
Distributed Learning with Multi-pass SGM

Supplementary: Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods

In this appendix, we provide the proofs of our main theorems for distributed SGM. We begin with some basic notations.

A. Notations
We introduce the inclusion operator Sρ : H → L2

ρX , which is continuous under Assumption (8). Furthermore, we consider the adjoint
operator S∗ρ : L2

ρX → H , the covariance operator T : H → H given by T = S∗ρSρ, and the operator L : L2
ρX → L2

ρX given by SρS∗ρ .
It can be easily proved that S∗ρf =

∫
X
Kxf(x)dρX(x) and T =

∫
X
〈·,Kx〉HKxdρX(x). The operators T and L can be proved to be

positive trace class operators (and hence compact). In fact, by Assumption (8),

‖L‖ = ‖T ‖ ≤ tr(T ) =

∫
X

tr(Kx ⊗Kx)dρX(x) =

∫
X

‖Kx‖2HdρX(x) ≤ κ2. (24)

For any function f ∈ H , the H-norm can be related to the L2
ρX -norm by

√
T (Bauer et al., 2007):

‖f‖ρ = ‖Sρf‖ρ =
∥∥∥√T f∥∥∥

H
, (25)

and furthermore
‖L−

1
2 Sρf‖ρ ≤ ‖f‖H . (26)

We define the sampling operator (with respect to any given set x ⊆ X of cardinality n) Sx : H → Rn by (Sxf)i = f(xi) = 〈f,Kxi〉H ,
i ∈ [n], where the norm ‖ · ‖Rn is the standard Euclidean norm times 1/

√
n. Its adjoint operator S∗x : Rn → H, defined by

〈S∗xy, f〉H = 〈y,Sxf〉Rn for y ∈ Rn is thus given by

S∗xy =
1

n

n∑
i=1

yiKxi . (27)

Moreover, we can define the empirical covariance operator (with respect to x) Tx : H → H such that Tx = S∗xSx. Obviously,

Tx =
1

n

n∑
i=1

〈·,Kxi〉HKxi .

By Assumption (8), similar to (24), we have
‖Tx‖ ≤ tr(Tx) ≤ κ2. (28)

For any given inputs set x ⊆ X , Lx : L2
ρX → H is defined as that for any f ∈ L2

ρX such that ‖f‖∞ <∞,

Lxf =
1

|x|
∑
x∈x

f(x)Kx. (29)

For any λ̃ > 0, for notational simplicity, we let Tλ̃ = T + λ̃, Txλ̃ = Tx + λ̃, and

N (λ̃) = tr(L(L+ λ̃)−1) = tr(T (T + λ̃)−1).

For any f ∈ H and x ∈ X , the following well known reproducing property holds:

〈f,Kx〉H = f(x). (30)

and following from the above, Cauchy-Schwarz inequality and (8), one can prove that

|f(x)| = |〈f,Kx〉H | ≤ ‖f‖H‖Kx‖H ≤ κ‖f‖H (31)

E[ξ] denotes the expectation of a random variable ξ. ‖ · ‖∞ denotes the supreme norm with respect to ρX . For a given bounded operator
L : H → H ′, ‖L‖ denotes the operator norm of L, i.e., ‖L‖ = supf∈H,‖f‖H=1 ‖Lf‖H′ . Here H ′ could be another separable Hilbert
space different from H .

For any s ∈ [m], we denote the set of random variables {js,i}b(t−1)+1≤i≤bt by Js,t, {js,1, js,2, · · · , js,bT } by Js, and {J1, · · · ,Jm}
by J. Note that js,1, js,2, · · · , js,bT are conditionally independent given zs.
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B. Proof for Error Decomposition
Proof of Proposition 1. For any s ∈ [m], using an inductive argument, one can prove that (Lin & Rosasco, 2017b)

EJs|zs [fs,t] = gs,t. (32)

Here EJs|zs (or abbreviated as EJs ) denotes the conditional expectation with respect to Js given zs. Indeed, taking the conditional
expectation with respect to Js,t (given zs) on both sides of (4), and noting that fs,t depends only on Js,1, · · · ,Js,t−1 (given zs), one has

EJs,t [fs,t+1] = fs,t − ηt
1

n

n∑
i=1

(fs,t(xs,i)− ys,i)Kxs,i ,

and thus,

EJs [fs,t+1] = EJs [fs,t]− ηt
1

n

n∑
i=1

(EJs [fs,t](xs,i)− ys,i)Kxs,i , t = 1, . . . , T,

which satisfies the iterative relationship given in (17). Similarly, using the definition of the regression function (2) and an inductive
argument, one can also prove that

Eys [gs,t] = hs,t. (33)

Here, Eys denotes the conditional expectation with respect to ys given xs.

Following from (3), we have

E(f̄t)− E(fρ) = ‖Sρf̄t − fρ‖2ρ = ‖Sρf̄t − Sρḡt‖2ρ + ‖Sρḡt − fρ‖2ρ + 2〈Sρf̄t − Sρḡt,Sρḡt − fρ〉.

Taking the conditional expectation with respect to J (given z) on both sides, using (32) which implies

EJSρ(f̄t − ḡt) =
1

m

m∑
s=1

SρEJs [fs,t − gs,t] = 0,

we thus have
EJ‖Sρf̄t − fρ‖2ρ = EJ‖Sρf̄t − Sρḡt‖2ρ + ‖Sρḡt − fρ‖2ρ.

