
Asynchronous Decentralized Parallel Stochastic Gradient Descent

Xiangru Lian 1 * Wei Zhang 2 * Ce Zhang 3 Ji Liu 4 1

Abstract
Most commonly used distributed machine learning
systems are either synchronous or centralized asyn-
chronous. Synchronous algorithms like AllReduce-
SGD perform poorly in a heterogeneous environ-
ment, while asynchronous algorithms using a pa-
rameter server suffer from 1) communication bottle-
neck at parameter servers when workers are many,
and 2) significantly worse convergence when the
traffic to parameter server is congested. Can we
design an algorithm that is robust in a heteroge-
neous environment, while being communication effi-
cient and maintaining the best-possible convergence
rate? In this paper, we propose an asynchronous
decentralized stochastic gradient decent algorithm
(AD-PSGD) satisfying all above expectations. Our
theoretical analysis shows AD-PSGD converges at
the optimal O(1/

√
K) rate as SGD and has linear

speedup w.r.t. number of workers. Empirically, AD-
PSGD outperforms the best of decentralized paral-
lel SGD (D-PSGD), asynchronous parallel SGD (A-
PSGD), and standard data parallel SGD (AllReduce-
SGD), often by orders of magnitude in a heteroge-
neous environment. When training ResNet-50 on Im-
ageNet with up to 128 GPUs, AD-PSGD converges
(w.r.t epochs) similarly to the AllReduce-SGD, but
each epoch can be up to 4-8× faster than its syn-
chronous counterparts in a network-sharing HPC en-
vironment.

1 Introduction
It often takes hours to train large deep learning tasks such
as ImageNet, even with hundreds of GPUs (Goyal et al.,
2017). At this scale, how workers communicate becomes a
crucial design choice. Most existing systems such as Ten-

*Equal contribution 1Department of Computer Science, Uni-
versity of Rochester 2IBM T. J. Watson Research Center
3Department of Computer Science, ETH Zurich 4Tencent AI
lab, Seattle, USA. Correspondence to: Xiangru Lian <ad-
min@mail.xrlian.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Figure 1. Centralized network and decentralized network.

Communication complexity
(n.t./n.h.)

a Idle time

S-PSGD (Ghadimi et al., 2016) Long (O(n)/O(n)) Long
A-PSGD (Lian et al., 2015) Long (O(n)/O(n)) Short

AllReduce-SGD (Luehr, 2016) Medium (O(1)/O(n)) Long
D-PSGD (Lian et al., 2017) Short (O(deg(G))/O(deg(G))) Long

AD-PSGD (this paper) Short (O(deg(G))/O(deg(G))) Short

an.t. means number of gradients/models transferred at the bus-
iest worker per n (minibatches of) stochastic gradients updated.
n.h. means number of handshakes at the busiest worker per n
(minibatches of) stochastic gradients updated.

Table 1. Comparison of different distributed machine learning al-
gorithms on a network graph G. Long idle time means in each iter-
ation the whole system needs to wait for the slowest worker. Short
idle time means the corresponding algorithm breaks this synchro-
nization per iteration. Note that if G is a ring network as required
in AllReduce-SGD, O(deg(G)) = O(1).

sorFlow (Abadi et al., 2016), MXNet (Chen et al., 2015),
and CNTK (Seide and Agarwal, 2016) support two com-
munication modes: (1) synchronous communication via pa-
rameter servers or AllReduce, or (2) asynchronous commu-
nication via parameter servers. When there are stragglers
(i.e., slower workers) in the system, which is common es-
pecially at the scale of hundreds devices, asynchronous ap-
proaches are more robust. However, most asynchronous
implementations have a centralized design, as illustrated in
Figure 1(a) — a central server holds the shared model for
all other workers. Each worker calculates its own gradients
and updates the shared model asynchronously. The param-
eter server may become a communication bottleneck and
slow down the convergence. We focus on the question: Can
we remove the central server bottleneck in asynchronous
distributed learning systems while maintaining the best pos-
sible convergence rate?

Recent work (Lian et al., 2017) shows that synchronous de-

Asynchronous Decentralized Parallel Stochastic Gradient Descent

centralized parallel stochastic gradient descent (D-PSGD)
can achieve comparable convergence rate as its central-
ized counterparts without any central bottleneck. Figure 1-
(b) illustrates one communication topology of D-PSGD in
which each worker only talks to its neighbors. However,
the synchronous nature of D-PSGD makes it vulnerable to
stragglers because of the synchronization barrier at each it-
eration among all workers. Is it possible to get the best of
both worlds of asynchronous SGD and decentralized SGD?

In this paper, we propose the asynchronous decentralized
parallel stochastic gradient decent algorithm (AD-PSGD)
that is theoretically justified to keep the advantages of both
asynchronous SGD and decentralized SGD. In AD-PSGD,
workers do not wait for all others and only communicate
in a decentralized fashion. AD-PSGD can achieve linear
speedup with respect to the number of workers and admit
a convergence rate of O(1/

√
K), where K is the number

of updates. This rate is consistent with D-PSGD and cen-
tralized parallel SGD. By design, AD-PSGD enables wait-
free computation and communication, which ensures AD-
PSGD always converges better (w.r.t epochs or wall time)
than D-PSGD as the former allows much more frequent in-
formation exchanging.

In practice, we found that AD-PSGD is particularly use-
ful in heterogeneous computing environments such as
cloud-computing, where computing/communication de-
vices’ speed often varies. We implement AD-PSGD in
Torch and MPI and evaluate it on an IBM S822LC clus-
ter of up to 128 P100 GPUs. We show that, on real-world
datasets such as ImageNet, AD-PSGD has the same empir-
ical convergence rate as its centralized and/or synchronous
counterpart. In heterogeneous environments, AD-PSGD
can be faster than its fastest synchronous counterparts by or-
ders of magnitude. On an HPC cluster with homogeneous
computing devices but shared network, AD-PSGD can still
outperform its synchronous counterparts by 4X-8X.

Both the theoretical analysis and system implementations
of AD-PSGD are non-trivial, and they form the two techni-
cal contributions of this work.

