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Abstract
It is widely conjectured that training algorithms
for neural networks are successful because all
local minima lead to similar performance; for
example, see (LeCun et al., 2015; Choroman-
ska et al., 2015; Dauphin et al., 2014). Perfor-
mance is typically measured in terms of two met-
rics: training performance and generalization per-
formance. Here we focus on the training per-
formance of neural networks for binary classifi-
cation, and provide conditions under which the
training error is zero at all local minima of ap-
propriately chosen surrogate loss functions. Our
conditions are roughly in the following form:
the neurons have to be increasing and strictly
convex, the neural network should either be
single-layered or is multi-layered with a shortcut-
like connection, and the surrogate loss function
should be a smooth version of hinge loss. We
also provide counterexamples to show that, when
these conditions are relaxed, the result may not
hold.

1. Introduction
Local search algorithms like stochastic gradient de-
scent (Bottou, 2010) or variants have gained huge success
in training deep neural networks (see, Krizhevsky et al.
2012; Goodfellow et al. 2013; Wan et al. 2013, for ex-
ample). Despite the spurious saddle points and local min-
ima on the loss surface (Dauphin et al., 2014), it has been
widely conjectured that all local minima of the empirical
loss lead to similar training performance (LeCun et al.,
2015; Choromanska et al., 2015). For example, Li et al.
(2015) empirically showed that neural networks with iden-
tical architectures but different initialization points can con-
verge to local minima with similar classification perfor-
mance. However, it still remains a challenge to characterize
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the theoretical properties of the loss surface for neural net-
works.

In the setting of regression problems, there have been many
recent attempts to study the landscape and/or the training
performance of local search algorithms. For shallow mod-
els, (Andoni et al., 2014; Sedghi & Anandkumar, 2014; Jan-
zamin et al., 2015; Haeffele & Vidal, 2015; Gautier et al.,
2016; Brutzkus & Globerson, 2017; Soltanolkotabi, 2017;
Soudry & Hoffer, 2017; Goel & Klivans, 2017; Du et al.,
2017; Zhong et al., 2017; Li & Yuan, 2017) provide con-
ditions under which the local search algorithms are guar-
anteed to converge to the globally optimal solution for the
regression problem. For deep linear networks, it has been
shown that every local minimum of the empirical loss is a
global minimum (Baldi & Hornik, 1989; Kawaguchi, 2016;
Freeman & Bruna, 2016; Hardt & Ma, 2017; Yun et al.,
2017). In order to characterize the loss surface of nonlin-
ear deep networks for regression tasks, Choromanska et al.
(2015) have related the loss function to a spin glass model
under a few unrealistic assumptions, and it remains a con-
cern to properly justify their assumptions. More recently,
it has been shown (Nguyen & Hein, 2017a;b) that if one
layer in the multilayer network has more neurons than the
number of training samples, then a subset of local minima
are global minima.

Although the loss surfaces in regression tasks have been ex-
tensively studied, the theoretical understanding of loss sur-
faces in classification tasks is still limited. (Nguyen & Hein,
2017b; Boob & Lan, 2017; Soltanolkotabi et al., 2017) treat
the classification problem as the regression problem by us-
ing quadratic loss. However, the global minimum of the
quadratic loss does not necessarily have zero misclassifi-
cation error even in the simplest cases (e.g., even when
the dataset is linearly separable and the network is a linear
network). This issue was mentioned in (Nguyen & Hein,
2017a) and a different loss function was used, but their re-
sult only studied the linearly separable case and a subset of
the critical points.

In this work, we provide a rather comprehensive study of
the loss surface of neural networks for binary classification,
by finding a collection of necessary and sufficient condi-
tions for the loss function to have no bad local minima. On
the positive side, we prove that no bad local minima exist
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under the following conditions: the neurons (i.e. activation
functions) are increasing and strictly convex, the neural net-
work is single-layered or is multi-layered with a shortcut-
like connection, the surrogate loss function is a smooth ver-
sion of the hinge loss function, and either the dataset is
linearly separable or the positively and negatively labeled
samples are located on different subspaces. On the negative
side, we provide dozens of counterexamples which show
that bad local minima exist when these conditions do not
hold. More detailed discussions of the conditions are given
as follows.

• For ReLU neurons, we show that the empirical loss
has bad local minima. On the positive side, increas-
ing and strictly convex neurons (including smooth
versions of ReLUs) can eliminate bad local minima.
This is consistent with the practical observation that
smooth versions of ReLUs perform better than ReLUs.

• For the loss function, we provide a counterexample
in which all local minima of quadratic loss functions
have poor training performance in classification tasks.
In contrast, the smooth hinge-losses do not have this
undesirable property 1.

