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A. Proofs
A.1. Proofs of Theorem 1 and 2

Proof. We start with the proof of Theorem 1, since
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We thus resort to the computation of the bilinear form aTQ(z)b, for which we plug-in the deterministic equivalent of
Q(z)↔ Q̄(z) = m(z)Ip to obtain the following estimations
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, m(z) the unique solution of the Marčenko–Pastur equation (2) and
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which is a direct result of the fact that both ZTZ and ZZT have the same eigenvalues except for the additional zeros
eigenvalues for the larger matrix (which essentially depends on the sign of 1− c).

We thus get, with the Schur complement lemma,(
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where we use the fact that m̃(z) = cm(z) − 1
z (1 − c) and (zm(z) + 1)(cm(z) + 1) = m from (2), while the term
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2 ) due to the independence of w0 with respect to Z and can be check with a careful

application of Lyapunov’s central limit theorem (Billingsley, 2008).

Following the same arguments we have
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It now remains to replace the different terms in µTw(t) and w(t)Tw(t) by their asymptotic approximations. To this end,
first note that all aforementioned approximations can be summarized as the fact that, for a generic h(z), we have, as n→∞,

h(z)− h̄(z)→ 0

almost surely for all z not an eigenvalue of 1
nXXT. Therefore, there exists a probability one set Ωz on which h(z) is

uniformly bounded for all large n, with a bound independent of z. Then by the Theorem of “no eigenvalues outside the
support” (see for example (Bai & Silverstein, 1998)) we know that, with probability one, for all n, p large, no eigenvalue of
1
nZZT appears outside the interval [λ−, λ+], where we recall λ− ≡ (1−

√
c)2 and λ+ ≡ (1 +

√
c)2. As such, the set of

intersection Ω = ∩ziΩzi for a finitely many zi, is still a probability one set. Finally by Vitali convergence theorem, together
with the analyticity of the function under consideration, we conclude the proof of Theorem 1. The proof of Theorem 2
follows exactly the same line of arguments and is thus omitted here.

A.2. Detailed Derivation of (4)-(7)
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Figure 7. Eigenvalue distribution of 1
n
XXT for µ = [1.5;0p−1], p = 512, n = 1024 and c1 = c2 = 1/2.

We first determine the location of the isolated eigenvalue λ (as shown in Figure 2). More concretely, we would like to find λ
an eigenvalue of 1

nXXT that lies outside the support of Marčenko–Pastur distribution (in fact, not an eigenvalue of 1
nZZT).
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Solving the following equation for λ ∈ R,
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Sylvester’s determinant identity det(Ip + AB) = det(In + BA) for A,B of appropriate dimension. Together with (2) we
deduce the (empirical) isolated eigenvalue λ = λs + o(1) with
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which in fact gives the asymptotic location of the isolated eigenvalue as n → ∞. In the following, we may thus use λs
instead of λ throughout the computation. By splitting the path γ into γb + γs that circles respectively around the main bulk
between [λ−, λ+] and the isolated eigenvalue λs, we easily deduce, with the residual theorem that E = Eγb + Eγs with
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with m′(z) the derivative of m(z) with respect to z and is obtained by taking the derivative of (2).

We now move on to handle the contour integration γb in the computation of Eγb . We follow the idea in (Bai & Silverstein,
2008) and choose the contour γb to be a rectangle with sides parallel to the axes, intersecting the real axis at 0 and λ+ (in
fact at −ε and λ+ + ε so that the functions under consideration remain analytic) and the horizontal sides being a distance
ε → 0 away from the real axis. Since for nonzero x ∈ R, the limit limz∈Z→xm(z) ≡ m̌(x) exists (Silverstein & Choi,
1995) and is given by

m̌(x) =
1− c− x

2cx
± i

2cx

√
4cx− (1− c− x)2 =

1− c− x
2cx

± i

2cx

√
(x− λ−)(λ+ − x)

with the branch of ± is determined by the imaginary part of z such that =(z) · =m(z) > 0 and we recall λ− ≡ (1−
√
c)2

and λ+ ≡ (1 +
√
c)2. For simplicity we denote

<m̌ =
1− c− x

2cx
, =m̌ =

1

2cx

√
(x− λ−)(λ+ − x)

and therefore

Eγb = − 1

2πi

∮
γb

1− ft(z)
z

‖µ‖2m(z)

1 + (‖µ‖2 + c)m(z)
dz

= −‖µ‖
2

πi

∫ λ+

λ−

1− ft(x)

x
=
[

<m̌− i=m̌
1 + (‖µ‖2 + c)(<m̌− i=m̌)

]
dx

= −‖µ‖
2

πi

∫ λ+

λ−

1− ft(x)

x
=

[
<m̌+ ‖µ‖2+c

cx − i=m̌
1 + 2(‖µ‖2 + c)<m̌+ (‖µ‖2+c)2

cx

]
dx



The Dynamics of Learning: A Random Matrix Approach

with z = x ± iε and ε → 0 (on different sides of the real axis) and the fact that (<m̌)2 + (=m̌)2 = 1
cx . We take the

imaginary part and result in
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where we recall the definition λs ≡ c+ 1 + ‖µ‖2 + c

‖µ‖2 . Ultimately we assemble (11) and (12) to get the expression in
(4). The derivations of (5)-(7) follow the same arguments and are thus omitted here.