2 Related work

We review related work in this section. In the following, K
and n refer to the number of iterations and the number of
workers, respectively. A comparison of the algorithms can
be found in Table 1.

The Stochastic Gradient Descent (SGD) Nemirovski et al.
(2009); Moulines and Bach (2011); Ghadimi and Lan
(2013) is a powerful approach to solve large scale ma-
chine learning problems, with the optimal convergence rate
O(1/

√
K) on nonconvex problems.

For Synchronous Parallel Stochastic Gradient Descent (S-

PSGD), every worker fetches the model saved in a parame-
ter server and computes a minibatch of stochastic gradients.
Then they push the stochastic gradients to the parameter
server. The parameter server synchronizes all the stochas-
tic gradients and update their average into the model saved
in the parameter server, which completes one iteration. The
convergence rate is proved to be O(1/

√
nK) on nonconvex

problems (Ghadimi et al., 2016). Results on convex objec-
tives can be found in Dekel et al. (2012).

The Asynchronous Parallel Stochastic Gradient Descent
(A-PSGD) (Recht et al., 2011; Agarwal and Duchi, 2011;
Feyzmahdavian et al., 2016; Paine et al., 2013) breaks
the synchronization in S-PSGD by allowing workers to
use stale weights to compute gradients. On nonconvex
problems, when the staleness of the weights used is up-
per bounded, A-PSGD is proved to admit the same con-
vergence rate as S-PSGD (Lian et al., 2015; 2016).

In AllReduce Stochastic Gradient Descent implementa-
tion (AllReduce-SGD) (Luehr, 2016; Patarasuk and Yuan,
2009; MPI contributors, 2015), the update rule per itera-
tion is exactly the same as in S-PSGD, so they share the
same convergence rate. However, there is no parameter
server and all the workers use AllReduce to synchronize the
stochastic gradients. In this procedure, only O(1) amount
of gradient is sent/received per worker, but O(n) hand-
shakes are needed on each worker. This makes AllReduce
slow on high latency network. Since we still have synchro-
nization in each iteration, the idle time is still high as in
S-PSGD.

In Decentralized Parallel Stochastic Gradient Descent (D-
PSGD) (Lian et al., 2017), all workers are connected with
a network that forms a connected graph G. Every worker
has its local copy of the model. In each iteration, all
workers compute stochastic gradients locally and at the
same time average its local model with its neighbors. Fi-
nally the locally computed stochastic gradients are up-
dated into the local models. In this procedure, the busi-
est worker only sends/receives O(deg(G)) models and has
O(deg(G)) handshakes per iteration. The idle time is
still high in D-PSGD because all workers need to finish
updating before stepping into the next iteration. Before
Lian et al. (2017) there are also previous studies on decen-
tralized stochastic algorithms (both synchronous and asyn-
chronous versions) though none of them is proved to have
speedup when the number of workers increases. For exam-
ple, Lan et al. (2017) proposed a decentralized stochastic
primal-dual type algorithm with a computational complex-
ity of O(n/ϵ2) for general convex objectives and O(n/ϵ)
for strongly convex objectives. Sirb and Ye (2016) pro-
posed an asynchronous decentralized stochastic algorithm
with a O(n/ϵ2) complexity for convex objectives. These
bounds do not imply any speedup for decentralized algo-

Asynchronous Decentralized Parallel Stochastic Gradient Descent

rithms. Bianchi et al. (2013) proposed a similar decentral-
ized stochastic algorithm. The authors provided a conver-
gence rate for the consensus of the local models when the
local models are bounded. However, they did not provide
the convergence rate to the solution. A very recent paper
(Tang et al., 2018) extended D-PSGD so that it works bet-
ter on data with high variance. Ram et al. (2010) proposed
an asynchronous subgradient variations of the decentral-
ized stochastic optimization algorithm for convex problems.
The asynchrony was modeled by viewing the update event
as a Poisson process and the convergence to the solution
was shown. Srivastava and Nedic (2011); Sundhar Ram
et al. (2010) are similar. The main differences from this
work are 1) we take the situation where a worker calculates
gradients based on old model into consideration, which is
the case in the asynchronous setting; 2) we prove that our
algorithm can achieve linear speedup when we increase the
number of workers, which is important if we want to use
the algorithm to accelerate training; 3) Our implementa-
tion guarantees deadlock-free, wait-free computation and
communication. Nair and Gupta (2017) proposed another
distributed stochastic algorithm, but it requires a central-
ized arbitrator to decide which two workers are exchanging
weights and it lacks convergence analysis.

We next briefly review decentralized algorithms. Decen-
tralized algorithms were initially studied by the control
community for solving the consensus problem where the
goal is to compute the mean of all the data distributed on
multiple nodes (Boyd et al., 2005; Carli et al., 2010; Aysal
et al., 2009; Fagnani and Zampieri, 2008; Olfati-Saber
et al., 2007; Schenato and Gamba, 2007). For decentralized
algorithms used for optimization problems, Lu et al. (2010)
proposed two non-gradient-based algorithms for solving
one-dimensional unconstrained convex optimization prob-
lems. (Mokhtari and Ribeiro, 2016) proposed a fast de-
centralized variance reduced algorithm for strongly convex
optimization problems. (Yuan et al., 2016) studied decen-
tralized gradient descent on convex and strongly convex ob-
jectives. The subgradient version was considered in Nedic
and Ozdaglar (2009); Ram et al. (2009). The algorithm is
intuitive and easy to understand. However, the limitation
of the algorithm is that it does not converge to the exact so-
lution because the exact solution is not a fixed point of the
algorithm’s update rule. This issue was fixed later by Shi
et al. (2015a); Wu et al. (2016) by using the gradients of last
two instead of one iterates in each iteration, which was later
improved in Shi et al. (2015b); Li et al. (2017) by consider-
ing proximal gradients. Decentralized ADMM algorithms
were analyzed in Zhang and Kwok (2014); Shi et al.; Aybat
et al. (2015). Wang et al. (2016) develops a decentralized
algorithm for recursive least-squares problems.