• For architectures, we have shown that i) pure ReLU
feedforward nets have poor training performance; ii)
the same conclusion holds even if we use the shortcut
connections in ResNet; iii) if the shortcut includes a
smooth version of ReLU, then even if the rest of the
network uses ReLUs, the landscape of the loss func-
tion is much nicer.

• For datasets, we provide necessary conditions without
which the network has bad local minima and the ques-
tion of sufficiency for other neurons is still open.

The outline of this paper is as follows. In Section 2, we
present the model and some definitions. In Section 3, we
present the main positive results. The necessity of each
condition is discussed in Section 4 and proofs are provided
in Section 5. Conclusions are presented in Section 6. All
other proofs are provided in Appendix.

2. Preliminaries
Network models. Given an input vector x of dimension
d, we consider a neural network with L layers for binary
classification. We denote by Ml the number of neurons on
the l-th layer (note that M0 = d and ML = 1). We denote
the neuron activation function by σ. Let Wl ∈ RMl−1×Ml

denote the weight matrix connecting the (l − 1)-th layer
and the l-th layer and bl ∈ RMl denote the bias vector for

1We do not consider logistic loss since it does not have finite
global minima; in contrast, the smooth hinge-loss has finite global
minima.

the neurons in the l-th layer. Therefore, the output of the
network f : Rd → R can be expressed by

f(x;θ) = W⊤
L σ

(
...σ(W⊤

1 x+ b1) + bL−1

)
+ bL,

where θ denotes all parameters in the neural network.

Data distribution. In this paper, we consider binary classi-
fication tasks where each sample (X, Y ) ∈ Rd×{−1, 1} is
drawn from an underlying data distribution PX×Y defined
on Rd×{−1, 1}. The sample (X, Y ) is considered positive
if Y = 1, and negative otherwise. Let E = {e1, ..., ed} de-
note a set of orthonormal basis on the space Rd. Let U+ and
U− denote two subsets of E such that all positive and nega-
tive samples are located on the linear span of the set U+ and
U−, respectively, i.e., PX|Y (X ∈ Span(U+)|Y = 1) = 1
and PX|Y (X ∈ Span(U−)|Y = −1) = 1. Let r denote
the size of the set U+ ∪ U−, r+ denote the size of the set
U+ and r− denote the size of the set U−, respectively.

Loss and error. Let D = {(xi, yi)}ni=1 denote a dataset
with n samples, each independently drawn from the distri-
bution PX×Y . Given a neural network f(x;θ) parameter-
ized by θ and a loss function ℓ : R → R, in binary classi-
fication tasks2, we define the empirical loss L̂n(θ) as the
average loss of the network f on a sample in the dataset D,
i.e.,

L̂n(θ) =
1

n

n∑
i=1

ℓ(−yif(xi;θ)).

Furthermore, for a neural network f , we define a binary
classifier gf : Rd → {−1, 1} of the form gf = sgn(f),
where the sign function sgn(z) = 1, if z ≥ 0, and
sgn(z) = 0 otherwise. We define the training error (also
called the misclassification error) R̂n(θ) as the misclassi-
fication rate of the neural network f(x;θ) on the dataset D,
i.e.,

R̂n(θ) =
1

n

n∑
i=1

I{yi ̸= sgn(f(xi;θ))},

where I{·} is the indicator function. The training error R̂n

measures the classification performance of the network f
on the finite samples in the dataset D.

3. Main Results
In this section, we present the main results. We first in-
troduce several important conditions in order to derive the
main results, and we will provide further discussions on
these conditions in the next section.

3.1. Conditions

To fully specify the problem, we need to specify our as-
sumptions on several components of the model, including:

2We note that, in regression tasks, the empirical loss is usually
defined as L̂n(θ) =

1
n

∑n
i=1 ℓ(yi − f(xi;θ)).
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(1) the loss function, (2) the data distribution, (3) the net-
work architecture and (4) the neuron activation function.

Assumption 1 (Loss function) Let ℓp : R → R denote
a loss function satisfying the following conditions: (1) ℓp
is a surrogate loss function, i.e., ℓp(z) ≥ I{z ≥ 0} for
all z ∈ R, where I(·) denotes the indicator function; (2) ℓp
has continuous derivatives up to order p on R; (3) ℓp is non-
decreasing (i.e., ℓ′p(z) ≥ 0 for all z ∈ R) and there exists a
positive constant z0 such that ℓ′p(z) = 0 iff z ≤ −z0.

