a weighted hyperedge into a weighted clique
such that the graph cut weights approximately preserve the
cut weights of the hyperedge. Almost exclusively, these
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approximations have been based on the assumption that
each hyperedge cut has the same weight, in which case the
underlying hypergraph is termed homogeneous.

However, in image segmentation, MAP inference on
Markov random fields (Arora et al., 2012; Shanu et al.,
2016), network motif studies (Li & Milenkovic, 2017; Ben-
son et al., 2016; Tsourakakis et al., 2017) and rank learn-
ing (Li & Milenkovic, 2017), higher order relations between
vertices captured by hypergraphs are typically associated
with different cut weights. In (Li & Milenkovic, 2017), Li
and Milenkovic generalized the notion of hyperedge cut
weights by assuming that different hyperedge cuts have
different weights, and that consequently, each hyperedge
is associated with a vector of weights rather than a single
scalar weight. If the weights of the hyperedge cuts are sub-
modular, then one can use a graph with nonnegative edge
weights to efficiently approximate the hypergraph, provided
that the largest size of a hyperedge is a relatively small con-
stant. This property of the projected hypergraphs allows one
to leverage spectral hypergraph clustering algorithms based
on clique expansions with provable performance guaran-
tees. Unfortunately, the clique expansion method in general
has two drawbacks: The spectral clustering algorithm for
graphs used in the second step is merely quadratically opti-
mal, while the projection step can cause a large distortion.

To address the quadratic optimality issue in graph cluster-
ing, Amghibech (Amghibech, 2003) introduced the notion
of p-Laplacians of graphs and derived Cheeger-type inequal-
ities for the second smallest eigenvalue of a p-Laplacian,
p > 1, of a graph. These results motivated Bühler and
Hein’s work (Bühler & Hein, 2009) on spectral clustering
based on p-Laplacians that provided tighter approximations
of the Cheeger constant. Szlam and Bresson (Szlam &
Bresson, 2010) showed that the 1-Laplacian allows one to
exactly compute the Cheeger constant, but at the cost of
computational hardness (Chang, 2016). Very little is known
about the use of p-Laplacians for hypergraph clustering and
their spectral properties.

To address the clique expansion problem, Hein et al. (Hein
et al., 2013) introduced a clustering method for homoge-
neous hypergraphs that avoids expansions and works di-
rectly with the total variation of homogeneous hypergraphs,
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without investigating the spectral properties of the operator.
The only other line of work trying to mitigate the projection
problem is due to Louis (Louis, 2015), who used a natural
extension of 2-Laplacians for homogeneous hypergraphs,
derived quadratically-optimal Cheeger-type inequalities and
proposed a semidefinite programing (SDP) based algorithm
whose complexity scales with the size of the largest hyper-
edge in the hypergraph.

Our contributions are threefold. First, we introduce submod-
ular hypergraphs. Submodular hypergraphs allow one to
perform hyperedge partitionings that depend on the subsets
of elements involved in each part, thereby respecting higher-
order and other constraints in graphs (see (Li & Milenkovic,
2017; Arora et al., 2012; Fix et al., 2013) for applications in
food network analysis, learning to rank, subspace clustering
and image segmentation). Second, we define p-Laplacians
for submodular hypergraphs and generalize the correspond-
ing discrete nodal domain theorems (Tudisco & Hein, 2016;
Chang et al., 2017) and higher-order Cheeger inequalities.
Even for homogeneous hypergraphs, nodal domain theo-
rems were not known and only one low-order Cheeger in-
equality for 2-Laplacians was established by Louis (Louis,
2015). An analytical obstacle in the development of such a
theory is the fact that p-Laplacians of hypergraphs are oper-
ators that act on vectors and produce sets of values. Conse-
quently, operators and eigenvalues have to be defined in a
set-theoretic manner. Third, based on the newly established
spectral hypergraph theory, we propose two spectral cluster-
ing methods that learn the second smallest eigenvalues of
2- and 1-Laplacians. The algorithm for 2-Laplacian eigen-
value computation is based on an SDP framework and can
provably achieve quadratic optimality with an O(

√
ζ(E))

approximation constant, where ζ(E) denotes the size of
the largest hyperedge in the hypergraph. The algorithm for
1-Laplacian eigenvalue computation is based on the inverse
power method (IPM) (Hein & Bühler, 2010) that only has
convergence guarantees. The key novelty of the IPM-based
method is that the critical inner-loop optimization problem
of the IPM is efficiently solved by algorithms recently devel-
oped for decomposable submodular minimization (Jegelka
et al., 2013; Ene & Nguyen, 2015; Li & Milenkovic, 2018).
Although without performance guarantees, given that the
1-Laplacian provides the tightest approximation guarantees,
the IPM-based algorithm – as opposed to the clique expan-
sion method (Li & Milenkovic, 2017) – performs very well
empirically even when the size of the hyperedges is large.
This fact is illustrated on several UC Irvine machine learning
datasets available from (Asuncion & Newman, 2007).