3 Algorithm
We introduce the AD-PSGD algorithm in this section.

Definitions and notations Throughout this paper, we use
the following notation and definitions:

• ∥ · ∥ denotes the vector ℓ2 norm or the matrix spectral
norm depending on the argument.
• ∥ · ∥F denotes the matrix Frobenius norm.
• ∇f(·) denotes the gradient of a function f .
• 1n denotes the column vector in Rn with 1 for all ele-

ments.
• f∗ denotes the optimal solution to (1).
• λi(·) denotes the i-th largest eigenvalue of a matrix.
• ei denotes the ith element of the standard basis of Rn.

3.1 Problem definition

The decentralized communication topology is represented
as an undirected graph: (V,E), where V := {1, 2, . . . , n}
denotes the set of n workers and E ⊆ V ×V is the set of the
edges in the graph. Each worker represents a machine/gpu
owning its local data (or a sensor collecting local data on-
line) such that each worker is associated with a local loss
function

fi(x) := Eξ∼Di
Fi(x; ξ),

where Di is a distribution associated with the local data at
worker i and ξ is a data point sampled via Di. The edge
means that the connected two workers can exchange infor-
mation. For the AD-PSGD algorithm, the overall optimiza-
tion problem it solves is

min
x∈RN

f(x) := Ei∼Ifi(x) =

n∑
i=1

pifi(x), (1)

where pi’s define a distribution, that is, pi ≥ 0 and∑
i pi = 1, and pi indicates the updating frequency of

worker i or the percentage of the updates performed by
worker i. The faster a worker, the higher the corresponding
pi. The intuition is that if a worker is faster than another
worker, then the faster worker will run more epochs given
the same amount of time, and consequently the correspond-
ing worker has a larger impact.
Remark 1. To solve the common form of objectives in machine
learning using AD-PSGD

min
x∈RN

Eξ∼DF (x; ξ),

we can appropriately distribute data such that Eq. (1) solves the
target objective above:

Strategy-1 Let Di = D and D, that is, all worker can access
all data, and consequently Fi(·; ·) = F (·; ·), that is, all fi(·)’s
are the same;

Strategy-2 Split the data into all workers appropriately such
that the portion of data is pi on worker i and define Di to be
the uniform distribution over the assigned data samples.

3.2 AD-PSGD algorithm

The AD-PSGD algorithm can be described in the following:
each worker maintains a local model x in its local memory

Asynchronous Decentralized Parallel Stochastic Gradient Descent

and (using worker i as an example) repeats the following
steps:

• Sample data: Sample a mini-batch of training data de-
noted by {ξim}Mm=1, where M is the batch size.
• Compute gradients: Use the sampled data to com-

pute the stochastic gradient
∑M

m=1∇F (x̂i; ξim), where x̂i

is read from the model in the local memory.
• Gradient update: Update the model in the local mem-

ory by xi ← xi − γ
∑M

m=1∇F (x̂i; ξim). Note that x̂i may
not be the same as xi as it may be modified by other work-
ers in the averaging step.
• Averaging: Randomly select a neighbor (e.g. worker
i′) and average the local model with the worker i′’s model
xi′ (both models on both workers are updated to the aver-
aged model). More specifically, xi, xi′ ← xi

2 + xi′

2 .

Note that each worker runs the procedure above on its own
without any global synchronization. This reduces the idle
time of each worker and the training process will still be
fast even if part of the network or workers slow down.

The averaging step can be generalized into the following
update for all workers:

[x1, x2, . . . , xn]← [x1, x2, . . . , xn]W

where W can be an arbitrary doubly stochastic matrix. This
generalization gives plenty flexibility to us in implementa-
tion without hurting our analysis.

All workers run the procedure above simultaneously, as
shown in Algorithm 1. We use a virtual counter k to de-
note the iteration counter – every single gradient update
happens no matter on which worker will increase k by 1. ik
denotes the worker performing the kth update.

3.3 Implementation details

We briefly describe two interesting aspects of system de-
signs and leave more discussions to Appendix A.

3.3.1 DEADLOCK AVOIDANCE

A naive implementation of the above algorithm may cause
deadlock — the averaging step needs to be atomic and in-
volves updating two workers (the selected worker and one
of its neighbors). As an example, given three fully con-
nected workers A, B, and C, A sends its local model xA to
B and waits for xB from B; B has already sent out xB to
C and waits for C’s response; and C has sent out xC to A
and waits for xA from A.

We prevent the deadlock in the following way: The commu-
nication network is designed to be a bipartite graph, that is,
the worker set V can be split into two disjoint sets A (ac-
tive set) and P (passive set) such that any edge in the graph
connects one worker in A and one worker in P . Due to the
property of the bipartite graph, the neighbors of any active
worker can only be passive workers and the neighbors of

any passive worker can only be active workers. This imple-
mentation avoids deadlock but still fits in the general algo-
rithm Algorithm 1 we are analyzing. We leave more discus-
sions and a detailed implementation for wait-free training
to Appendix A.

3.3.2 COMMUNICATION TOPOLOGY

The simplest realization of AD-PSGD algroithm is a ring-
based topology. To accelerate information exchanging, we
also implement a communication topology in which each
sender communicates with a reciever that is 2i + 1 hops
away in the ring, where i is an integer from 0 to log(n− 1)
(n is the number of learners). It is easy to see it takes
at most O(log(n)) steps for any pair of workers to ex-
change information instead of O(n) in the simple ring-
based topology. In this way, ρ (as defined in Section 4) be-
comes smaller and the scalability of AD-PSGD improves.
This implementation also enables robustness against slow
or failed network links because there are multiple routes
for a worker to disseminate its information.
Algorithm 1 AD-PSGD (logical view)
Require: Initialize local models {xi

0}ni=1 with the same initial-
ization, learning rate γ, batch size M , and total number of
iterations K.

1: for k = 0, 1, . . . ,K − 1 do
2: Randomly sample a worker ik of the graph G and ran-

domly sample an averaging matrix Wk which can be depen-
dent on ik.