The first condition in Assumption 1 ensures that the train-
ing error R̂n is always upper bounded by the empirical loss
L̂n, i.e., R̂n ≤ L̂n. This guarantees that the neural net-
work can correctly classify all samples in the dataset (i.e.,
R̂n = 0), when the neural network achieves zero empirical
loss (i.e., L̂n = 0). The second condition ensures that the
empirical loss L̂n has continuous derivatives with respect
to the parameters up to a sufficiently high order. The third
condition ensures that the loss function is non-decreasing
and ℓ′p(z) = 0 is achievable if and only if z ≤ −z0. Here,
we provide a simple example of the loss function satisfying
all conditions in Assumption 1: the polynomial hinge loss,
i.e., ℓp(z) = [max{z + 1, 0}]p+1. We note that, in this
paper, we use L̂n(θ; p) to denote the empirical loss when
the loss function is ℓp and the network is parametrized by
a set of parameters θ. Further results on the impact of loss
functions are presented in Section 4.

Assumption 2 (Data distribution) Assume that for ran-
dom vectors X1, ...,Xr+ independently drawn from the
distribution PX|Y=1 and Z1, ...,Zr− independently drawn
from the distribution PX|Y=−1, matrices

(
X1, ...,Xr+

)
∈

Rr+×d and
(
Z1, ...,Zr−

)
∈ Rr−×d are full rank matrices

with probability one.

Assumption 2 states that support of the conditional distribu-
tion PX|Y=1 is sufficiently rich so that r+ samples drawn
from it will be linearly independent. In other words, by
stating this assumption, we are avoiding trivial cases where
all the positively labeled points are located in a very small
subset of the linear span of U+. Similarly for the negatively
labeled samples.

Assumption 3 (Data distribution) Assume |U+ ∪ U−| >
max{|U+|, |U−|}, i.e., r > max{r+, r−}.

Assumption 3 assumes that the positive and negative sam-
ples are not located on the same linear subspace. Previ-
ous works (Belhumeur et al., 1997; Chennubhotla & Jep-
son, 2001; Cootes et al., 2001; Belhumeur et al., 1997)
have observed that some classes of natural images (e.g., im-
ages of faces, handwritten digits, etc) can be reconstructed
from lower-dimensional representations. For example, us-
ing dimensionality reduction methods such as PCA, one
can approximately reconstruct the original image from only
a small number of principal components (Belhumeur et al.,

1997; Chennubhotla & Jepson, 2001). Here, Assumption 3
states that both the positively and negatively labeled sam-
ples have lower-dimensional representations, and they do
not exist in the same lower-dimensional subspace. We
provide additional analysis in Section 4, showing how our
main results generalize to other data distributions.

Assumption 4 (Network architecture) Assume that the
neural network f is a single-layered neural network, or
more generally, has shortcut-like connections shown in
Fig 1 (b), where fS is a single layer network and fD is
a feedforward network.

Shortcut connections are widely used in the modern net-
work architectures (e.g., Highway Networks (Srivastava
et al., 2015), ResNet (He et al., 2016), DenseNet (Huang
et al., 2017), etc.), where the skip connections allow the
deep layers to have direct access to the outputs of shallow
layers. For instance, in the residual network, each residual
block has a identity shortcut connection, shown in Fig 1 (a),
where the output of each residual block is the vector sum
of its input and the output of a network H .

Instead of using the identity shortcut connection, in this pa-
per, we first pass the input through a single layer network
fS(x;θS) = a0 + a⊤σ

(
W⊤x

)
, where vector a denotes

the weight vector, matrix W denotes the weight matrix and
vector θS denotes the vector containing all parameters in
fS . We next add the output of this network to a network
fD and use the addition as the output of the whole network,
i.e., f(x;θ) = fS(x;θS) + fD(x;θD), where vector θD
and θ denote the vector containing all parameters in the net-
work fD and the whole network f , respectively. We note
here that, in this paper, we do not restrict the number of
layers and neurons in the network fD and this means that
the network fD can be a feedforward network introduced
in Section 2 or a single layer network or even a constant.
In fact, when the network fD is a single layer network or a
constant, the whole network f becomes a single layer net-
work. Furthermore, we note that, in Section 4, we will show
that if we remove this connection or replace this shortcut-
like connection with the identity shortcut connection, the
main result does not hold.

Assumption 5 (Neuron activation) Assume that neurons
σ(z) in the network fS are real analytic and satisfy
σ′′(z) > 0 for all z ∈ R. Assume that neurons in the
network fD are real functions on R.