Taking the conditional expectation with respect to ȳ = {y1, · · · ,ym} (given x̄ = {x1, · · · ,xm}), noting that

Eȳ‖Sρḡt − fρ‖2ρ = Eȳ[‖Sρ(ḡt − h̄t)‖2ρ] + ‖Sρh̄t − fρ‖2ρ + 2〈SρEȳ[ḡt − h̄t],Sρh̄t − fρ〉ρ

and that from (33),

〈SρEȳ[ḡt − h̄t],Sρh̄t − fρ〉ρ =
1

m

m∑
s=1

〈SρEys(gs,t − hs,t),Sρh̄t − fρ〉ρ = 0,

we know that
EȳEJE(f̄t)− E(fρ) = EȳEJ‖Sρf̄t − Sρḡt‖2ρ + Eȳ[‖Sρ(ḡt − h̄t)‖2ρ] + ‖Sρh̄t − fρ‖2ρ,

which leads to the desired result.

C. Estimating Bias
In this section, we estimate bias, i.e., E‖Sρh̄t− fρ‖2ρ. We first give the following lemma, which asserts that the bias term can be estimated
in terms of the bias of a local estimator.

Lemma 1. For any t ∈ [T ], we have
E‖Sρh̄t − fρ‖2ρ ≤ E‖Sρh1,t − fρ‖2ρ.

Proof. By Hölder’s inequality, we know that

E‖Sρh̄t − fρ‖2ρ =
1

m2
E

∥∥∥∥∥
m∑
s=1

(Sρhs,t − fρ)

∥∥∥∥∥
2

ρ

≤ 1

m
E

m∑
s=1

‖Sρhs,t − fρ‖2ρ = E‖Sρh1,t − fρ‖2ρ.
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Given the above lemma, in what follows, we will estimate the bias of the local estimator, E‖Sρh1,t−fρ‖2ρ. To do so, we need to introduce
some preliminary notations and lemmas.

ΠT
t+1(L) =

∏T
k=t+1(I − ηkL) for t ∈ [T − 1] and ΠT

T+1(L) = I, for any operator L : H → H, where H is a Hilbert space and I
denotes the identity operator on H . Let k, t ∈ N. We will use the following conventional notations: 1/0 = +∞,

∏t
k = 1 and

∑t
k = 0

whenever k > t. Σtk =
∑t
i=k ηi, λk:t = (Σtk)−1, and specially λ1:t is abbreviated as λt. Define the function Gt : R→ R by

Gt(u) =

t∑
k=1

ηkΠt
k+1(u). (34)

Throughout this paper, we assume that the step-size sequence satisfies ηt ∈]0, κ−2] for all t ∈ N. Thus,Gt(u) and Πt
k(u) are non-negative

on ]0, κ2]. For notational simplicity, throughout the rest of this subsection, we will drop the index s = 1 for the first local estimator
whenever it shows up, i.e, we abbreviate h1,t as ht, z1 as z, and Tx1 as Tx, etc.

The key idea for our estimation on bias is that {ht}t can be well approximated by the population sequence {rt}t. Recall that the
population sequence is defined by r1 = 0 and

rt+1 = (I − T )rt + S∗ρfρ. (35)

It is easy to see that the population sequence is deterministic, and it depends on the regression function fρ.

We first have the following observations.

Lemma 2. The sequence {rt}t defined by (35) can be rewritten as

rt+1 = Gt(T )S∗ρfρ. (36)

Similarly, for any s ∈ [m], the sequences {gs,t}t and {hs,t}t defined by (17) and (19) can be rewritten as

gs,t+1 = Gt(Txs)S
∗
xsys,

and
hs,t+1 = Gt(Txs)L

∗
xsfρ.

Proof. Using the relationship (35) iteratively, introducing with r1 = 0, one can prove the first conclusion.

According to the above lemma, we know that GM can be rewritten as a form of SRA with filter function G̃λ(·) = Gt(·). In the next
lemma, we will further develop some basic properties for this filter function.

Lemma 3. For all u ∈ [0, κ2],
1) uαGt(u) ≤ λα−1

t , ∀α ∈ [0, 1].
2) (1− uGt(u))uα = Πt

1(u)uα ≤ (α/e)αλαt , ∀α ∈ [0,∞[.
3) Πt

k(u)uα ≤ (α/e)αλαk:t, ∀t, k ∈ N.

Proof. 1). For α = 0 or 1, the proof is straightforward and can be found in (Yao et al., 2007). Indeed, for all u ∈ [0, κ2], Πt
k+1(u) ≤ 1

and thus Gt(u) ≤
∑t
k=1 ηk = λ−1

t . Moreover, writing ηku = 1− (1− ηku), we have

uGt(u) =

t∑
k=1

(ηku)Πt
k+1(u) =

t∑
k=1

(Πt
k+1(u)−Πt

k(u)) = 1−Πt
1(u) ≤ 1. (37)

Now we consider the case 0 < α < 1. We have

uαGt(u) = |uGt(u)|α|Gt(u)|1−α ≤ λα−1
t ,

where we used uGt(u) ≤ 1 and Gt(u) ≤ λ−1
t in the above.

2) By (37), we have (1− uGt(u))uα = Πt
1(u)uα. Then the desired result is a direct consequence of Conclusion 3).