3: Randomly sample a batch
ξ
ik
k := (ξ

ik
k,1, ξ

ik
k,2, . . . , ξ

ik
k,M)

from local data of the ik-th worker.
4: Compute the stochastic gradient locally

gk(x̂
ik
k ; ξ

ik
k) :=

M∑
j=1

∇F (x̂
ik
k ; ξ

ik
k,j)

.
5: Average local models by a

[x1
k+1/2, x

2
k+1/2, . . . , x

n
k+1/2]← [x1

k, x
2
k, . . . , x

n
k]Wk

6: Update the local model
x
ik
k+1 ← x

ik
k+1/2 − γgk(x̂

ik
k ; ξ

ik
k),

xj
k+1 ← xj

k+1/2,∀j ̸= ik.

7: end for
8: Output the average of the models on all workers for inference.

aNote that Line 4 and Line 5 can run in parallel.

4 Theoretical analysis

In this section we provide theoretical analysis for the AD-
PSGD algorithm. We will show that the convergence rate
of AD-PSGD is consistent with SGD and D-PSGD.

Note that by counting each update of stochastic gradients
as one iteration, the update of each iteration in Algorithm 1
can be viewed as

Xk+1 = XkWk − γ∂g(X̂k; ξ
ik
k , ik),

where k is the iteration number, xi
k is the local model of the

Asynchronous Decentralized Parallel Stochastic Gradient Descent

ith worker at the kth iteration, and
Xk =

[
x1
k · · · xn

k

]
∈ RN×n,

X̂k =
[
x̂1
k · · · x̂n

k

]
∈ RN×n,

∂g(X̂k; ξ
ik
k , ik) =

[
0 ··· 0

∑M
j=1 ∇F (x̂

ik
k ,ξ

ik
k,j) 0 ··· 0

]
∈ RN×n,

and X̂k = Xk−τk for some nonnegative integer τk.

Assumption 1. Throughout this paper, we make the follow-
ing commonly used assumptions:

1. Lipschitzian gradient: All functions fi(·)’s are with L-
Lipschitzian gradients.
2. Doubly stochastic averaging: Wk is doubly stochastic
for all k.
3. Spectral gap: There exists a ρ ∈ [0, 1) such that1

max{|λ2(E[W⊤
k Wk])|, |λn(E[W⊤

k Wk])|} ≤ ρ, ∀k. (2)
4. Unbiased estimation: 2

Eξ∼Di
∇F (x; ξ) = ∇fi(x), (3)

Ei∼IEξ∼Di
∇F (x; ξ) = ∇f(x). (4)

5. Bounded variance: Assume the variance of the stochas-
tic gradient

Ei∼IEξ∼Di
∥∇F (x; ξ)−∇f(x)∥2

is bounded for any x with i sampled from the distribution
I and ξ from the distribution Di. This implies there exist
constants σ and ς such that

Eξ∼Di∥∇F (x, ξ)−∇fi(x)∥2 ⩽ σ2,∀i,∀x. (5)

Ei∼I∥∇fi(x)−∇f(x)∥2 ⩽ ς2,∀x. (6)
Note that if all workers can access all data, then ς = 0.
6. Dependence of random variables: ξk, ik, k ∈
{0, 1, 2, . . .} are independent random variables. Wk is a
random variable dependent on ik.
7. Bounded staleness: X̂k = Xk−τk and there exists a
constant T such that maxk τk ⩽ T .

Throughout this paper, we define the following notations
for simpler notation

ρ̄ :=
n− 1

n

(
1

1− ρ
+

2
√
ρ(

1−√ρ
)2
)
,

C1 :=1− 24M2L2γ2

(
T
n− 1

n
+ ρ̄

)
,

C2 :=
γM

2n
− γ2LM2

n2
− 2M3L2T 2γ3

n3

−
4
(

6γ2L3M2

n2 + γM
n

L2 + 12M3L4T2γ3

n3

)
M2γ2(T n−1

n
+ ρ̄)

C1
,

C3 :=
1

2
+

2
(
6γ2L2M2 + γnML+ 12M3L3T2γ3

n

)
ρ̄

C1
+

LT 2γM

n
.

1A smaller ρ means a faster information spreading in the net-
work, leading to a faster convergence.

2Note that this is easily satisfied when all workers can access
all data so that Eξ∼Di∇F (x; ξ) = ∇f(x). When each worker
can only access part of the data, we can also meet these assump-
tions by appropriately distributing data.

Under Assumption 1 we have the following results:

Theorem 1 (Main theorem). While C3 ⩽ 1 and C2 ⩾ 0
and C1 > 0 are satisfied we have∑K−1

k=0 E
∥∥∥∇f

(
Xk1n

n

)∥∥∥2

K ⩽ 2(Ef(x0)−Ef∗)n
γKM + 2γL(σ2+6Mς2)

n .

Noting that Xn1n

n = 1
n

∑n
i=1 x

i
k, this theorem character-

izes the convergence of the average of all local models. By
appropriately choosing the learning rate, we obtain the fol-
lowing corollary

Corollary 2. Let γ = n
10ML+

√
σ2+6Mς2

√
KM

. We have
the following convergence rate

∑K−1
k=0 E

∥∥∥∇f (Xk1n

n

)∥∥∥2
K

⩽20(f(x0)− f∗)L

K
+

2(f(x0)− f∗ + L)
√

σ2/M + 6ς2√
K

(7)

if the total number of iterations is sufficiently large, in
particular,

K ⩾ ML2n2

σ2 + 6Mς2
max

{
192

(
T
n− 1

n
+ ρ̄

)
,
64T 4

n2
, (8)

1024n2ρ̄2,

(
8
√
6T 2/3 + 8

)2 (
T + ρ̄ n

n−1

)2/3
(n− 1)1/2

n1/6

}
.

This corollary indicates that if the iteration number is big
enough, AD-PSGD’s convergence rate is O(1/

√
K). We

compare the convergence rate of AD-PSGD with existing
results for SGD and D-PSGD to show the tightness of the
proved convergence rate. We will also show the efficiency
and the linear speedup property for AD-PSGD w.r.t. batch
size, number of workers, and staleness respectively. Fur-
ther discussions on communication topology and intuition
will be provided at the end of this section.