In Assumption 5, we assume that neurons in the network
fS are infinitely differentiable and have positive second
order derivatives on R, while neurons in the network fD
are real functions. We make the above assumptions to en-
sure that the loss function L̂n(θS ,θD; p) is partially dif-
ferentiable w.r.t. the parameters θS in the network fS
up to a sufficiently high order and allow us to use Tay-
lor expansion in the analysis. Here, we list a few neurons
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Figure 1. (a) The identity shortcut connection adopted in the resid-
ual network (He et al., 2016). (b) The shortcut-like connection
adopted in this paper.

which can be used in the network fS : softplus neuron, i.e.,
σ(z) = log2(1 + ez), quadratic neuron, i.e, σ(z) = z2,
etc. We note that neurons in the network fS and fD do not
need to be of the same type and this means that a more gen-
eral class of neurons can be used in the network fD, e.g.,
threshold neuron, i.e., σ(z) = I{z ≥ 0}, rectified linear
unit σ(z) = max{z, 0}, sigmoid neuron σ(z) = 1

1+e−z ,
etc. Further discussion on the effects of neurons on the
main results are provided in Section 4.

3.2. Main Results

Now we present the following theorem to show that when
assumptions 1-5 are satisfied, every local minimum of the
empirical loss function has zero training error if the number
of neurons in the network fS are chosen appropriately.

Theorem 1 (Linear subspace data) Suppose that as-
sumptions 1-5 are satisfied. Assume that samples in
the dataset D = {(xi, yi)}ni=1, n ≥ 1 are indepen-
dently drawn from the distribution PX×Y . Assume that
the number of neurons M in the network fS satisfies
M ≥ 2max{ n

∆r , r+, r−}, where ∆r = r −max{r+, r−}.
If θ∗ = (θ∗

S ,θ
∗
D) is a local minimum of the loss function

L̂n(θS ,θD; p) and p ≥ 6, then R̂n(θ
∗
S ,θ

∗
D) = 0 holds

with probability one.

Remark: (i) By setting the network fD to a constant, it
directly follows from Theorem 1 that if a single layer net-
work fS(x;θS) consisting of neurons satisfying Assump-
tion 5 and all other conditions in Theorem 1 are satisfied,
then every local minimum of the empirical loss L̂n(θS ; p)
has zero training error. (ii) The positiveness of ∆r is guar-
anteed by Assumption 3. In the worst case (e.g., ∆r = 1
and ∆r = 2), the number of neurons needs to be at least
greater than the number of samples, i.e., M ≥ n. How-
ever, when the two orthonormal basis sets U+ and U− dif-
fer significantly (i.e., ∆r ≫ 1), the number of neurons re-
quired by Theorem 1 can be significantly smaller than the
number of samples (i.e., n ≫ 2n/∆r). In fact, we can
show that, when the neuron has quadratic activation func-

tion σ(z) = z2, the assumption M ≥ 2n/∆r can be further
relaxed such that the number of neurons is independent of
the number of samples. We discuss this in the following
proposition.

Proposition 1 Assume that assumptions 1-5 are satisfied.
Assume that samples in the dataset D = {(xi, yi)}ni=1, n ≥
1 are independently drawn from the distribution PX×Y . As-
sume that neurons in the network fS satisfy σ(z) = z2 and
the number of neurons in the network fS satisfies M > r.
If θ∗ = (θ∗

S ,θ
∗
D) is a local minimum of the loss function

L̂n(θS ,θD; p) and p ≥ 6, then R̂n(θ
∗
S ,θD) = 0 holds

with probability one.

Remark: Proposition 1 shows that if the number of neu-
ron M is greater than the dimension of the subspace, i.e.,
M > r, then every local minimum of the empirical loss
function has zero training error. We note here that although
the result is stronger with quadratic neurons, it does not im-
ply that the quadratic neuron has advantages over the other
types of neurons (e.g., softplus neuron, etc). This is due
to the fact that when the neuron has positive derivatives
on R, the result in Theorem 1 holds for the dataset where
positive and negative samples are linearly separable. We
provide the formal statement of this result in Theorem 2.
However, when the neuron has quadratic activation func-
tion, the result in Theorem 1 may not hold for linearly
separable dataset and we will illustrate this by providing
a counterexample in the next section.

As shown in Theorem 1, when the data distribution satisfies
Assumption 2 and 3, every local minimum of the empirical
loss has zero training error. However, we can easily see that
distributions satisfying these two assumptions may not be
linearly separable. Therefore, to provide a complementary
result to Theorem 1, we consider the case where the data
distribution is linearly separable. Before presenting the re-
sult, we first present the following assumption on the data
distribution.

Assumption 6 (Linear separability) Assume that there
exists a vector w ∈ Rd such that PX×Y (Yw⊤X > 0) = 1.

In Theorem 2, we will show that when the samples drawn
from the data distribution are linearly separable, and the
network has a shortcut-like connection shown in Figure 1,
all local minima of the empirical loss function have zero
training errors if the type of the neuron in the network fS
are chosen appropriately.