3) The proof can be also found, e.g., in (Lin & Rosasco, 2017b). Using the basic inequality

1 + x ≤ ex for all x ≥ −1, (38)

with ηlκ2 ≤ 1, we get

Πt
k+1(u)uα ≤ exp

{
−uΣtk+1

}
uα.
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The maximum of the function g(u) = e−cuuα (with c > 0) over R+ is achieved at umax = α/c, and thus

sup
u≥0

e−cuuα =
( α

ec

)α
. (39)

Using this inequality with c = Σtk+1, one can prove the desired result.

According to Lemma 3, Gt(·) is a filter function indexed with regularization parameter λ = λt, and the qualification τ can be any positive
number, and E = 1, Fτ = (τ/e)τ . Using Lemma 3 and the spectral theorem, one can get the following results.

Lemma 4. Let L be a compact, positive operator on a separable Hilbert space H such that ‖L‖ ≤ κ2. Then for any λ̃ ≥ 0,

1) ‖(L+ λ̃)αGt(L)‖ ≤ λα−1
t (1 + (λ̃/λt)

α), ∀α ∈ [0, 1].

2) ‖(I − LGt(L))(L+ λ̃)α‖ = ‖Πt
1(L)(L+ λ̃)α‖ ≤ 2(α−1)+((α/e)α + (λ̃/λt)

α)λαt , ∀α ∈ [0,∞[.
3) ‖Πt

k+1(L)Lα‖ ≤ (α/e)α λαk:t, ∀k, t ∈ N.

Proof. 1) Following from the spectral theorem, one has

‖(L+ λ̃)αGt(L)‖ ≤ sup
u∈[0,κ2]

(u+ λ̃)αGt(u) ≤ sup
u∈[0,κ2]

(uα + λ̃α)Gt(u).

Using Part 1) of Lemma 3 to the above, one can prove the first conclusion.
2) Using the spectral theorem,

‖Πt
1(L)(L+ λ̃)α‖ ≤ sup

u∈[0,κ2]

(u+ λ̃)αΠt
1(u).

When α ≤ 1,
sup

u∈[0,κ2]

(u+ λ̃)αΠt
1(u) ≤ sup

u∈[0,κ2]

(uα + λ̃α)Πt
1(u) ≤ (α/e)αλαt + λ̃α,

where for the last inequality, we used Part 2) of Lemma 3. Similarly, when α > 1, by Hölder’s inequality, and Part 2) of Lemma 3,

sup
u∈[0,κ2]

(u+ λ̃)αΠt
1(u) ≤ 2α−1 sup

u∈[0,κ2]

(uα + λ̃α)Πt
1(u) ≤ 2α−1((α/e)αλαt + λ̃α).

From the above analysis, one can prove the second conclusion.
3) Simply applying the spectral theorem and 3) of Lemma 3, one can prove the third conclusion.

Using Lemma 4, one can prove the following results, which give some basic properties for the population sequence {rt}t.
Lemma 5. Let a ∈ R. Under Assumption 3, the following results hold.
1) For any a ≤ ζ, we have

‖L−a (Sρrt+1 − fρ) ‖ρ ≤ ((ζ − a)/e)ζ−aRλζ−at .

2) We have

‖T a−1/2rt+1‖H ≤ R ·

{
λζ+a−1
t , if − ζ ≤ a ≤ 1− ζ,
κ2(ζ+a−1), if a ≥ 1− ζ.

(40)

Proof. 1) Using (36) and noting that

SρGt(T )S∗ρ = SρGt(S∗ρSρ)S∗ρ = Gt(SρS∗ρ )SρS∗ρ = Gt(L)L.

We thus have

L−a(Sρrt+1 − fρ) = L−a (Gt(L)L − I) fρ.

Taking the ρ-norm, applying Assumption 3 and (37), we have

‖L−a(Sρrt+1 − fρ)‖ρ ≤ ‖Lζ−a(Gt(L)L − I)‖R = ‖Lζ−aΠt
1(L)‖R.

Note that the condition (8) implies (24). Applying Part 3) of Lemma 4, one can prove the first desired result.

2) By (36) and Assumption 3,

‖T a−1/2rt+1‖H = ‖T a−1/2Gt(T )S∗ρfρ‖H ≤ ‖T a−1/2Gt(T )S∗ρLζ‖R.
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Noting that

‖T a−1/2Gt(T )S∗ρLζ‖ = ‖T a−1/2Gt(T )S∗ρL2ζSρGt(T )T a−1/2‖1/2

= ‖G2
t (T )T 2ζ+2a‖1/2 = ‖Gt(T )T ζ+a‖,

we thus have
‖T a−1/2rt+1‖H ≤ ‖Gt(T )T ζ+a‖R.

If 0 ≤ ζ + a ≤ 1, i.e., −ζ ≤ a ≤ 1− ζ, then by using 1) of Lemma 4, we get

‖T a−1/2rt+1‖H ≤ λζ+a−1
t R.

Similarly, when a ≥ 1− ζ, we have

‖T a−1/2rt+1‖H ≤ ‖Gt(T )T ‖‖T ‖ζ+a−1R ≤ κ2(ζ+a−1)R,

where for the last inequality we used 1) of Lemma 4 and (24). This thus proves the second desired result.

We also need the following two lemmas on operator inequalities.