The paper is organized as follows. Section 2 contains an
overview of graph Laplacians and introduces the notion of
submodular hypergraphs. The section also contains a de-
scription of hypergraph Laplacians, and relevant concepts
in submodular function theory. Section 3 presents the funda-

mental results in the spectral theory of p-Laplacians, while
Section 4 introduces two algorithms for evaluating the sec-
ond largest eigenvalue of p-Laplacians needed for 2-way
clustering. Section 5 presents experimental results. All
proofs are relegated to the Supplementary Material.

2. Mathematical Preliminaries
A weighted graph G = (V,E,w) is an ordered pair of
two sets, the vertex set V = [N ] = {1, 2, . . . , N} and the
edge set E ⊆ V × V , equipped with a weight function
w : E → R+.

A cut C = (S, S̄) is a bipartition of the set V , while the
cut-set (boundary) of the cut C is defined as the set of edges
that have one endpoint in S and one in the complement of
S, S̄, i.e., ∂S = {(u, v) ∈ E | u ∈ S, v ∈ S̄}. The weight
of the cut induced by S equals vol(∂S) =

∑
u∈S, v∈S̄ wuv ,

while the conductance of the cut is defined as

c(S) =
vol(∂S)

min{vol(S), vol(S̄)}
,

where vol(S) =
∑
u∈S µu, and µu =

∑
v∈V wuv. When-

ever clear from the context, for e = (uv), we write we
instead of wuv. Note that in this setting, the vertex weight
values µu are determined based on the weights of edges we
incident to u. Clearly, one can use a different choice for
these weights and make them independent from the edge
weights, which is a generalization we pursue in the context
of submodular hypergraphs. The smallest conductance of
any bipartition of a graph G is denoted by h2 and referred
to as the Cheeger constant of the graph.

A generalization of the Cheeger constant is the k−way
Cheeger constant of a graph G. Let Pk denote the set
of all partitions of V into k-disjoint nonempty subsets,
i.e., Pk = {(S1, S2, ..., Sk)|Si ⊂ V, Si 6= ∅, Si ∩ Sj =
∅,∀i, j ∈ [k], i 6= j}. The k−way Cheeger constant is
defined as

hk = min
(S1,S2,...,Sk)∈Pk

max
i∈[k]

c(Si).

Spectral graph theory provides a means for bounding the
Cheeger constant using the (normalized) Laplacian ma-
trix of the graph, defined as L = D − A and L =
I −D−1/2AD−1/2, respectively. Here, A stands for the ad-
jacency matrix of the graph, D denotes the diagonal degree
matrix, while I stands for the identity matrix. The graph
Laplacian is an operator4(g)

2 (Chung, 1997) that satisfies

〈x,4(g)
2 (x)〉 =

∑
(uv)∈E

wuv(xu − xv)2.

A generalization of the above operator termed the p-
Laplacian operator of a graph 4(g)

p was introduced by
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Amghibech in (Amghibech, 2003), where

〈x,4(g)
p (x)〉 =

∑
(uv)∈E

wuv|xu − xv|p.

The well known Cheeger inequality asserts the following re-
lationship between h2 and λ, the second smallest eigenvalue
of the normalized Laplacian4(g)

2 of a graph:

h2 ≤
√

2λ ≤ 2
√
h2.

It can be shown that the cut ĥ2 dictated by the elements of
the eigenvector associated with λ satisfies ĥ2 ≤

√
2λ, which

implies ĥ2 ≤ 2
√
h2. Hence, spectral clustering provides a

quadratically optimal graph partition.

2.1. Submodular Hypergraphs

A weighted hypergraph G = (V,E,w) is an ordered pair
of two sets, the vertex set V = [N ] and the hyperedge set
E ⊆ 2V , equipped with a weight function w : E → R+.
The relevant notions of cuts, boundaries and volumes for
hypergraphs can be defined in a similar manner as for graphs.
If each cut of a hyperedge e has the same weight we, we
refer to the cut as a homogeneous cut and the corresponding
hypergraph as a homogeneous hypergraph.

For a ground set Ω, a set function f : 2Ω → R is termed
submodular if for all S, T ⊆ Ω, one has f(S) + f(T ) ≥
f(S ∪ T ) + f(S ∩ T ).

A weighted hypergraph G = (V,E,µ,w) is termed a sub-
modular hypergraph with vertex set V , hyperedge set E
and positive vertex weight vector µ , {µv}v∈V , if each
hyperedge e ∈ E is associated with a submodular weight
function we(·) : 2e → [0, 1]. In addition, we require the
weight function we(·) to be:

1) Normalized, so that we(∅) = 0, and all cut weights
corresponding to a hyperedge e are normalized by ϑe =
maxS⊆e we(S). In this case, we(·) ∈ [0, 1];

2) Symmetric, so that we(S) = we(e\S) for any S ⊆ e;

The submodular hyperedge weight functions are summa-
rized in the vector w , {(we, ϑe)}e∈E . If we(S) = 1
for all S ∈ 2e\{∅, e}, submodular hypergraphs reduce to
homogeneous hypergraphs. We omit the designation homo-
geneous whenever there is no context ambiguity.