Theorem 2 (Linearly separable data) Suppose that the
loss function ℓp satisfies Assumption 1 and the network ar-
chitecture satisfies Assumption 4. Assume that samples in
the dataset D = {(xi, yi)}ni=1, n ≥ 1 are independently
drawn from a distribution satisfying Assumption 6. Assume
that the single layer network fS has M ≥ 1 neurons and
neurons σ in the network fS are twice differentiable and
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satisfy σ′(z) > 0 for all z ∈ R. If θ∗ = (θ∗
S ,θ

∗
D) is a local

minimum of the loss function L̂n(θS ,θD; p), p ≥ 3, then
R̂n(θ

∗
S ,θ

∗
D) = 0 holds with probability one.

Remark: Similar to Proposition 1, Theorem 2 does not re-
quire the number of neurons to be in scale with the number
of samples. In fact, we make a weaker assumption here:
the single layer network fS only needs to have at least one
neuron, in contrast to at least r neurons required by Propo-
sition 1. Furthermore, we note here that, in Theorem 2, we
assume that neurons in the network fS have positive deriva-
tives on R. This implies that Theorem 2 may not hold for a
subset of neurons considered in Theorem 1 (e.g., quadratic
neuron, etc). We will provide further discussions on the
effects of neurons in the next section.

4. Discussions
In this section, we discuss the effects of the (1) neuron acti-
vation, (2) shortcut-like connections, (3) loss function and
(4) data distribution on the main results, respectively. We
show that the result may not hold if these assumptions are
relaxed.

4.1. Neuron Activations

To begin with, we discuss whether the results in Theorem 1
and 2 still hold if we vary the neuron activation function
in the single layer network fS . Specifically, we consider
the following two classes of neurons: (1) softplus class and
(2) rectified linear unit (ReLU) class. In the following, for
each class of neurons, we show whether the main results
hold and provide counterexamples if certain conditions in
the main results are violated. We summarize our findings
in Table 4.1.

Softplus class contains neurons with real analytic activa-
tion functions σ, where σ′(z) > 0, σ′′(z) > 0 for all z ∈ R.
A widely used neuron in this class is the softplus neuron,
i.e., σ(z) = log2(1 + ez), which is a smooth approxima-
tion of ReLU. We can see that neurons in this class satisfy
assumptions in both Theorem 1 and 2 and this indicates that
both theorems hold for the neurons in this class.

ReLU class contains neurons with σ(z) = 0 for all z ≤ 0
and σ(z) is piece-wise continuous on R. Some commonly
adopted neurons in this class include: threshold units, i.e.,
I{z ≥ 0}, rectified linear units (ReLU), i.e., max{z, 0} and
rectified quadratic units (ReQU), i.e., [max{z, 0}]2. We
can see that neurons in this class do not satisfy assumptions
in Theorem 1 or 2. In Proposition 2, we show that when the
single layer network fS consists of neurons in the ReLU
class, even if all other conditions in Theorem 1 or 2 are
satisfied, the loss function can have a bad local minimum.

Proposition 2 Suppose that assumptions 1 and 4 are sat-

Theorem Soft-plus ReLU

1 Yes No
2 Yes No

Table 1. The result whether Theorem 1 or 2 hold for all neurons
in each class. The definition of each class can be found in Sec-
tion 4.1.

isfed. Assume that neurons in the network fS satisfy that
σ(z) = 0 for all z ≤ 0 and σ(z) is piece-wise contin-
uous on R. Then there exists a network architecture fD
and a distribution satisfying assumptions in Theorem 1
or 2 such that with probability one, the empirical loss
L̂n(θ; p), p ≥ 2 has a local minima θ∗ = (θ∗

S ,θ
∗
D) sat-

isfying R̂n(θ
∗) ≥ min{n+,n−}

n , where n+ and n− are the
number of positive and negative samples, respectively.

Remark: (i) We note here that the above result holds in
the over-parametrized case, where the number of neurons
in the network fS is larger than the number of samples in
the dataset. In addition, all counterexamples shown in Sec-
tion 4.1 hold in the over-parametrized case. (ii) We note
here that applying the same analysis, we can generalize the
above result to a larger class of neurons satisfying the fol-
lowing condition: there exists a scalar z1 such that σ(z) =
constant for all z ≤ z1 and σ(z) is piece-wise continuous
on R. (iii) We note that the training error is strictly non-zero
when the dataset has both positive and negative samples
and this can happen with probability at least 1− e−Ω(n).