Lemma 6. (Fujii et al., 1993) Let A and B be two positive bounded linear operators on a separable Hilbert space. Then

‖AsBs‖ ≤ ‖AB‖s, when 0 ≤ s ≤ 1.

Lemma 7. Let A and B be two non-negative bounded linear operators on a separable Hilbert space with max(‖A‖, ‖B‖) ≤ κ2 for
some non-negative κ2. Then for any ζ > 0,

‖Aζ −Bζ‖ ≤ Cζ,κ‖A−B‖ζ∧1, (41)

where

Cζ,κ =

{
1 when ζ ≤ 1,

2ζκ2ζ−2 when ζ > 1.
(42)

Proof. Following from (Mathé & Pereverzev, 2002), one can prove the desired result for ζ ≤ 1. For ζ ≥ 1, the proof can be found in
(Dicker et al., 2017), see also (Blanchard & Mücke, 2017).

With the above lemmas, we can prove the the following analytic result, which enables us to estimate the bias term in terms of several
random quantities.

Lemma 8. Under Assumption 3, let λ̃ > 0,

∆z
1 = ‖T 1/2

λ̃
T −1/2

xλ̃
‖2 ∨ 1, ∆z

3 = ‖T − Tx‖

and

∆z
2 = ‖Lxfρ − S∗ρfρ − Txrt+1 + T rt+1‖H .

Then the following results hold.
1) For 0 < ζ ≤ 1,

‖Sρht+1 − fρ‖ρ ≤

1 ∨
(
λ̃

λt

)ζ∨ 1
2

 (C1(∆z
1)ζ∨

1
2 λζt + 2

√
∆z

1λ
− 1

2
t ∆z

2). (43)

2) For ζ > 1,

‖Sρht+1 − fρ‖ρ ≤
√

∆z
1

(
1 ∨

(
λ̃

λt

)ζ)
(C2λ

ζ
t + 2λ

− 1
2

t ∆z
2 + C3λ

1
2
t (∆z

3)(ζ− 1
2

)∧1). (44)

Here, C1, C2 and C3 are positive constants depending only on ζ, κ, and R.
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Proof. Using Lemma 2 with s = 1, we can estimate ‖Sρht+1 − fρ‖ρ as

‖SρGt(Tx)Lxfρ − fρ‖ρ ≤‖SρGt(Tx)[Lxfρ − S∗ρfρ − Txrt+1 + T rt+1]︸ ︷︷ ︸
Bias.1

‖ρ

+ ‖ SρGt(Tx)[S∗ρfρ − T rt+1]︸ ︷︷ ︸
Bias.2

‖ρ

+ ‖ Sρ[I −Gt(Tx)Tx]rt+1︸ ︷︷ ︸
Bias.3

‖ρ

+ ‖ Sρrt+1 − fρ︸ ︷︷ ︸
Bias.4

‖ρ. (45)

In the rest of the proof, we will estimate the four terms of the r.h.s separately.
Estimating Bias.4
Using 1) of Lemma 5 with a = 0, we get

‖Bias.4‖ρ ≤ (ζ/e)ζλζtR. (46)

Estimating Bias.1
By a simple calculation, we know that for any f ∈ H,

‖SρGt(Tx)f‖ρ ≤ ‖SρT −1/2

λ̃
‖‖T 1/2

λ̃
T −1/2

xλ̃
‖‖T 1/2

xλ̃
Gt(Tx)‖‖f‖H .

Note that
‖SρT −1/2

λ̃
‖ =

√
‖SρT −1

λ̃
S∗ρ‖ =

√
‖LL−1

λ̃
‖ ≤ 1, (47)

and that applying 1) of Lemma 4, with (28), we have

‖T 1/2

xλ̃
Gt(Tx)‖ ≤ (1 +

√
λ̃/λt)/

√
λt.

Thus for any f ∈ H, we have

‖SρGt(Tx)f‖ρ ≤ (1 +

√
λ̃/λt)λ

− 1
2

t

√
∆z

1‖f‖H . (48)

Therefore,

‖Bias.1‖ρ ≤ (1 +

√
λ̃/λt)λ

− 1
2

t

√
∆z

1∆z
2. (49)

Estimating Bias.2
By (48), we have

‖Bias.2‖ρ ≤ (1 +

√
λ̃/λt)λ

− 1
2

t

√
∆z

1‖T rt+1 − S∗ρfρ‖H .

Using (with T = S∗ρSρ and L = SρS∗ρ )

‖T rt+1 − S∗ρfρ‖H = ‖S∗ρ (Sρrt+1 − fρ)‖H = ‖L1/2(Sρrt+1 − fρ)‖ρ,

and applying 1) of Lemma 5 with a = −1/2, we get

‖Bias.2‖ρ ≤ ((ζ + 1/2)/e)ζ+1/2(1 +

√
λ̃/λt)

√
∆z

1λ
ζ
tR. (50)

Estimating Bias.3
By 2) of Lemma 3,

Bias.3 = SρΠt
1(Tx)rt+1.

When ζ ≤ 1/2, by a simple calculation, we have

‖Bias.3‖ρ ≤‖SρT −1/2

λ̃
‖‖T 1/2

λ̃
T −1/2

xλ̃
‖‖T 1/2

xλ̃
Πt

1(Tx)‖‖rt+1‖H

≤
√

∆z
1‖T

1/2

xλ̃
Πt

1(Tx)‖‖rt+1‖H ,

where for the last inequality, we used (47). By 2) of Lemma 4, with (28),

‖T 1/2

xλ̃
Πt

1(Tx)‖ ≤
√
λt(1/

√
2e +

√
λ̃/λt), (51)
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and by 2) of Lemma 5,
‖rt+1‖H ≤ Rλζ−1/2

t .