Clearly, a vertex v is in e if and only if we({v}) > 0: If
we({v}) = 0, the submodularity property implies that v is
not incident to e, as for any S ⊆ e\{v}, |we(S ∪ {v}) −
we(S)| ≤ we({v}) = 0.

We define the degree of a vertex v as dv =
∑
e∈E: v∈e ϑe,

i.e., as the sum of the max weights of edges incident to
the vertex v. Furthermore, for any vector y ∈ RN , we
define the projection weight of y onto any subset S ⊆ V

as y(S) =
∑
v∈S yv. The volume of a subset of vertices

S ⊆ V equals vol(S) =
∑
v∈S µv.

For any S ⊆ V , we generalize the notions of the boundary
of S and the volume of the boundary of S according to
∂S = {e ∈ E|e ∩ S 6= ∅, e ∩ S̄ 6= ∅}, and

vol(∂S) =
∑
e∈∂S

ϑewe(S) =
∑
e∈E

ϑewe(S), (1)

respectively. Then, the normalized cut induced by S, the
Cheeger constant and the k-way Cheeger constant for hy-
pergraphs are defined in an analogous manner as for graphs.

2.2. Laplacian Operators for Hypergraphs

We introduce next p-Laplacians of hypergraphs and a num-
ber of relevant notions associated with Laplacian operators.

Hein et al.(Hein et al., 2013) connected p-Laplacians4(h)
p

for homogeneous hypergraphs with the total variation via

〈x,4(h)
p (x)〉 =

∑
e∈E

we max
u,v∈e

|xu − xv|p,

where we denotes the weight of a homogeneous hyperedge
e. They also introduced the Inverse Power Method (IPM)
to evaluate the spectrum of the hypergraph 1-Laplacian
4(h)

1 (Hein et al., 2013), but did not establish any per-
formance guarantees. In an independent line of work,
Louis (Louis, 2015) introduced a quadratic variant of a
hypergraph Laplacian

〈x,4(h)
2 (x)〉 =

∑
e∈E

we max
u,v∈e

(xu − xv)2.

He also derived a Cheeger-type inequality relating the
second smallest eigenvalue λ of 4(h)

2 and the Cheeger
constant of the hypergraph h2 that reads as ĥ2 ≤
O(
√

log ζ(E))
√
λ ≤ O(

√
log ζ(E))

√
h2. Compared to

the result of graph (3.12), for homogeneous hypergraphs,
log ζ(E) plays as some additional difficulty to approximate
h2. Learning the spectrum of generalizations of hypergraph
Laplacians can be an even more challenging task.

2.3. Relevant Background on Submodular Functions

Given an arbitrary set function F : 2V → R satisfying
F (V ) = 0, the Lovász extension (Lovász, 1983) f : RN →
R of F is defined as follows: For any vector x ∈ RN , we
order its entries in nonincreasing order xi1 ≥ xi2 ≥ · · · ≥
xin while breaking the ties arbitrarily, and set

f(x) =

N−1∑
j=1

F (Sj)(xij − xij+1), (2)

with Sj = {i1, i2, ..., ij}. For submodular F , the Lovász
extension is a convex function (Lovász, 1983).
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Let 1S ∈ RN be the indicator vector of the set S. Hence,
for any S ⊆ V , one has F (S) = f(1S). For a submodular
F , we define a convex set termed the base polytope

B , {y ∈ RN |y(S) ≤ F (S), for all S ⊆ V, and such that
y(V ) = F (V ) = 0}.

According to the defining property of submodular func-
tions (Lovász, 1983), we may write f(x) = maxy∈B〈y, x〉.

The subdifferential ∇f(x) of f is defined as

{y ∈ RN | f(x′)− f(x) ≥ 〈y, x′ − x〉, ∀x′ ∈ RN}.

An important result from (Bach et al., 2013) characterizes
the subdifferentials∇f(x): If f(x) is the Lovász extension
of a submodular function F with base polytope B, then

∇f(x) = arg max
y∈B
〈y, x〉. (3)

Observe that∇f(x) is a set and that the right hand side of
the definition represents a set of maximizers of the objective
function. If f(x) is the Lovász extension of a submodular
function, then 〈q, x〉 = f(x) for all q ∈ ∇f(x).

For each hyperedge e ∈ E of a submodular hypergraph,
following the above notations, we let Be, E(Be), fe denote
the base polytope, the set of extreme points of the base poly-
tope, and the Lovász extension of the submodular hyperedge
weight function we, respectively. Note that for any S ⊆ V ,
we(S) = we(S ∩ e). Consequently, for any y ∈ Be, yv = 0
for v 6∈ e. Since ∇fe ⊆ Be, it also holds that (∇fe)v = 0
for v /∈ e. When using formula (2) to explicitly describe
the Lovász extension fe, we can either use a vector x of
dimension N or only those of its components that lie in e.
Furthermore, in the later case, |E(Be)| = |e|!.