4.2. Shortcut-like Connections

In this subsection, we discuss whether the main results still
hold if we remove the shortcut-like connections or replace
them with the identity shortcut connections used in the
residual network (He et al., 2016). Specifically, we pro-
vide two counterexamples and show that the main results
do not hold if the shortcut-like connections are removed or
replaced with the identity shortcut connections.

Feed-forward networks. When the shortcut-like connec-
tions (i.e., the network fS in Figure 1(b)) are removed,
the network architecture can be viewed as a standard feed-
forward neural network. We provide a counterexample to
show that, for a feedforward network with ReLU neurons,
even if the other conditions in Theorem 1 or 2 are satisfied,
the empirical loss functions is likely to have a local mini-
mum with non-zero training error. In other words, neither
Theorem 1 nor 2 holds when the shortcut-like connections
are removed.

Proposition 3 Suppose that assumption 1 is satisfied. As-
sume that the feedforward network f(x;θ) has at least one
hidden layer and at least one neuron in each hidden layer.
If neurons in the network f satisfy that σ(z) = 0 for all
z ≤ 0 and σ(z) is continuous on R, then for any dataset
D with n samples, the empirical loss L̂n(θ; p), p ≥ 2 has
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a local minima θ∗ with R̂n(θ
∗) ≥ min{n+,n−}

n , where n+

and n− are the number of positive and negative samples in
the dataset, respectively.

Remark: The result holds for ReLUs, since it is easy to
check that the ReLU neuron satisfies the above assump-
tions.

Identity shortcut connections. As we stated earlier,
adding shortcut-like connections to a network can improve
the loss surface. However, the shortcut-like connections
shown in Fig 1(b) are different from some popular shortcut
connections used in the real-world applications, e.g., the
identity shortcut connections in the residual network. Thus,
a natural question arises: do the main results still hold if
we use the identity shortcut connections? To address the
question, we provide the following counterexample to show
that, when we replace the shortcut-like connections with
the identity shortcut connections, even if the other condi-
tions in Theorem 1 are satisfied, the empirical loss function
is likely to have a local minimum with non-zero training
error. In other words, Theorem 1 does not hold for the
identity shortcut connections.

Proposition 4 Assume that H : Rd → Rd is a feedfor-
ward neural network parameterized by θ and all neurons
in H are ReLUs. Define a network f : Rd → R with
identity shortcut connections as f(x;a,θ, b) = a⊤(x +
H(x;θ)) + b, a ∈ Rd, b ∈ R. Then there exists a distribu-
tion PX×Y satisfying the assumptions in Theorem 1 such
that with probability at least 1− e−Ω(n), the empirical loss
L̂n(a,θ, b; p) = 1

n

∑n
i=1 ℓ(−yif(xi;θ); p), p ≥ 2 has a

local minimum with non-zero training error.

4.3. Loss Functions

In this subsection, we discuss whether the main results still
hold if we change the loss function. We mainly focus on
the quadratic loss. We will show that if the loss function
is replaced with the quadratic loss, then neither Theorem 1
nor 2 holds.

Quadratic loss. The quadratic loss ℓ(z) = (1 − z)2 has
been well-studied in prior works. It has been shown that
when the loss function is quadratic, under certain assump-
tions, all local minima of the empirical loss are global min-
ima. However, the global minimum of the quadratic loss
does not necessarily have zero misclassification error, even
in the realizable case (i.e., the case where there exists a set
of parameters such that the network achieves zero misclas-
sification error on the dataset or the data distriubtion). To
illustrate this, we provide a simple example where the net-
work is a simplified linear network and the data distribution
is linearly separable.

Example 1 Let the distribution PX×Y satisfy that P(Y =
1) = P(Y = −1) = 0.5, P(X = 5/4|Y = 1) = 1

and PX|Y=−1 is a uniform distribution on the interval
[0, 1]. For a linear model f(x; a, b) = ax + b, a, b ∈
R, every global minimum (a∗, b∗) of the population loss
L(a, b) = EX×Y [(1−Y f(X; a, b))2] satisfies PX×Y [Y ̸=
sgn(f(X; a∗, b∗))] ≥ 1/16.

Remark: The proof of the above result in Appendix B.4 is
very straightforward. We have only provided it there since
we are unable to find a reference which explicitly states
such a result, but we will not be surprised if this result
has been known to others. This example shows that every
global minimum of the quadratic loss has non-zero misclas-
sification error, although the linear model is able to achieve
zero misclassification error on this data distribution. Sim-
ilarly, one can easily find datasets under which all global
minima of the quadratic loss have non-zero training error.