It thus follows that
‖Bias.3‖ρ ≤

√
∆z

1(

√
λ̃/λt + 1/

√
2e)Rλζt .

When 1/2 < ζ ≤ 1, by a simple computation, we have

‖Bias.3‖ρ ≤ ‖SρT −1/2

λ̃
‖‖T 1/2

λ̃
T −1/2

xλ̃
‖‖T 1/2

xλ̃
Πt

1(Tx)T ζ−1/2

xλ̃
‖‖T 1/2−ζ

xλ̃
T ζ−1/2

λ̃
‖‖T 1/2−ζ

λ̃
rt+1‖H .

Applying (47) and 2) of Lemma 5, we have

‖Bias.3‖ρ ≤
√

∆z
1‖T

1/2

xλ̃
Πt

1(Tx)T ζ−1/2

xλ̃
‖‖T 1/2−ζ

xλ̃
T ζ−1/2

λ̃
‖R.

By 2) of Lemma 4,
‖T 1/2

xλ̃
Πt

1(Tx)T ζ−1/2

xλ̃
‖ = ‖T ζ

xλ̃
Πt

1(Tx)‖ ≤ ((ζ/e)ζ + (λ̃/λt)
ζ)λζt .

Besides, by ζ ≤ 1 and Lemma 6,

‖T 1/2−ζ
xλ̃

T ζ−1/2

λ̃
‖ = ‖T −

1
2

(2ζ−1)

xλ̃
T

1
2

(2ζ−1)

λ̃
‖ ≤ ‖T −

1
2

xλ̃
T

1
2

λ̃
‖2ζ−1 ≤ (∆z

1)ζ−
1
2 .

It thus follows that
‖Bias.3‖ρ ≤ (∆z

1)ζ((λ̃/λt)
ζ + (ζ/e)ζ)Rλζt .

When ζ > 1, we rewrite Bias.3 as

SρT −1/2

λ̃
· T 1/2

λ̃
T −1/2

xλ̃
· T 1/2

xλ̃
Πt

1(Tx)(T ζ−1/2
x + T ζ−1/2 − T ζ−1/2

x )T 1/2−ζrt+1.

By a simple calculation, we can upper bound ‖Bias.3‖ρ by

≤ ‖SρT −1/2

λ̃
‖‖T 1/2

λ̃
T −1/2

xλ̃
‖(‖T 1/2

xλ̃
Πt

1(Tx)T ζ−1/2
x ‖+ ‖T 1/2

xλ̃
Πt

1(Tx)‖‖T ζ−1/2 − T ζ−1/2
x ‖)‖T 1/2−ζrt+1‖.

Introducing with (47) and (51), and applying 2) of Lemma 5,

‖Bias.3‖ρ ≤
√

∆z
1(‖T 1/2

xλ̃
Πt

1(Tx)T ζ−1/2
x ‖+ (1/

√
2e +

√
λ̃/λt)

√
λt‖T ζ−1/2 − T ζ−1/2

x ‖)R.

By 2) of Lemma 4,
‖T 1/2

xλ̃
Πt

1(Tx)T ζ−1/2
x ‖ ≤ ‖T ζ

xλ̃
Πt

1(Tx)‖ ≤ 2ζ−1((ζ/e)ζ + (λ̃/λt)
ζ)λζt .

Moreover, by Lemma 7 and max(‖T ‖, ‖Tx‖) ≤ κ2,

‖T ζ−1/2 − T ζ−1/2
x ‖ ≤ (2ζκ2ζ−3)1{2ζ≥3}‖T − Tx‖(ζ−1/2)∧1.

Therefore, when ζ > 1, Bias.3 can be estimated as

‖Bias.3‖ρ

≤
√

∆z
1

(
2ζ−1((ζ/e)ζ + (λ̃/λt)

ζ)λζt + (2ζκ2ζ−3)1{2ζ≥3}(1/
√

2e +

√
λ̃/λt)

√
λt(∆

z
3)(ζ−1/2)∧1

)
R.

From the above analysis, we know that ‖Bias.3‖ρ can be upper bounded by

√
∆z

1(
√
λ̃/λt + 1/

√
2e)Rλζt , if ζ ∈]0, 1/2],

(∆z
1)ζ(

(
λ̃/λt

)ζ
+ (ζ/e)ζ)Rλζt , if ζ ∈]1/2, 1],√

∆z
1

(
2ζ−1(

(
ζ
e

)ζ
+ ( λ̃

λt
)ζ)λζt + (2ζκ2ζ−3)1{2ζ≥3}( 1√

2e
+
√

λ̃
λt

)
√
λt(∆

z
3)(ζ− 1

2
)∧1

)
R, if ζ ∈]1,∞[.