3. p-Laplacians of Submodular Hypergraphs
We start our discussion by defining the notion of a p-
Laplacian operator for submodular hypergraphs. We find the
following definitions useful for our subsequent exposition.

Let sgn(·) be the sign function defined as sgn(a) = 1, for
a > 0, sgn(a) = −1, for a < 0, and sgn(a) = [−1, 1],
for a = 0. For all v ∈ V , define the entries of a vec-
tor ϕp over RN according to (ϕp(x))v = |xv|p−1sgn(xv).
Furthermore, let U be a N ×N diagonal matrix such that
Uvv = µv for all v ∈ V .

Let ‖x‖`p,µ = (
∑
v∈V µv|xv|p)1/p and Sp,µ , {x ∈

RN |‖x‖`p,µ = 1}. For a function Φ over RN , let Φ|Sp,µ
stand for Φ restricted to Sp,µ.

Definition 3.1. The p-Laplacian operator of a submodular
hypergraph, denoted by4p (p ≥ 1), is defined for all x ∈

RN according to

〈x,4p(x)〉 , Qp(x) =
∑
e∈E

ϑefe(x)p. (4)

Hence,4p(x) may also be specified directly as an operator
over RN that reads as

4p(x) =

{ ∑
e∈E ϑefe(x)p−1∇fe(x) p > 1,∑

e∈E ϑe∇fe(x) p = 1.

Definition 3.2. A pair (λ, x) ∈ R × RN/{0} is called an
eigenpair of the p-Laplacian4p if4p(x) ∩ λU ϕp(x) 6= ∅.

As fe(1) = 0, we have 4p(1) = 0, so that (0,1) is an
eigenpair of the operator 4p. A p-Laplacian operates on
vectors and produces sets. In addition, since for any t > 0,
4p(tx) = tp−14p(x) and ϕp(tx) = tp−1ϕp(x), (tx, λ) is
an eigenpair if and only if (x, λ) is an eigenpair. Hence, one
only needs to consider normalized eigenpairs: In our setting,
we choose eigenpairs that lie in Sp,µ for a suitable choice
for the dimension of the space.

For linear operators, the Rayleigh-Ritz method (Gould,
1966) allows for determining approximate solutions to eigen-
problems and provides a variational characterization of
eigenpairs based on the critical points of functionals. To
generalize the method, we introduce two even functions,

Q̃p(x) , Qp(x)|Sp,µ , Rp(x) ,
Qp(x)

‖x‖p`p,µ
.

Definition 3.3. A point x ∈ Sp,µ is termed a critical point
of Rp(x) if 0 ∈ ∇Rp(x). Correspondingly, Rp(x) is
termed a critical value of Rp(x). Similarly, x is termed
a critical point of Q̃p if there exists a σ ∈ ∇Qp(x) such
that P (x)σ = 0, where P (x)σ stands for the projection of
σ onto the tangent space of Sp,µ at the point x. Correspond-
ingly, Q̃p(x) is termed a critical value of Q̃p.

The relationships between the critical points of Q̃p(x) and
Rp(x) and the eigenpairs of4p relevant to our subsequent
derivations are listed in Theorem 3.4.

Theorem 3.4. A pair (λ, x) (x ∈ Sp,µ) is an eigenpair of
the operator4p
1) if and only if x is a critical point of Q̃p with critical value
λ, and provided that p ≥ 1.
2) if and only if x is a critical point of Rp with critical value
λ, and provided that p > 1.
3) if x is a critical point of Rp with critical value λ, and
provided that p = 1.

The critical points of Q̃p bijectively characterize eigenpairs
for all choices of p ≥ 1. However, Rp has the same property
only if p > 1. This is a consequence of the nonsmoothness
of the set S1,µ, which has been observed for graphs as well
(See the examples in Section 2.2 of (Chang, 2016)).
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3.1. Discrete Nodal Domain Theorem for p−Laplacians

Nodal domain theorems are essential for understanding the
structure of eigenvectors of operators and they have been
the subject of intense study in geometry and graph theory
alike (Bıyıkoglu et al., 2007). The eigenfunctions of a Lapla-
cian operator may take positive and negative values. The
signs of the values induce a partition of the vertices in V into
maximal connected components on which the sign of the
eigenfunction does not change: These components represent
the nodal domains of the eigenfunction and approximate the
clusters of the graphs.

Davies et al. (BrianDavies et al., 2001) derived the first
discrete nodal domain theorem for the4(g)

2 operator. Chang
et al. (Chang et al., 2017) and Tudisco et al. (Tudisco & Hein,
2016) generalized these theorem for4(g)

1 and4(g)
p (p > 1)

of graphs. In what follows, we prove that the discrete nodal
domain theorem applies to4p of submodular hypergraphs.

