
Appendix: Reviving and Improving Recurrent Back-Propagation

Renjie Liao 1 2 3 Yuwen Xiong 1 2 Ethan Fetaya 1 3 Lisa Zhang 1 3 KiJung Yoon 4 Xaq Pitkow 4 5

Raquel Urtasun 1 2 3 Richard Zemel 1 3 6

A similar technique to RBP was discovered in physics by
Richard Feynman (Feynman, 1939) in modeling molecular
forces back in the 1930’s. When the energy of molecules
are in steady state, the forces on the molecules are defined
as the gradient of energy w.r.t. the position parameters of
molecules.

1. Assumptions of RBP
In this section, we will further discuss the assumptions
imposed by RBP.

1.1. Contraction Map

Contraction map is often adopted for constructing a con-
vergent dynamic system. But it also largely restricts the
model capacity and is also hard to satisfy for general neural
networks. Moreover, as pointed out by (Li et al., 2016),
on a special cycle graph, contraction map will make the
impact of one node on the other decay exponentially with
their distance.

1.2. Local Regularization At Convergence

Recall that in order to apply implicit function theorem, we
just to need to make sure that no singular value of the Jaco-
bian is zero. In particular, note that |det(I − JF,h∗)| > 0 is
equivalent to |det(I − JF,h∗)|2 > 0, one can equivalently
rewrite the condition II as,

|det(I − JF,h∗)|2 =
∏
i

|σi(I − JF,h∗)|2 > 0. (1)

Note that for any square matrix A, we have,

det(A>A) = det(A>)det(A) = det(A)2 (2)

Therefore, we can instead focus on the positive semi-definite
matrix (I − JF,h∗)>(I − JF,h∗). The condition can be
equivalently stated as below,

λmin
(
(I − JF,h∗)>(I − JF,h∗)

)
> 0, (3)

where λmin is the smallest eigenvalue. We now briefly dis-
cuss two ways of maximizing the smallest eigenvalue.

Maximizing Lower Bound One way to achieve this is to
enforce the lower bound of λmin is larger than zero. Specif-
ically, according to Gershgorin Circle Theorem, if A is
positive definite, we have,

λmin (A) ≥ 1− ‖A− I‖∞ ≥ 1−
√
n‖A− I‖F . (4)

We can instead maximize the lower bound by adding the
term max (0,

√
n‖A− I‖F − 1) to the loss function. One

may need to add a small constant to A if A is only positive
semi-definite rather than positive definite. Note that the
RHS term is not necessarily larger than zero.

Direct Maximizing By Differentiating Through Lanczos
Another possible solution is to treat Lanczos algorithm as
a fix computational graph to compute the smallest eigen-
value of (I − JF,h∗)>(I − JF,h∗). The most expansive
operator in one step Lanczos is the matrix-vector product
(I − JF,h∗)>(I − JF,h∗)v which has doubled complexity
as back-propagation. Differentiating through Lanczos via
BPTT is even more expansive which also provides rooms
for applying RBP. We can add a term max (0,−λmin) to the
loss function. Note that the computational complexity of
this method is generally high which seems to be impractical
for large scale problems.

2. Recurrent Back-Propagation based on
Neumann Series

In this section, we restate the propositions and prove them.

Proposition 1. Assume that there exists some step K where
0 < K ≤ T such that for the convergent sequence of hidden
states h0, h1, . . . , hT of an RNN, we have h∗ = hT =
hT−1 = · · · = hT−K where h∗ is the fixed point. If the
Neumann series

∑∞
t=0 J

t
F,h∗ converges, then the full and

K-step Neumann-RBP are equivalent to BPTT and K-step
TBPTT respectively.