(52)

Introducing (46), (49), (50) and (52) into (45), and by a simple calculation, one can prove the desired results with

C1 = R

(
(ζ/e)ζ + 2((ζ +

1

2
)/e)ζ+

1
2 + ((ζ ∨ 1

2
)/e)ζ∨

1
2 + 1

)
,

C2 = R

(
(2ζ−1 + 1)(ζ/e)ζ + 2((ζ +

1

2
)/e)ζ+

1
2 + 2ζ−1

)
,

and C3 = (2ζκ2ζ−3)1{2ζ≥3}(1/
√

2e + 1).
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The upper bounds in (43) and (44) depend on three random quantities, ∆z
1, ∆z

3 and ∆z
2. To derive error bounds for the bias term from

Lemma 8, it is necessary to estimate these three random quantities.

We first introduce the following concentration result for Hilbert space valued random variable used in (Caponnetto & De Vito, 2007) and
based on the results in (Pinelis & Sakhanenko, 1986).

Lemma 9. Let w1, · · · , wm be i.i.d random variables in a separable Hilbert space with norm ‖ · ‖. Suppose that there are two positive
constants B and σ2 such that

E[‖w1 − E[w1]‖l] ≤ 1

2
l!Bl−2σ2, ∀l ≥ 2. (53)

Then for any 0 < δ < 1/2, the following holds with probability at least 1− δ,∥∥∥∥∥ 1

m

m∑
k=1

wm − E[w1]

∥∥∥∥∥ ≤ 2

(
B

m
+

σ√
m

)
log

2

δ
.

In particular, (53) holds if
‖w1‖ ≤ B/2 a.s., and E[‖w1‖2] ≤ σ2. (54)

Using the above lemma, we can prove the following two results.

Lemma 10. Let f : X → Y be a measurable function such that ‖f‖∞ <∞, then with probability at least 1− δ (0 < δ < 1/2),

‖Lxf − Lf‖H ≤ 2κ

(
2‖f‖∞
|x| +

‖f‖ρ√
|x|

)
log

2

δ
.

Proof. Let ξi = f(xi)Kxi for i = 1, · · · , |x|. Obviously,

Lxf − Lf =
1

|x|

|x|∑
i=1

(ξi − E[ξi]),

and by Assumption (8), we have
‖ξ‖H ≤ ‖f‖∞‖Kx‖H ≤ κ‖f‖∞

and

E‖ξ‖2H ≤ κ2‖f‖2ρ.

Applying Lemma 9 with B′ = 2κ‖f‖∞ and σ = κ‖f‖ρ, one can prove the desired result.

Lemma 11. Let 0 < δ < 1/2. It holds with probability at least 1− δ :

‖T − Tx‖HS ≤
6κ2√
|x|

log
2

δ
.

Here, ‖ · ‖HS denotes the Hilbert-Schmidt norm.

Proof. Let ξi = Kxi ⊗Kxi , for all i ∈ [|x|]. Obviously,

T − Tx =
1

|x|

|x|∑
i=1

(E[ξi]− ξi),

and by Assumption (8), ‖ξi‖HS = ‖Kxi‖2H ≤ κ2. Applying Lemma 9 with B′ = 2κ2 and σ′ = κ2, one can prove the desire result.

We next introduce the following concentration inequality for norms of self-adjoint operators on a Hilbert space.

Lemma 12. Let X1, · · · ,Xm be a sequence of independently and identically distributed self-adjoint Hilbert-Schmidt operators on a
separable Hilbert space. Assume that E[X1] = 0, and ‖X1‖ ≤ B almost surely for some B > 0. Let V be a positive trace-class operator
such that E[X 2

1 ] 4 V. Then with probability at least 1− δ, (δ ∈]0, 1[), there holds∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥ ≤ 2Bβ

3m
+

√
2‖V‖β
m

, β = log
4 trV
‖V‖δ .



Distributed Learning with Multi-pass SGM

Proof. The proof can be found in, e.g., (Rudi et al., 2015; Dicker et al., 2017). Following from the argument in (Minsker, 2011), we can
generalize (Tropp, 2012) from a sequence of self-adjoint matrices to a sequence of self-adjoint Hilbert-Schmidt operators on a separable

Hilbert space, and get that for any t ≥
√
‖V‖
m

+ B
3m
,

Pr

(∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥ ≥ t
)
≤ 4 trV
‖V‖ exp

(
−mt2

2‖V‖+ 2Bt/3

)
. (55)

Rewriting

4 trV
‖V‖ exp

(
−mt2

2‖V‖+ 2Bt/3

)
= δ,

as a quadratic equation with respect to the variable t, and then solving the quadratic equation, we get

t0 =
Bβ

3m
+

√(
Bβ

3m

)2

+
2β‖V‖
m

≤ 2Bβ

3m
+

√
2β‖V‖
m

:= t∗,

where we used
√
a+ b ≤

√
a+
√
b, ∀a, b > 0. Note that β > 1, and thus t0 ≥

√
‖V‖
m

+ B
3m
. By

Pr

(∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥ ≥ t∗
)
≤ Pr

(∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥ ≥ t0
)
,

and applying (55) to bound the left-hand side, one can get the desire result.

Lemma 13. Let 0 < δ < 1 and λ > 0. With probability at least 1− δ, the following holds:

∥∥∥(T + λ)−1/2(T − Tx)(T + λ)−1/2
∥∥∥ ≤ 4κ2β

3|x|λ +

√
2κ2β

|x|λ , β = log
4κ2(N (λ) + 1)

δ‖T ‖ .