As every nodal domain theorem depends on some underly-
ing notion of connectivity, we first define the relevant notion
of connectivity for submodular hypergraphs. In a graph or
a homogeneous hypergraph, vertices on the same edge or
hyperedge are considered to be connected. However, this
property does not generalize to submodular hypergraphs,
as one can merge two nonoverlapping hyperedges into one
without changing the connectivity of the hyperedges. To see
why this is the case, consider two hyperedges e1 and e2 that
are nonintersecting. One may transform the submodular
hypergraph so that it includes a hyperedge e = e1 ∪ e2

with weight we = we1 + we2 . This transformation essen-
tially does not change the submodular hypergraph, but in the
newly obtained hypergraph, according to the standard defini-
tion of connectivity, the vertices in e1 and e2 are connected.
This problem may be avoided by defining connectivity based
on the volume of the boundary set.

Definition 3.5. Two distinct vertices u, v ∈ V are said to
be connected if for any S such that u ∈ S and v /∈ S,
vol(∂S) > 0. A submodular hypergraph is connected if for
any non-empty S ⊂ V , one has vol(∂S) > 0.

According to the following lemma, it is always possible to
transform the weight functions of submodular hypergraph
in such a way as to preserve connectivity.

Lemma 3.6. Any submodular hypergraph G =
(V,E,w,µ) can be reduced to another submodular hyper-
graph G′ = (V,E′,w′,µ) without changing vol(∂S) for
any S ⊆ V and ensuring that for any e ∈ E′, and u, v ∈ e,
u and v are connected.

Definition 3.7. Let x ∈ RN . A positive (respectively,
negative) strong nodal domain is the set of vertices of a
maximally connected induced subgraph of G such that
{v ∈ V |xv > 0} (respectively, {v ∈ V |xv < 0}). A posi-
tive (respectively, negative) weak nodal domain is defined in

the same manner, except for changing the strict inequalities
as {v ∈ V |xv ≥ 0} (respectively, {v ∈ V |xv ≤ 0}).

The following lemma establishes that for a connected sub-
modular hypergraph G, all nonconstant eigenvectors of the
operator4p correspond to nonzero eigenvalues.
Lemma 3.8. If G is connected, then all eigenvectors asso-
ciated with the zero eigenvalue have constant entries.

We next state new nodal domain theorems for submodular
hypergraph p−Laplacians. The results imply the bounds for
the numbers of nodal domains induced from eigenvectors
of p-Laplacian do not essentially change compared to those
for graphs (Tudisco & Hein, 2016). We do not consider the
case p = 1, although it is possible to adapt the methods for
analyzing the4(g)

1 operators of graphs to41 operators of
submodular hypergraphs. Such a generalization requires
extensions of the critical-point theory to piecewise linear
manifolds (Chang, 2016).
Theorem 3.9. Let p > 1 and assume that G is a connected
submodular hypergraph. Furthermore, let the eigenvalues of
4p be ordered as 0 = λ

(p)
1 < λ

(p)
2 ≤ · · · ≤ λ(p)

k−1 < λ
(p)
k =

· · · = λ
(p)
k+r−1 < λ

(p)
k+r ≤ · · · ≤ λ

(p)
n , with λ(p)

k having
multiplicity r. Let x be an arbitrary eigenvector associated
with λ(p)

k . Then x induces at most k + r − 1 strong and at
most k weak nodal domains.
Lemma 3.10. Let G be a connected submodular hyper-
graph. For p > 1, any nonconstant eigenvector has at least
two weak (strong) nodal domains. Hence, the eigenvectors
associated with the second smallest eigenvalue λ(p)

2 have
exactly two weak (strong) nodal domains. For p = 1, the
eigenvectors associated with the second smallest eigenvalue
λ

(1)
2 may have only one single weak (strong) nodal domain.

We define next the following three functions: µ+
p (x) ,∑

v∈V :xv>0 µv|xv|p−1, µ0(x) ,
∑
v∈V :xv=0 µv, and

µ−p (x) ,
∑
v∈V :xv<0 µv|xv|p−1.

Lemma 3.11. Let G be a connected submodular hyper-
graph. Then, for any nonconstant eigenvector x of4p, one
has µ+

p (x)−µ−p (x) = 0 for p > 1, and |µ+
1 (x)−µ−1 (x)| ≤

µ0(x) for p = 1. Consequently, 0 ∈ arg minc∈R ‖x −
c1‖p`p,µ for any p ≥ 1.

The nodal domain theorem characterizes the structure of the
eigenvectors of the operator, and the number of nodal do-
mains determines the approximation guarantees in Cheeger-
type inequalities relating the spectra of graphs and hyper-
graphs and the Cheeger constant. These observations are
rigorously formalized in the next section.