Proof. Since Neumann series
∑∞

t=0 J
t
F,h∗ converges, we

have (I − JF,h∗)−1 =
∑∞

t=0 J
t
F,h∗ . By substituting it into

Appendix: Reviving and Improving Recurrent Back-Propagation

Eq. (8), we have,

∂L

∂wF
=

∂L

∂y

∂y

∂h∗
(I − JF,h∗)−1 ∂F (x,wF , h

∗)

∂wF

=
∂L

∂y

∂y

∂h∗
(
I + JF,h∗ + J2

F,h∗ + . . .
) ∂F (x,wF , h

∗)

∂wF

=
∂L

∂y

∞∑
k=0

∂y

∂h∗
Jk
F,h∗

∂F (x,wF , h
∗)

∂wF
. (5)

Therefore, the full Neumann-RBP is equivalent to original
RBP which is further equivalent to BPTT due the implicit
function theorem. If we truncate K steps from the end, then
the gradient of TBPTT is

∂L

∂wF
=

∂L

∂y

∂y

∂h∗

K∑
k=0

(
T−k∏
i=T

JF,hi

)
∂F (x,wF , h

T−k)

∂wF
.

=
∂L

∂y

K∑
k=0

∂y

∂h∗
Jk
F,h∗

∂F (wF , h
∗)

∂wF
, (6)

where the second row uses the fact that h∗ = hT =
hT−1 = · · · = hT−K . Comparing Eq. (5) and Eq. (6),
it is clear that we exactly recover the K-step Neumann-
RBP.

Proposition 2. If the Neumann series
∑∞

t=0 J
t
F,h∗ con-

verges, then the error between K-step and full Neumann
series is as following,∥∥∥∥∥

K∑
t=0

Jt
F,h∗ − (I − JF,h∗)−1

∥∥∥∥∥ ≤ ∥∥(I − JF,h∗)−1
∥∥ ‖JF,h∗‖K+1

Proof. First note that,

(I − JF,h∗)

(
K∑

t=0

J
t
F,h∗

)
= I

(
K∑

t=0

J
t
F,h∗

)
− JF,h∗

(
K∑

t=0

J
t
F,h∗

)
= I − J

K+1
F,h∗ . (7)

Multiplying (I − JF,h∗)−1 on both sides, we get,
(

K∑
t=0

J
t
F,h∗

)
= (I − JF,h∗)

−1
(
I − J

K+1
F,h∗

)
. (8)

With a bit rearrange, we have,
(

K∑
t=0

J
t
F,h∗

)
− (I − JF,h∗)

−1
= −(I − JF,h∗)

−1
J

K+1
F,h∗ . (9)

The result is then straightforward by using Cauchy-Schwarz
inequality.

We further make the following proposition regarding to the
relationship between Neumann-RBP and the original RBP
algorithm.

Proposition 3. K + 1-step RBP algorithm returned the
same gradient with K-step Neumann-RBP if z0 in original
RBP is initialized as a zero vector.

Truncate Step TBPTT RBP CG-RBP Neumann-RBP

10 100% 1% 100% 100%
20 100% 4% 100% 100%
30 100% 99% 100% 100%

Table A1. Success rate of different methods with different trun-
cation steps. RBP is unstable until the truncation step reaches
30.

Proof. To prove this proposition, we only need to compare
the vector zK+1 and gK returned by two algorithms respec-
tively. For original RBP, recall in Algorithm 1, we have the
following recursion,

zt = J>F,h∗zt−1 +

(
∂L

∂y

∂y

∂h∗

)>
. (10)

Therefore, after K + 1 step, we have,

zK+1 =
(
J>F,h∗

)K+1
z0 +

K∑
t=0

(
J>F,h∗

)t(∂L
∂y

∂y

∂h∗

)>
.

(11)

For Neumann-RBP, we have the following recursion from
Algorithm 2,

vt = J>vt−1

gt = gt−1 + vt (12)

with v0 = g0 =
(

∂L
∂y

∂y
∂h∗

)>
. Therefore, after K step, we

have the following expansion,

gK =

K∑
t=0

(
J>F,h∗

)t(∂L
∂y

∂y

∂h∗

)>
. (13)

The relationship is now obvious.