In addition, we provide two examples in Appendix B.5
and show that, when the loss function is replaced with the
quadratic loss, even if the other conditions in Theorem 1 or
2 are satisfied, every global minimum of the empirical loss
has a training error larger than 1/8 with a positive prob-
ability. In other words, our main results do hold for the
quadratic loss.

The following observation may be of independent interest.
Different from the quadratic loss, the loss functions condi-
tioned in Assumption 1 have the following two properties:
(i) the minimum empirical loss is zero if and only if there
exists a set of parameters achieving zero training error; (ii)
every global minimum of the empirical loss has zero train-
ing error in the realizable case.

Proposition 5 Let f : Rd → R denote a feedforward net-
work parameterized by θ and let the dataset have n sam-
ples. When the loss function ℓp satisfies Assumption 1
and p ≥ 1, we have minθ L̂n(θ; p) = 0 if and only if
minθ R̂n(θ) = 0. Furthermore, if minθ R̂n(θ) = 0, every
global minimum θ∗ of the empirical loss L̂n(θ; p) has zero
training error, i.e., R̂n(θ

∗) = 0.

Remark: We note that the network does not need to be a
feedforward network. In fact, the same results hold for a
large class of network architectures, including both archi-
tectures shown in Fig 1. We provide additional analysis in
Appendix B.6.

4.4. Open Problem: Datasets

In this paper, we have mainly considered a class of non-
linearly separable distribution where positive and negative
samples are located on different subspaces. We show that if
the samples are drawn from such a distribution, under cer-
tain additional conditions, all local minima of the empirical
loss have zero training errors. However, one may ask: how
well does the result generalize to other non-linearly separa-
ble distributions or datasets? Here, we partially answer this
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question by presenting the following necessary condition
on the dataset so that Theorem 1 can hold.

Proposition 6 Suppose that assumptions 1, 4 and 5 are
satisfied. For any feedforward architecture fD(x;θD), ev-
ery local minimum θ∗ = (θ∗

S ,θ
∗
D) of the empirical loss

function L̂n(θS ,θD; p), p ≥ 6 satisfies R̂n(θ
∗) = 0 only

if the matrix
∑n

i=1 λiyixix
⊤
i is neither positive nor neg-

ative definite for all sequences {λi ≥ 0}ni=1 satisfying∑
i:yi=1 λi =

∑
i:yi=−1 λi > 0 and ∥

∑n
i=1 λiyixi∥2 = 0.

Remark: The proposition implies that when the dataset
does not meet this necessary condition, there exists a feed-
forward architecture fD such that the empirical loss func-
tion has a local minimum with a non-zero training error.
Therefore, Theorem 1 no longer holds when Assumption 2
or 3 is removed.

5. Proofs
In this section, we provide the proof of Theorem 2. Before
presenting the proof of Theorem 2, we first present an im-
portant lemma. This lemma present a necessary condition
such that every local minimum of the empirical loss func-
tion has to satisfy.

Lemma 1 Assume that neurons σ in the network fS are
twice differentiable and the loss function ℓ : R → R has a
continuous derivative on R up to the third order. If n ≥ 1
and parameters θ∗ = (θ∗

S ,θ
∗
D) denote a local minimum of

the loss function L̂n(θ), then for any j = 1, ...,M ,

n∑
i=1

ℓ′(−yif(xi;θ
∗))yiσ

′(w∗
j
⊤xi)xi = 0d.

Proof: We first recall some notations defined in the paper.
The output of the neural network is

f(x;θ) = fS(x;θS) + fD(x;θD),

where fS(x;θS) is the single layer neural network parame-
terized by θS , i.e.,

fS(x;θS) = a0 +

M∑
j=1

ajσ
(
w⊤

j x
)
,

and fD(x;θD) is a deep neural network parameterized by
θD. The empirical loss function is given by

L̂n(θ) = L̂n(θS ,θD) =
1

n

n∑
i=1

ℓ(−yif(xi;θ)).

Since the loss function ℓ has a continuous derivative on R
up to the third order, neurons σ in the network fS are twice
differentiable, then the gradient vector ∇θS

L̂n(θ
∗
S ,θ

∗
D)

and the Hessian matrix ∇2
θS
L̂n(θ

∗
S ,θ

∗
D) exists. Further-

more, by the assumption that θ∗ = (θ∗
S ,θ

∗
D) is a local

minima of the loss function L̂n(θ), then we should have
for j = 1, ...,M ,

0d = ∇wjLn(θ
∗)

= −a∗j

n∑
i=1

ℓ′(−yif(xi;θ
∗))yiσ

′(w∗
j
⊤xi)xi. (1)

Now we need to prove that if θ∗ is a local minima, then for
∀j ∈ [M ], we should obtain∥∥∥∥∥

n∑
i=1

ℓ′(−yif(xi;θ
∗))yiσ

′(w∗
j
⊤xi)xi

∥∥∥∥∥
2

= 0.