Remark 2 (Consistency with SGD). Note that if T = 0
and n = 1 the proposed AD-PSGD reduces to the vanilla
SGD algorithm (Nemirovski et al., 2009; Moulines and
Bach, 2011; Ghadimi and Lan, 2013). Since n = 1, we
do not have the variance among workers, that is, ς = 0,
the convergence rate becomes O(1/K + σ/

√
KM) which

is consistent with the convergence rate with SGD.

Remark 3 (Linear speedup w.r.t. batch size). When K is
large enough the second term on the RHS of (7) dominates
the first term. Note that the second term converges at a rate
O(1/

√
MK) if ς = 0, which means the convergence effi-

ciency gets boosted with a linear rate if increase the mini-
batch size. This observation indicates the linear speedup
w.r.t. the batch size and matches the results of mini-batch
SGD. 3

3 Note that when ς2 ̸= 0, AD-PSGD does not admit this linear
speedup w.r.t. batch size. It is unavoidable because increasing

Asynchronous Decentralized Parallel Stochastic Gradient Descent

Remark 4 (Linear speedup w.r.t. number of workers).
Note that every single stochastic gradient update counts
one iteration in our analysis and our convergence rate in
Corollary 2 is consistent with SGD / mini-batch SGD. It
means that the number of required stochastic gradient up-
dates to achieve a certain precision is consistent with SGD /
mini-batch SGD, as long as the total number of iterations is
large enough. It further indicates the linear speedup with
respect to the number of workers n (n workers will make
the iteration number advance n times faster in the sense
of wall-clock time, which means we will converge n times
faster). To the best of our knowledge, the linear speedup
property w.r.t. to the number of workers for decentralized
algorithms has not been recognized until the recent analy-
sis for D-PSGD by Lian et al. (2017). Our analysis reveals
that by breaking the synchronization AD-PSGD can main-
tain linear speedup, reduce the idle time, and improve the
robustness in heterogeneous computing environments.

Remark 5 (Linear speedup w.r.t. the staleness). From (8)
we can also see that as long as the staleness T is bounded
by O(K1/4) (if other parameters are considered to be con-
stants), linear speedup is achievable.

5 Experiments
We describe our experimental methodologies in Section 5.1
and we evaluate the AD-PSGD algorithm in the following
sections:

• Section 5.2: Compare AD-PSGD’s convergence rate
(w.r.t epochs) with other algorithms.
• Section 5.3: Compare AD-PSGD’s convergence rate

(w.r.t runtime) and its speedup with other algorithms.
• Section 5.4: Compare AD-PSGD’s robustness to other

algorithms in heterogeneous computing and heterogeneous
communication environments.
• Appendix B: Evaluate AD-PSGD on IBM proprietary

natural language processing dataset and model.

5.1 Experiments methodology

5.1.1 DATASET, MODEL, AND SOFTWARE

We use CIFAR10 and ImageNet-1K as the evaluation
dataset and we use Torch-7 as our deep learning framework.
We use MPI to implement the communication scheme. For
CIFAR10, we evaluate both VGG (Simonyan and Zisser-
man, 2015) and ResNet-20 (He et al., 2016) models. VGG,
whose size is about 60MB, represents a communication
intensive workload and ResNet-20, whose size is about
1MB, represents a computation intensive workload. For the
ImageNet-1K dataset, we use the ResNet-50 model whose
size is about 100MB.

the minibatch size only decreases the variance of the stochastic
gradients within each worker, while ς2 characterizes the variance
of stochastic gradient among different workers, independent of
the batch size.

Table 2. Testing accuracy comparison for VGG and ResNet-20
model on CIFAR10. 16 workers in total.

AllReduce D-PSGD EAMSGD AD-PSGD
VGG 87.04% 86.48% 85.75% 88.58%
ResNet-20 90.72% 90.81% 89.82% 91.49%

Additionally, we experimented on an IBM proprietary nat-
ural language processing datasets and models (Zhang et al.,
2017) in Appendix B.

5.1.2 HARDWARE

We evaluate AD-PSGD in two different environments:

• IBM S822LC HPC cluster: Each node with 4 Nvidia
P100 GPUs, 160 Power8 cores (8-way SMT) and 500GB
memory on each node. 100Gbit/s Mellanox EDR infini-
band network. We use 32 such nodes.
• x86-based cluster: This cluster is a cloud-like environ-

ment with 10Gbit/s ethernet connection. Each node has 4
Nvidia P100 GPUs, 56 Xeon E5-2680 cores (2-way SMT),
and 1TB DRAM. We use 4 such nodes.

5.1.3 COMPARED ALGORITHMS

We compare the proposed AD-PSGD algorithm to
AllReduce-SGD, D-PSGD (Lian et al., 2017) and a state
of the art asynchronous SGD implementation EAMSGD.
(Zhang et al., 2015)4 In EAMSGD, each worker can com-
municate with the parameter server less frequently by in-
creasing the “communication period” parameter su.

5.2 Convergence w.r.t. epochs

CIFAR10 Figure 2 plots training loss w.r.t. epochs for
each algorithm, which is evaluated for VGG and ResNet-
20 models on CIFAR10 dataset with 16 workers. Table 2
reports the test accuracy of all algorithms.

For EAMSGD, we did extensive hyper-parameter tuning to
get the best possible model, where su = 1. We set momen-
tum moving average to be 0.9/n (where n is the number
of workers) as recommended in (Zhang et al., 2015) for
EAMSGD.

For other algorithms, we use the following hyper-parameter
setup as prescribed in (Zagoruyko, 2015) and (FAIR,
2017):

• Batch size: 128 per worker for VGG, 32 for ResNet-20.
• Learning rate: For VGG start from 1 and reduce by half

every 25 epochs. For ResNet-20 start from 0.1 and decay
by a factor of 10 at the 81st epoch and the 122nd epoch.
• Momentum: 0.9.
• Weight decay: 10−4.

Figure 2 show that w.r.t epochs, AllReduce-SGD, D-PSGD
and AD-PSGD converge similar, while ASGD converges
worse. Table 2 shows AD-PSGD does not sacrifice test ac-
curacy.

4In this paper, we use ASGD and EAMSGD interchangeably.