3.2. Higher-Order Cheeger Inequalities

In what follows, we analytically characterize the relation-
ship between the Cheeger constants and the eigenvalues
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λ
(p)
k of4p for submodular hypergraphs.

Theorem 3.12. Suppose that p ≥ 1 and let (λ
(p)
k , xk) be

the k−th eigenpair of the operator 4p, with mk denoting
the number of strong nodal domains of xk. Then,(

1

τ

)p−1(
hmk
p

)p
≤ λ(p)

k ≤ (min{ζ(E), k})p−1 hk,

where τ = maxv dv/µv . For homogeneous hypergraphs, a
tighter bound holds that reads as(

2

τ

)p−1(
hmk
p

)p
≤ λ(p)

k ≤ 2p−1 hk.

It is straightforward to see that setting p = 1 produces the
tightest bounds on the eigenvalues, while the case p = 2
reduces to the classical Cheeger inequality. This motivates
an in depth study of algorithms for evaluating the spectrum
of p = 1, 2-Laplacians, described next.

4. Spectral Clustering Algorithms for
Submodular Hypergraphs

The Cheeger constant is frequently used as an objective
function for (balanced) graph and hypergraph partition-
ing (Zhou et al., 2007; Bühler & Hein, 2009; Szlam &
Bresson, 2010; Hein & Bühler, 2010; Hein et al., 2013; Li
& Milenkovic, 2017). Theorem 3.12 implies that λ(p)

k is
a good approximation for the k-way Cheeger constant of
submodular graphs. Hence, to perform accurate hypergraph
clustering, one has to be able to efficiently learn λ(p)

k (Ng
et al., 2002; Von Luxburg, 2007). We outline next how to
do so for k = 2.

In Theorem 4.1, we describe an objective function that al-
lows us to characterize λ(p)

2 in a computationally tractable
manner; the choice of the objective function is related to
the objective developed for graphs in (Bühler & Hein, 2009;
Szlam & Bresson, 2010). Minimizing the proposed objec-
tive function produces a real-valued output vector x ∈ RN .
Theorem 4.3 describes how to round the vector x and ob-
tain a partition which provably upper bounds c(S). Based
on the theorems, we propose two algorithms for evaluating
λ

(2)
2 and λ(1)

2 . Since λ(1)
2 = h2, the corresponding parti-

tion corresponds to the tightest approximation of the 2-way
Cheeger constant. The eigenvalue λ(2)

2 can be evaluated
in polynomial time with provable performance guarantees.
The problem of devising good approximations for values
λ

(p)
k , k 6= 2, is still open.

Let Zp,µ(x, c) , ‖x − c1‖p`p,µ and Zp,µ(x) ,
minc∈R Zp,µ(x, c), and define

Rp(x) ,
Qp(x)

Zp,µ(x)
. (5)

Theorem 4.1. For p > 1, λ(p)
2 = infx∈RN Rp(x). More-

over, λ(1)
2 = infx∈RN R1(x) = h2.

Definition 4.2. Given a nonconstant vector x ∈ RN , and
a threshold θ, set Θ(x, θ) = {v : xv > θ}. The optimal
conductance obtained from thresholding vector x equals

c(x) = inf
θ∈[xmin,xmax)

vol(∂Θ(x, θ))

min{vol(Θ(x, θ)), vol(V/Θ(x, θ))}
.

Theorem 4.3. For any x ∈ RN that satisfies 0 ∈
arg minc Zp,µ(x, c), i.e., such that Zp,µ(x, 0) = Zp,µ(x),
one has c(x) ≤ p τ (p−1)/pRp(x)1/p, where τ =
maxv∈V dv/µv .

In what follows, we present two algorithms. The first algo-
rithm describes how to minimizeR2(x), and hence provides
a polynomial-time solution for submodular hypergraph par-
titioning with provable approximation guarantees, given that
the size of the largest hyperedge is a constant. The result
is concluded in Theorem 4.5. The algorithm is based on an
SDP, and may be computationally too intensive for practical
applications involving large hypergrpahs of even moder-
ately large hyperedges. The second algorithm is based on
IPM (Hein & Bühler, 2010) and aims to minimize R1(x).
Although this algorithm does not come with performance
guarantees, it provably converges (see Theorem 4.6) and
has good heuristic performance. Moreover, the inner loop
of the IPM involves solving a version of the proximal-type
decomposable submodular minimization problem (see Theo-
rem 4.7), which can be efficiently performed using a number
of different algorithms (Kolmogorov, 2012; Jegelka et al.,
2013; Nishihara et al., 2014; Ene & Nguyen, 2015; Li &
Milenkovic, 2018).