We prove it by contradiction. Assume that there exists j ∈
[M ] such that∥∥∥∥∥

n∑
i=1

ℓ′(−yif(xi;θ
∗))yiσ

′(w∗
j
⊤xi)xi

∥∥∥∥∥
2

̸= 0.

Then by equation (1), we have a∗j = 0. Now, we consider
the following Hessian matrix H(aj ,wj). Since θ∗ is a
local minima of the loss function L̂n(θ), then the matrix
H(aj ,wj) should be positive semidefinite at (a∗j ,w

∗
j ). By

a∗j = 0, we have

∇2
wj

Ln(θ
∗) = 0d×d,

∂
[
∇wj

Ln(θ
∗)
]

∂aj
= −

n∑
i=1

ℓ′(−yif(xi;θ
∗))yiσ

′(w∗
j
⊤xi)xi.

In addition, we have

∂2Ln(θ
∗)

∂a2j
=

∂

∂aj

[
n∑

i=1

ℓ′(−yif(xi;θ
∗))(−yiσ(w

∗
j
⊤xi))

]

=

n∑
i=1

ℓ′′(−yif(xi;θ
∗))σ2(w∗

j
⊤xi).

Since the matrix H(a∗j ,w
∗
j ) is positive semidefinite, then

for any α ∈ R and ω ∈ Rd,

(
α ω⊤)H(a∗j ,w

∗
j )

(
α
ω

)
≥ 0.

Thus, by setting

ω =

n∑
i=1

ℓ′(−yif(xi;θ
∗))yiσ

′(w∗
j
⊤xi)xi,
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then (
α ω⊤)H(a∗j ,w

∗
j )

(
α
ω

)
= α2

n∑
i=1

ℓ′′(−yif(xi;θ
∗))σ2(w∗

j
⊤xi)

− α

∥∥∥∥∥
n∑

i=1

ℓ′(−yif(xi;θ
∗))yiσ

′(w∗
j
⊤xi)xi

∥∥∥∥∥
2

2

.

Furthermore, since we assume that∥∥∥∥∥
n∑

i=1

ℓ′(−yif(xi;θ
∗))yiσ

′(w∗
j
⊤xi)xi

∥∥∥∥∥
2

2

> 0,

then clearly, there exists α such that(
α ω⊤)H(a∗j ,w

∗
j )

(
α
ω

)
< 0,

and this leads to the contradiction.

Now we present the proof of Theorem 2.

Proof: The empirical loss function is given by

L̂n(θ; p) = L̂n(θS ,θD; p) =
1

n

n∑
i=1

ℓp(−yif(xi;θ)).

By the assumption that θ∗ = (θ∗
S ,θ

∗
D) is a local minima

and by the necessary condition presented in Lemma 1, we
have

n∑
i=1

ℓ′p(−yif(xi;θ
∗))yiσ

′(w∗
j
⊤xi)xi = 0d.

Thus, for any w ∈ Rd and any j ∈ [M ], we have
n∑

i=1

ℓ′p(−yif(xi;θ
∗))σ′(w∗

j
⊤xi)yi(w

⊤xi) = 0.

Furthermore, by assumption

ℓ′p(z) ≥ 0

and the equality holds if and only if z ≤ −z0. Thus, by
assumption that σ′(z) > 0 for all z ∈ R and assumption
that there exists a vector PX×Y (Yw⊤X > 0) = 1, then
there exists and positive constant c > 0 such that

yi(w
⊤xi) > c > 0, ∀i ∈ [n].

Thus, we have

0 =

n∑
i=1

ℓ′p(−yif(xi;θ
∗))σ′(w∗

j
⊤xi)yi(w

⊤xi)

≥ c

n∑
i=1

ℓ′p(−yif(xi;θ
∗))σ′(w∗

j
⊤xi)

≥ 0,

where the equality holds if and only if ℓ′p(−yif(xi;θ
∗)) =

0 for all i ∈ [n]. Equivalently, if θ∗ is a local minima, then
yif(xi;θ

∗) ≥ z0 > 0 for all i ∈ [n]. This indicates that
Ln(θ

∗; p) = R̂n(θ
∗) = 0.

6. Conclusions
In this paper, we studied the loss surface of a smooth ver-
sion of the hinge loss function in binary classification prob-
lems. We provided conditions under which the neural net-
work has zero misclassification error at all local minima
and also provide counterexamples to show that when some
of these assumptions are relaxed, the result may not hold.
Further work involves exploiting our results to design ef-
ficient training algorithms classification tasks using neural
networks.
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