Asynchronous Decentralized Parallel Stochastic Gradient Descent

0 20 40 60 80 100
epoch

0

1

2

tra
in

in
g

lo
ss

AllReduce
D-PSGD
EAMSGD
AD-PSGD

(a) VGG loss

0 50 100 150
epoch

0

1

2

tra
in

in
g

lo
ss

AllReduce
D-PSGD
EAMSGD
AD-PSGD

(b) ResNet-20 loss

Figure 2. Training loss comparison for VGG and ResNet-20
model on CIFAR10. AllReduce-SGD, D-PSGD and AD-PSGD
converge alike, EAMSGD converges the worst. 16 workers in
total.

Table 3. Testing accuracy comparison for ResNet-50 model on
ImageNet dataset for AllReduce, D-PSGD, and AD-PSGD. The
ResNet-50 model is trained for 90 epochs. AD-PSGD and
AllReduce-SGD achieve similar model accuracy.

AllReduce D-PSGD AD-PSGD
16 Workers 74.86% 74.74% 75.28%
32 Workers 74.78% 73.66% 74.66%
64 Workers 74.90% 71.18% 74.20%
128 Workers 74.78% 70.90% 74.23%

ImageNet We further evaluate the AD-PSGD’s conver-
gence rate w.r.t. epochs using ImageNet-1K and ResNet-50
model. We compare AD-PSGD with AllReduce-SGD and
D-PSGD as they tend to converge better than A-PSGD.

Figure 4 and Table 3 demonstrate that w.r.t. epochs AD-
PSGD converges similarly to AllReduce and converges bet-
ter than D-PSGD when running with 16,32,64,128 workers.
How to maintain convergence while increasing M × n5 is
an active ongoing research area (Zhang et al., 2016; Goyal
et al., 2017) and it is orthogonal to the topic of this pa-
per. For 64 and 128 workers, we adopted similar learning
rate tuning scheme as proposed in Goyal et al. (2017) (i.e.,
learning rate warm-up and linear scaling)6 It worths noting
that we could further increase the scalability of AD-PSGD
by combining learners on the same computing node as a
super-learner (via Nvidia NCCL AllReduce collectives). In
this way, a 128-worker system can easily scale up to 512
GPUs or more, depending on the GPU count on a node.

Above results show AD-PSGD converges similarly to
AllReduce-SGD w.r.t epochs and better than D-PSGD.
Techniques used for tuning learning rate for AllReduce-
SGD can be applied to AD-PSGD when batch size is large.

5.3 Speedup and convergence w.r.t runtime

On CIFAR10, Figure 3 shows the runtime convergence re-
sults on both IBM HPC and x86 system. The EAMSGD im-
plementation deploys parameter server sharding to mitigate

5M is mini-batch size per worker and n is the number of work-
ers

6In AD-PSGD, we decay the learning rate every 25 epochs
instead of 30 epochs as in AllReduce.

0 50 100
time/s

0

1

2

tra
in

in
g

lo
ss

(a) VGG loss 100Gbit/s

0 500 1000
time/s

0

1

2

tra
in

in
g

lo
ss

(b) VGG loss 10Gbit/s

0 50 100
time/s

0

1

2

tra
in

in
g

lo
ss

(c) ResNet loss 100Gbit/s

0 200 400 600
time/s

0

1

2

tra
in

in
g

lo
ss

(d) ResNet loss 10Gbit/s

AllReduce D-PSGD EAMSGD AD-PSGD

Figure 3. Runtime comparison for VGG (communication inten-
sive) and ResNet-20 (computation intensive) models on CIFAR10.
Experiments run on IBM HPC w/ 100Gbit/s network links and on
x86 system w/ 10Gbit/s network links. AD-PSGD consistently
converges the fastest. 16 workers in total.

the network bottleneck at the parameter servers. However,
the central parameter server quickly becomes a bottleneck
on a slow network with a large model as shown in Figure 3-
(b).

Figure 5 shows the speedup for different algorithms w.r.t.
number of workers. The speedup for ResNet-20 is better
than VGG because ResNet-20 is a computation intensive
workload.

Above results show that regardless of workload type (com-
putation intensive or communication intensive) and com-
munication networks (fast or slow), AD-PSGD consistently
converges the fastest w.r.t. runtime and achieves the best
speedup.

5.4 Robustness in a heterogeneous environment

In a heterogeneous environment, the speed of computa-
tion device and communication device may often vary,
subject to architectural features (e.g., over/under-clocking,
caching, paging), resource-sharing (e.g., cloud computing)
and hardware malfunctions. Synchronous algorithms like
AllReduce-SGD and D-PSGD perform poorly when work-
ers’ computation and/or communication speeds vary. Cen-
tralized asynchronous algorithms, such as A-PSGD, do
poorly when the parameter server’s network links slow
down. In contrast, AD-PSGD localizes the impact of
slower workers or network links.

On ImageNet, Figure 4e shows the epoch-wise training
time of the AD-PSGD, D-PSGD and AllReduce run over
64 GPUs (16 nodes) over a reserved window of 10 hours
when the job shares network links with other jobs on
IBM HPC. AD-PSGD finishes each epoch in 264 seconds,
whereas AllReduce-SGD and D-PSGD can take over 1000

Asynchronous Decentralized Parallel Stochastic Gradient Descent

0 20 40 60 80
epoch

2

4

6

tra
in

in
g

lo
ss

AllReduce
D-PSGD
AD-PSGD

(a) 16 workers

0 20 40 60 80
epoch

2

4

6

tra
in

in
g

lo
ss

AllReduce
D-PSGD
AD-PSGD

(b) 32 workers

0 20 40 60 80
epoch

2

4

6

tra
in

in
g

lo
ss

AllReduce
D-PSGD
AD-PSGD

(c) 64 workers

0 20 40 60 80
epoch

2

4

6

tra
in

in
g

lo
ss

AllReduce
D-PSGD
AD-PSGD

(d) 128 workers

0 20 40 60
epoch

500

1000

1500

2000

tra
in

in
g

tim
e

(s
ec

) AllReduce
D-PSGD
AD-PSGD

(e) training time variation
(64 workers)

Figure 4. Training loss and training time per epoch comparison for ResNet-50 model on ImageNet dataset, evaluated up to 128 workers.
AD-PSGD and AllReduce-SGD converge alike, better than D-PSGD. For 64 workers AD-PSGD finishes each epoch in 264 seconds,
whereas AllReduce-SGD and D-PSGD can take over 1000 sec/epoch.