3. Experiments
3.1. Example Code

Our Neumann-RBP is very simple to implement as long
as the auto-differentiation function is provided. Here we
show an example code based on PyTorch in Listing 1. The
effective number of lines is less than 10.

3.2. Continuous Hopfield Network

The success rates out of 100 experiments with different ran-
dom corruptions and initialization are counted in Table A1.
We consider one trial as successful if its final training loss
is less than 50% of the initial loss. From the table, we can
see that original RBP almost always fails to converge until
the truncation step increases to 30 whereas both CG-RBP
and Neumann-RBP have no issues to converge.

Appendix: Reviving and Improving Recurrent Back-Propagation

Figure A1 shows full results of visualization of associative
memory.

3.3. Citation Networks

Table A2 shows the statistics of datasets we used in our
experiments.

Dataset #Nodes #Edges #Classes #Features

Cora 2,708 5,429 7 1,433
Pubmed 19,717 44,338 3 500

Table A2. Dataset statistics of citation networks.

We also inlcude the comparsion with the recent work
ARTBP (Tallec & Ollivier, 2017). The experiment setting
is exactly the same as described in the paper. Since the un-
derlying RNN has the loss defined at the last time step, i.e.,
100th step, we adapt the ARTBP as follows: instead of ran-
domly truncating at multiple locations, we randomly choose
one time step to truncate. Similar analysis can be derived to
compensate the truncated gradient such that it is unbiased.
Due to the limited time, we only tried uniform and truncated
Poisson distribution (expected truncation point is roughly at
the 95th time step which is where TBPTT stops) over the
truncation location. We use SGD with momentum as the
optimizer for all methods. The average validation accuracy
over 10 runs are in the table below. We can see that both
ARTBP variants do not perform as well as Neumann-RBP
in this setting. ARTBP with truncated Poisson is better than
the one with uniform which matches the other observation
that TBPTT is better than full BPTT.

Test Acc. Cora

Baseline 39.96 ± 3.4
BPTT 24.48 ± 6.6

TBPTT 46.55 ± 6.4
Uniform-ARTBP 27.88 ± 3.2
TPoisson-ARTBP 42.22 ± 7.1

RBP 29.25 ± 3.3
CG-RBP 39.26 ± 6.5

Neumann-RBP 46.63 ± 8.3

Table A3. Test accuracy of different methods on citation networks.

References
Feynman, R. P. Forces in molecules. Physical Review, 56

(4):340, 1939.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated
graph sequence neural networks. ICLR, 2016.

Tallec, C. and Ollivier, Y. Unbiasing truncated backpropa-
gation through time. arXiv preprint arXiv:1705.08209,
2017.

Appendix: Reviving and Improving Recurrent Back-Propagation

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

Figure A1. Visualization of associative memory. (a) Corrupted input image; (b)-(f) are retrieved images by BPTT, TBPTT, RBP, CG-RBP,
Neumann-RBP respectively.

1 def neumann_rbp(weight, hidden_state, loss, rbp_step)
2 # get the gradient of last hidden state
3 grad_h = autograd.grad(loss, hidden_state[-1], retain_graph=True)
4

5 # set v, g to grad_h
6 neumann_v = grad_h.clone()
7 neumann_g = grad_h.clone()
8

9 for i in range(rbp_step):
10 # set last hidden_state’s gradient to neumann_v[prev]
11 # and get the gradient of last second hidden state
12 neumann_v = autograd.grad(
13 hidden_state[-1], hidden_state[-2],
14 grad_outputs=neumann_v,
15 retain_graph=True)
16

17 neumann_g += neumann_v
18

19 # set last hidden_state’s gradient to neumann_g
20 # and return the gradient of weight
21 return autograd.grad(hidden_state[-1], weight, grad_outputs=neumann_g)

Listing 1. PyTorch example code