4.1. An SDP Method for MinimizingR2(x)

The R2(x) minimization problem introduced in Equa-
tion (5) may be rewritten as

min
x:Ux⊥1

Q2(x)

‖x‖2`2,µ
, (6)

where we observe that Q2(x) =
∑
e∈E ϑef

2
e (x) =∑

e∈E ϑe maxy∈E(Be)〈y, x〉2. This problem is, in turn,
equivalent to the nonconvex optimization problem

min
x∈RN

∑
e

ϑe

(
max

y∈E(Be)
〈y, x〉

)2

(7)

s.t.
∑
v∈V

µvx
2
v = 1,

∑
v∈V

µvxv = 0.

Following an approach proposed for homogeneous hyper-
graphs (Louis, 2015), one may try to solve an SDP relax-
ation of (7) instead. To describe the relaxation, let each
vertex v of the graph be associated with a vector x′v ∈ Rn,
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n ≥ ζ(E). The assigned vectors are collected into a matrix
of the form X = (x′1, .., x

′
N ). The SDP relaxation reads as

min
X∈Rn×N , η∈R|E|

∑
e

ϑeη
2
e (8)

s.t. ‖Xy‖22 ≤ η2
e ∀y ∈ E(Be), e ∈ E∑

v∈V
µv‖x′v‖22 = 1,

∑
v∈V

µvx
′
v = 0.

Note that E(Be) is of size O(|e|!), and the above problem
can be solved efficiently if ζ(E) is small.

Algorithm 1 lists the steps of an SDP-based algorithm for
minimizingR2(x), and it comes with approximation guar-
antees stated in Lemma 4.4. In contrast to homogeneous
hypergraphs (Louis, 2015), for which the approximation
factor equals O(log ζ(E)), the guarantees for general sub-
modular hypergraphs are O(ζ(E)). This is due to the fact
that the underlying base polytope Be for a submodular func-
tion is significantly more complex than the corresponding
polytope for the homogeneous case. We conjecture that this
approximation guarantee is optimal for SDP methods.

Algorithm 1: Minimization ofR2(x) using SDP
Input: A submodular hypergraph G = (V,E,w,µ)
1: Solve the SDP (8).
2: Generate a random Gaussian vector g ∼ N(0, In),
where In denotes the identity matrix of order n.
3: Output x = XT g.

Lemma 4.4. Let x be as in Algorithm 1, and let the opti-
mal value of (8) be SDPopt. Then, with high probability,
R2(x) ≤ O(ζ(E)) SDPopt ≤ O(ζ(E)) minR2.

This result immediately leads to the following theorem.

Theorem 4.5. Suppose that x is the output of Algorithm 1.
Then, c(x) ≤ O(

√
ζ(E)τ h2) with high probability.

We describe next Algorithm 2 for optimizingR1(x) which
has guaranteed convergence properties.

Theorem 4.6. The sequence {xk} generated by Algorithm
2 satisfiesR1(xk+1) ≤ R1(xk).

The computationally demanding part of Algorithm 2 is the
optimization procedure in Step 3. The optimization problem
is closely related to the problem of submodular function
minimization (SFM) due to the defining properties of the
Lovász extension. Theorem 4.7 describes different equiva-
lent formulations of the optimization problem in Step 3.

Theorem 4.7. If the norm of the vector z in Step 3 is ‖z‖2,
the underlying optimization problem is the dual of the fol-
lowing `2 minimization problem

min
ye
‖
∑
e∈E

ye − λ̂kgk‖22, ye ∈ ϑeBe, ∀ e ∈ E, (9)

Algorithm 2: IPM-based minimization ofR1(x)
Input: A submodular hypergraph G = (V,E,w,µ)

Find nonconstant x0 ∈ RN s.t. 0 ∈ arg minc ‖x0 − c1‖`1,µ
initialize λ̂0 ← R1(x0), k ← 0

1: Repeat:

2: For v ∈ V , gkv ←

{
sgn(xkv)µv, if xkv 6= 0

−µ
+
1 (xk)−µ−1 (xk)

µ0(xk)
µv, if xkv = 0

3: zk+1 ← arg minz:‖z‖≤1Q1(z)− λ̂k〈z, gk〉
4: ck+1 ← arg minc ‖zk+1 − c1‖`1,µ
5: xk+1 ← zk+1 − ck+11

6: λ̂k+1 ← R1(xk+1)

7: Until |λ̂k+1 − λ̂k|/λ̂k < ε
8. Output xk+1

where the primal and dual variables are related according to

z =
λ̂kgk−

∑
e∈E ye

‖λ̂kgk−
∑
e∈E ye‖2

.

If the norm of the vector z in Step 3 is ‖z‖∞, the underlying
optimization problem is equivalent to the following SFM
problem

min
S⊆V

∑
e

ϑewe(S)− λ̂kgk(S), (10)

where the the primal and dual variables are related according
to zv = 1 if v ∈ S, and zv = −1 if v /∈ S.