0 5 10 15
of workers

0

5

10

15

sp
ee

du
p

(a) VGG speedup 100Gbit/s

0 5 10 15
of workers

0

5

10

15

sp
ee

du
p

(b) VGG speedup 10Gbit/s

0 5 10 15
of workers

0

5

10

15

sp
ee

du
p

(c) ResNet speedup 100Gbit/s

0 5 10 15
of workers

0

5

10

15

sp
ee

du
p

(d) ResNet speedup 10Gbit/s

Linear speedup AllReduce D-PSGD EAMSGD AD-PSGD

Figure 5. Speedup comparison for VGG (communication intensive) and ResNet-20 (computation intensive) models on CIFAR10. Ex-
periments run on IBM HPC w/ 100Gbit/s network links and on x86 system w/ 10Gbit/s network links. AD-PSGD consistently achieves
the best speedup.

0 50 100 150 200
time/s

0

1

2

tra
in

in
g

lo
ss

AllReduce (10X)
D-PSGD (10X)
AD-PSGD (10X)

AllReduce (100X)
D-PSGD (100X)
AD-PSGD (100X)

(a) A computation device
slows down by 10X-100X.

0 50 100 150 200
time/s

0

1

2

tra
in

in
g

lo
ss

AD-PSGD
AD-PSGD (2X)
AD-PSGD (10X)
AD-PSGD (100X)

EAMSGD (2X)
EAMSGD (10X)
EAMSGD (100X)

(b) A network link slows down
by 2X-100X.

Figure 6. Training loss for ResNet-20 model on CIFAR10, when
a computation device/network link slows down by 2X-100X. kX
in parentheses means a random worker’s GPU or network links
slow down by k-times. 16 workers in total. AD-PSGD is robust
under such heterogeneous environments.

Table 4. Runtime comparison for ResNet-20 model on CIFAR10
dataset when a worker slows down by 2X-100X.

Slowdown of
one node

AD-PSGD AllReduce/D-PSGD
Time/epoch (sec) Speedup Time/epoch (sec) Speedup

no slowdown 1.22 14.78 1.47/1.45 12.27/12.44
2X 1.28 14.09 2.6/2.36 6.93/7.64
10X 1.33 13.56 11.51/11.24 1.56/1.60
100X 1.33 13.56 100.4/100.4 0.18/0.18

sec/epoch.

We then evaluate AD-PSGD’s robustness under different
situations by randomly slowing down 1 of the 16 work-
ers and its incoming/outgoing network links. Due to space
limit, we will discuss the results for ResNet-20 model on
CIFAR10 dataset as the VGG results are similar.

Robustness against slow computation Figure 6a and Ta-
ble 4 shows that AD-PSGD’s convergence is robust against

slower workers. AD-PSGD can converge faster than
AllReduce-SGD and D-PSGD by orders of magnitude when
there is a very slow worker.

Robustness against slow communication Figure 6b
shows that AD-PSGD is robust when one worker is con-
nected to slower network links. In contrast, centralized
asynchronous algorithm EAMSGD uses a larger communi-
cation period to overcome slower links, which significantly
slows down the convergence.

These results show only AD-PSGD is robust against both
heterogeneous computation and heterogeneous communi-
cation.

6 Conclusion
This paper proposes an asynchronous decentralized
stochastic gradient descent algorithm (AD-PSGD). The al-
gorithm is not only robust in heterogeneous environments
by combining both decentralization and asynchronization,
but it is also theoretically justified to have the same con-
vergence rate as its synchronous and/or centralized coun-
terparts and can achieve linear speedup w.r.t. number of
workers. Extensive experiments validate the proposed al-
gorithm.

Acknowledgment This project is supported in part by NSF
CCF1718513, NEC fellowship, IBM faculty award, Swiss NSF
NRP 75 407540_167266, IBM Zurich, Mercedes-Benz Research
& Development North America, Oracle Labs, Swisscom, Zurich
Insurance, and Chinese Scholarship Council.

Asynchronous Decentralized Parallel Stochastic Gradient Descent

References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

A. Agarwal and J. C. Duchi. Distributed delayed stochastic
optimization. In NIPS, 2011.

N. S. Aybat, Z. Wang, T. Lin, and S. Ma. Distributed
linearized alternating direction method of multipliers
for composite convex consensus optimization. arXiv
preprint arXiv:1512.08122, 2015.

T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione.
Broadcast gossip algorithms for consensus. IEEE Trans-
actions on Signal processing, 2009.

P. Bianchi, G. Fort, and W. Hachem. Performance of a
distributed stochastic approximation algorithm. IEEE
Transactions on Information Theory, 2013.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip
algorithms: Design, analysis and applications. In INFO-
COM, 2005.

R. Carli, F. Fagnani, P. Frasca, and S. Zampieri. Gossip
consensus algorithms via quantized communication. Au-
tomatica, 2010.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flexible
and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274,
2015.

O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Op-
timal distributed online prediction using mini-batches.
Journal of Machine Learning Research, 2012.

F. Fagnani and S. Zampieri. Randomized consensus algo-
rithms over large scale networks. IEEE Journal on Se-
lected Areas in Communications, 2008.

FAIR. ResNet in Torch. https://github.com/
facebook/fb.resnet.torch, 2017.

H. R. Feyzmahdavian, A. Aytekin, and M. Johansson.
An asynchronous mini-batch algorithm for regularized
stochastic optimization. IEEE Transactions on Auto-
matic Control, 2016.

S. Ghadimi and G. Lan. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 2013.

S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic
approximation methods for nonconvex stochastic com-
posite optimization. Mathematical Programming, 2016.

P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch SGD: training imagenet in

1 hour. CoRR, abs/1706.02677, 2017. URL http:
//arxiv.org/abs/1706.02677.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016.

G. Lan, S. Lee, and Y. Zhou. Communication-efficient al-
gorithms for decentralized and stochastic optimization.
arXiv preprint arXiv:1701.03961, 2017.