Proof. The proof can be also found in (Rudi et al., 2015; Dicker et al., 2017). We will use Lemma 12 to prove the result. Let |x| = m and
Xi = T −1/2

λ̃
(T − Txi)T

−1/2

λ̃
, for all i ∈ [m]. Then T −1/2

λ̃
(T − Tx)T −1/2

λ̃
= 1

m

∑m
i=1 Xi. Obviously, for any X = Xi, E[X ] = 0,

and

‖X‖ ≤ E
[
‖T −1/2

λ̃
TxT −1/2

λ̃
‖
]

+ ‖T −1/2

λ̃
TxT −1/2

λ̃
‖ ≤ 2κ2/λ̃,

where for the last inequality, we used Assumption (8) which implies

‖T −1/2

λ̃
TxT −1/2

λ̃
‖ ≤ tr(T −1/2

λ̃
TxT −1/2

λ̃
) = tr(T −1

λ̃
Tx) = 〈T −1

λ̃
Kx,Kx〉H ≤ κ2/λ̃.

Also, by E(A− EA)2 4 EA2,

EX 2 4 E(T −1/2

λ̃
Tx̃T −1/2

λ̃
)2 = E[〈T −1

λ̃
Kx,Kx〉HT −1/2

λ̃
Kx ⊗KxT −1/2

λ̃
]

4
κ2

λ̃
E[T −1/2

λ̃
Kx ⊗KxT −1/2

λ̃
] =

κ2

λ̃
T −1

λ̃
T = V,

Note that ‖T −1

λ̃
T ‖ = ‖T ‖

‖T ‖+λ̃ ≤ 1. Therefore, ‖V‖ ≤ κ2

λ̃
and

tr(V)

‖V‖ =
N (λ̃)‖T ‖+ tr(T −1

λ̃
T )λ̃

‖T ‖ ≤ N (λ̃)‖T ‖+ tr(T )

‖T ‖ ≤ κ2(N (λ̃) + 1)

‖T ‖ ,

where for the last inequality we used (24). Now, the result can be proved by applying Lemma 12.

We will use Lemmas 10 and 5 to estimate the quantity ∆z
2. The quantity ∆z

3 can be estimated by Lemma 11 directly, as ‖T − Tx‖ ≤
‖T − Tx‖HS . The quantity ∆z

1 can be estimated by the following lemma, whose proof is based on Lemma 13.
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Lemma 14. Under Assumption 4, let c, δ ∈ (0, 1), λ = |x|−θ for some θ ≥ 0, and

a|x|,δ,γ(c, θ) =
32κ2

(
√

9 + 24c− 3)2

(
log

4κ2(cγ + 1)

δ‖T ‖ + θγmin

(
1

e(1− θ)+
, log |x|

))
. (56)

Then with probability at least 1− δ,

‖(T + λ)−1/2(Tx + λ)1/2‖2 ≤ (1 + c)a|x|,δ,γ(c, θ)(1 ∨ |x|θ−1), and

‖(T + λ)1/2(Tx + λ)−1/2‖2 ≤ (1− c)−1a|x|,δ,γ(c, θ)(1 ∨ |x|θ−1).

Remark 1. Typically, we will choose c = 2/3. In this case,

a|x|,δ,γ(2/3, θ) = 8κ2

(
log

4κ2(cγ + 1)

δ‖T ‖ + θγmin

(
1

e(1− θ)+
, log |x|

))
. (57)

We have with probability at least 1− δ,

‖(T + λ)1/2(Tx + λ)−1/2‖2 ≤ 3a|x|,δ,γ(2/3, θ)(1 ∨ |x|θ−1).

Proof. We use Lemma 13 to prove the result. Let c ∈ (0, 1]. By a simple calculation, we have that if 0 ≤ u ≤
√

9+24c−3
4

, then

2u2/3 + u ≤ c. Letting
√

2κ2β
|x|λ′ = u, and combining with Lemma 13, we know that if

√
2κ2β

|x|λ′ ≤
√

9 + 24c− 3

4
,

which is equivalent to

|x| ≥ 32κ2β

(
√

9 + 24c− 3)2λ′
, β = log

4κ2(1 +N (λ′))

δ‖T ‖ , (58)

then with probability at least 1− δ, ∥∥∥T −1/2

λ′ (T − Tx)T −1/2

λ′

∥∥∥ ≤ c. (59)

Note that from (59), we can prove

‖T −1/2

λ′ T 1/2

xλ′ ‖
2 ≤ c+ 1, ‖T 1/2

λ′ T
−1/2

xλ′ ‖
2 ≤ (1− c)−1. (60)

Indeed, by simple calculations,

‖T −1/2

λ′ T 1/2

xλ′ ‖
2 = ‖T −1/2

λ′ Txλ′T −1/2

λ′ ‖ = ‖T −1/2

λ′ (T − Tx)T −1/2

λ′ + I‖

≤ ‖T −1/2

λ′ (T − Tx)T −1/2

λ′ ‖+ ‖I‖ ≤ c+ 1,

and (Caponnetto & De Vito, 2007)

‖T 1/2

λ′ T
−1/2

xλ′ ‖
2 = ‖T 1/2

λ′ T
−1
xλ′T

1/2

λ′ ‖ = ‖(I − T −1/2

λ′ (T − Tx)T −1/2

λ′ )−1‖ ≤ (1− c)−1.

From the above analysis, we know that for any fixed λ′ > 0 such that (58), then with probability at least 1− δ, (60) hold.