For special forms of submodular weights, different algo-
rithms for the optimization problems in Theorem 4.7 may
be used instead. For graphs and homogeneous hypergraphs
with hyperedges of small size, the min-cut algorithms by
Karger et al. and Chekuri et al. (Karger, 1993; Chekuri &
Xu, 2017) allow one to efficiently solve the discrete prob-
lem (10). Continuous optimization methods such as alter-
nating projections (AP) (Nishihara et al., 2014) and coordi-
nate descend methods (CDM) (Ene & Nguyen, 2015) can
be used to solve (9) by “tracking” minimum norm points
of base polytopes corresponding to individual hyperedges,
where for general submodular weights, the Wolfe’s Algo-
rithm (Wolfe, 1976) can be used. When the submodular
weights have some special properties, such as that they
depend only on the cardinality of the input, there exist al-
gorithms that operate efficiently even when |e| is extremely
large (Jegelka et al., 2013).

In our experimental evaluations, we use a random coordi-
nate descent method (RCDM) (Ene & Nguyen, 2015), which
ensures an expected (1 + ε)−approximation by solving an
expected number ofO(|V |2|E| log 1

ε ) min-norm-point prob-
lems. Note that when performing continuous optimization,
one does not need to solve the inner-loop optimization prob-
lem exactly and is allowed to exit the loop as long as the
objective function value decreases. The underlying algo-
rithm – Algorithm 3 – is described in the Supplement.
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Figure 1. Experimental clustering results for four UCI datasets, displayed in pairs of figures depicting the Clustering error and the Cheeger
constant versus α. Fine tuning the parameter α may produce significant performance improvements in several datasets - for example, on
the Covertype67 dataset, choosing α = 0.028 results in visible drops of the clustering error and the Cheeger constant. Both the use of
1-Laplacians and submodular weights may be credited for improving clustering performance.

5. Experiments
In what follows, we compare the algorithms for submod-
ular hypergraph clustering described in the previous sec-
tion to two methods: The IPM for homogeneous hyper-
graph clustering (Hein et al., 2013) and the clique expansion
method (CEM) for submodular hypergraph clustering (Li
& Milenkovic, 2017). We focus on 2-way graph partition-
ing problems related to the University of California Irvine
(UCI) datasets selected for analysis in (Hein et al., 2013),
described in Table 1 of the Supplementary Material. The
datasets include 20Newsgroups, Mushrooms, Covertype.
In all datasets, ζ(E) was roughly 103, and each of these
datasets describes multiple clusters. Since we are interested
in 2-way partitioning, we focused on two pairs of clusters
in Covertype, denoted by (4, 5) and (6, 7), and paired the
four 20Newsgroups clusters, one of which includes Comp.
and Sci, and another one which includes Rec. and Talk. The
Mushrooms and 20Newsgroups datasets contain only cate-
gorical features, while Covertype also includes numerical
features. We adopt the same approach as the one described
in (Hein et al., 2013) to construct hyperedges: Each fea-
ture corresponds to one hyperedge; hence, each categorical
feature is captured by one hyperedge, while numerical fea-
tures are first quantized into 10 bins of equal size, and then
mapped to hyperedges. To describe the submodular weights,
we fix ϑe = 1 for all hyperedges and parametrize we using
a variable α ∈ (0, 0.5]

we(S;α) =
1

2
+

1

2
min

{
1,
|S|
dα|e|e

,
|e/S|
dα|e|e

}
, ∀S ⊆ e.

The intuitive explanation behind our choice of weights is
that it allows one to accommodate categorization errors
and outliers: In contrast to the homogeneous case in which
any partition of a hyperedge has weight one, the chosen
submodular weights allow a smaller weight to be used when
the hyperedge is partitioned into small parts, i.e., when
min{|S|, |e/S|} < dα|e|e. In practice, α is chosen to be
relatively small – in all experiments, we set α ≤ 0.04, with
α close to zero producing homogeneous hyperedge weights.

The results are shown in Figure 1. As may be observed,
both in terms of the Clustering error (i.e., the total num-
ber of erroneously classified vertices) and the values of the
Cheeger constant, IPM-based methods outperform CEM.
This is due to the fact that for large hyperedge sizes, CEM
incurs a high distortion when approximating the submodular
weights (O(ζ(E)) (Li & Milenkovic, 2017)). Moreover, as
we(S) depends merely on |S|, the submodular hypergraph
CEM reduces to the homogeneous hypergraph CEM (Zhou
et al., 2007), which is an issue that the IPM-based method
does not face. Comparing the performance of IPM on sub-
modular hypergraphs (IPM-S) with that on homogeneous
hypergraphs (IPM-H), we see that IPM-S achieves better
clustering performance on both 20Newsgroups and Cover-
types, and offers the same performance as IPM-H on the
Mushrooms dataset. This indicates that it is practically
useful to use submodular hyperedge weights for clustering
purposes. A somewhat unexpected finding is that for cer-
tain cases, one observes that when α increases (and thus,
when we decreases), the corresponding Cheeger constant
increases. This may be caused by the fact that the IPM
algorithm can get trapped in a local optima.
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