Z. Li, W. Shi, and M. Yan. A decentralized proximal-
gradient method with network independent step-sizes
and separated convergence rates. arXiv preprint
arXiv:1704.07807, 2017.

X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel
stochastic gradient for nonconvex optimization. In NIPS,
2015.

X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu. A
comprehensive linear speedup analysis for asynchronous
stochastic parallel optimization from zeroth-order to
first-order. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, NIPS. Curran Asso-
ciates, Inc., 2016.

X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and
J. Liu. Can decentralized algorithms outperform central-
ized algorithms? A case study for decentralized parallel
stochastic gradient descent, 2017.

J. Lu, C. Y. Tang, P. R. Regier, and T. D. Bow. A gossip
algorithm for convex consensus optimization over net-
works. In ACC. IEEE, 2010.

N. Luehr. Fast multi-gpu collectives with
nccl, 2016. URL https://devblogs.
nvidia.com/parallelforall/
fast-multi-gpu-collectives-nccl/.

A. Mokhtari and A. Ribeiro. DSA: decentralized double
stochastic averaging gradient algorithm. Journal of Ma-
chine Learning Research, 2016.

E. Moulines and F. R. Bach. Non-asymptotic analysis of
stochastic approximation algorithms for machine learn-
ing. In NIPS, 2011.

MPI contributors. MPI AllReduce, 2015. URL http://
mpi-forum.org/docs/.

R. Nair and S. Gupta. Wildfire: Approximate synchro-
nization of parameters in distributed deep learning. IBM
Journal of Research and Development, 61(4/5):7:1–7:9,
July 2017. ISSN 0018-8646. doi: 10.1147/JRD.2017.
2709198.

A. Nedic and A. Ozdaglar. Distributed subgradient meth-
ods for multi-agent optimization. IEEE Transactions on
Automatic Control, 2009.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Ro-
bust stochastic approximation approach to stochastic pro-
gramming. SIAM Journal on Optimization, 2009.

https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
http://mpi-forum.org/docs/
http://mpi-forum.org/docs/

Asynchronous Decentralized Parallel Stochastic Gradient Descent

R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus
and cooperation in networked multi-agent systems. Pro-
ceedings of the IEEE, 2007.

T. Paine, H. Jin, J. Yang, Z. Lin, and T. Huang. Gpu asyn-
chronous stochastic gradient descent to speed up neural
network training. arXiv preprint arXiv:1312.6186, 2013.

P. Patarasuk and X. Yuan. Bandwidth optimal all-reduce al-
gorithms for clusters of workstations. Journal of Parallel
and Distributed Computing, 2009.

S. S. Ram, A. Nedic, and V. V. Veeravalli. Distributed sub-
gradient projection algorithm for convex optimization.
In ICASSP. IEEE, 2009.

S. S. Ram, A. Nedić, and V. V. Veeravalli. Asynchronous
gossip algorithm for stochastic optimization: Constant
stepsize analysis. In Recent Advances in Optimization
and its Applications in Engineering. Springer, 2010.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-
free approach to parallelizing stochastic gradient descent.
In Advances in neural information processing systems,
2011.

L. Schenato and G. Gamba. A distributed consensus proto-
col for clock synchronization in wireless sensor network.
In CDC. IEEE, 2007.

F. Seide and A. Agarwal. CNTK: Microsoft’s open-source
deep-learning toolkit. In Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’16. ACM, 2016.

W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin. On the lin-
ear convergence of the admm in decentralized consensus
optimization.

W. Shi, Q. Ling, G. Wu, and W. Yin. Extra: An exact first-
order algorithm for decentralized consensus optimiza-
tion. SIAM Journal on Optimization, 2015a.

W. Shi, Q. Ling, G. Wu, and W. Yin. A proximal gradi-
ent algorithm for decentralized composite optimization.
IEEE Transactions on Signal Processing, 63(22):6013–
6023, 2015b.

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. ICLR, 2015.

B. Sirb and X. Ye. Consensus optimization with delayed
and stochastic gradients on decentralized networks. In
Big Data, 2016.

K. Srivastava and A. Nedic. Distributed asynchronous con-
strained stochastic optimization. IEEE Journal of Se-
lected Topics in Signal Processing, 2011.

S. Sundhar Ram, A. Nedić, and V. Veeravalli. Distributed
stochastic subgradient projection algorithms for convex
optimization. Journal of optimization theory and appli-
cations, 2010.

H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu. D2: Decen-

tralized training over decentralized data. arXiv preprint
arXiv:1803.07068, 2018.

Z. Wang, Z. Yu, Q. Ling, D. Berberidis, and G. B. Gian-
nakis. Decentralized rls with data-adaptive censoring
for regressions over large-scale networks. arXiv preprint
arXiv:1612.08263, 2016.

T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed. De-
centralized consensus optimization with asynchrony and
delays. arXiv preprint arXiv:1612.00150, 2016.

K. Yuan, Q. Ling, and W. Yin. On the convergence of de-
centralized gradient descent. SIAM Journal on Optimiza-
tion, 2016.

S. Zagoruyko. CIFAR VGG in Torch. https:
//github.com/szagoruyko/cifar.torch,
2015.

R. Zhang and J. Kwok. Asynchronous distributed admm
for consensus optimization. In ICML, 2014.

S. Zhang, A. E. Choromanska, and Y. LeCun. Deep learn-
ing with elastic averaging SGD. In Advances in Neural
Information Processing Systems, pages 685–693, 2015.

W. Zhang, S. Gupta, and F. Wang. Model accuracy and
runtime tradeoff in distributed deep learning: A system-
atic study. In IEEE International Conference on Data
Mining, 2016.

W. Zhang, M. Feng, Y. Zheng, Y. Ren, Y. Wang, J. Liu,
P. Liu, B. Xiang, L. Zhang, B. Zhou, and F. Wang.
Gadei: On scale-up training as a service for deep learn-
ing. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Manage-
ment. The IEEE International Conference on Data Min-
ing series(ICDM’2017), 2017.

https://github.com/szagoruyko/cifar.torch
https://github.com/szagoruyko/cifar.torch