Now let λ′ = aλ when θ ∈ [0, 1) and λ′ = a|x|−1 when θ ≥ 1, where for notational simplicity, we denote a|x|,δ,γ(c, θ) by a. We will
prove that the choice on λ′ ensures the condition (58) is satisfied, as thus with probability at least 1− δ, (60) holds. Obviously, one can
easily prove that a ≥ 1, using κ2 ≥ 1 and (24). Therefore, λ′ ≥ λ, and

‖T 1/2
λ T −1/2

xλ ‖ ≤ ‖T 1/2
λ T −1/2

λ′ ‖‖T 1/2

λ′ T
−1/2

xλ′ ‖‖T
1/2

xλ′ T
−1/2
xλ ‖ ≤ ‖T 1/2

λ′ T
−1/2

xλ′ ‖
√
λ′/λ,

where for the last inequality, we used ‖T 1/2
λ T −1/2

λ′ ‖2 ≤ supu≥0
u+λ
u+λ′ ≤ 1 and ‖T 1/2

xλ′ T
−1/2
xλ ‖2 ≤ supu≥0

u+λ′

u+λ
≤ λ′/λ. Similarly,

‖T −1/2
λ T 1/2

xλ ‖ ≤ ‖T
−1/2

λ′ T 1/2

xλ′ ‖
√
λ′/λ.
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Combining with (60), and by a simple calculation, one can prove the desired bounds. What remains is to prove that the condition (58) is
satisfied. By Assumption 4 and a ≥ 1,

β ≤ log
4κ2(1 + cγa

−γ |x|(θ∧1)γ)

δ‖T ‖ ≤ log
4κ2(1 + cγ)|x|θγ

δ‖T ‖ = log
4κ2(1 + cγ)

δ‖T ‖ + θγ log |x|.

If θ ≥ 1, or θγ = 0, or log |x| ≤ 1
(1−θ)+e

, then the condition (58) follows trivially. Now consider the case θ ∈ (0, 1), θγ 6= 0 and

log |x| ≥ 1
(1−θ)+e

. In this case, we apply (38) to get θγ
1−θ log |x|1−θ ≤ θγ

1−θ
|x|1−θ

e
, and thus

β ≤ log
4κ2(1 + cγ)

δ‖T ‖ +
θγ

1− θ
|x|1−θ

e
.

Therefore, a sufficient condition for (58) is

|x|1−θa
g(c)

≥ log
4κ2(1 + cγ)

δ‖T ‖ +
θγ

e(1− θ) |x|
1−θ, g(c) =

32κ2

(
√

9 + 24c− 3)2
.

From the definition of a in (56),

a = g(c)

(
log

4κ2(cγ + 1)

δ‖T ‖ +
θγ

e(1− θ)+

)
,

and by a direct calculation, one can prove that the condition (58) is satisfied. The proof is complete.

We also need the following lemma, which enables one to derive convergence results in expectation from convergence results in high
probability.
Lemma 15. Let F :]0, 1]→ R+ be a monotone non-increasing, continuous function, and ξ a nonnegative real random variable such that

Pr[ξ > F (t)] ≤ t, ∀t ∈ (0, 1].

Then

E[ξ] ≤
∫ 1

0

F (t)dt.

The proof of the above lemma can be found in, e.g., (Blanchard & Mücke, 2017). Now we are ready to state and prove the following
result for the local bias.
Proposition 2. Under Assumptions 3 and 4, we let λ̃ = n−1+θ for some θ ∈ [0, 1]. Then for any t ∈ [T ], the following results hold.
1) For 0 < ζ ≤ 1,

E‖Sρht+1 − fρ‖2ρ ≤ C5

(
1 ∨ λ̃

2

λ2
t

∨ [γ(θ−1 ∧ logn)]2ζ∨1

)
λ2ζ
t , λt =

1∑t
k=1 ηk

.

2)For ζ > 1,

E‖Sρht+1 − fρ‖2ρ ≤ C6

(
1 ∨ λ̃

2ζ

λ2ζ
t

∨ λ1−2ζ
t

(
1

n

)(ζ− 1
2

)∧1

∨ [γ(θ−1 ∧ logn)]

)
λ2ζ
t .

Here, C5 and C6 are positive constants depending only on κ, ζ,R,M and can be given explicitly in the proof.
Remark 2. It should be noted that the constants C5 and C6 can be further optimized if one considers a delicate but fundamental
calculation in the proof, or one considers the special case, e.g., γ = 0.

Proof. We will use Lemma 8 to prove the results. To do so, we need to estimate ∆z
1, ∆z

2 and ∆z
3.

By Lemma 14, we have that with probability at least 1− δ,

∆z
1 ≤ 3an,δ,γ(1− θ) ≤ (1 ∨ γ[θ−1 ∧ logn])24κ2 log

4κ2e(cγ + 1)

δ‖T ‖ , (61)

where an,δ,γ(1− θ) = an,δ,γ(2/3, 1− θ), given by (57). By Lemma 10, we have that with probability at least 1− δ,

∆z
2 ≤ 2κ

(
2‖rt+1 − fρ‖∞

n
+
‖Sρrt+1 − fρ‖ρ√

n

)
log

2

δ
.

Applying Part 1) of Lemma 5 with a = 0 to estimate ‖Sρrt+1 − fρ‖ρ, we get that with probability at least 1− δ,

∆z
2 ≤ 2κ

(
2‖rt+1 − fρ‖∞/n+ (ζ/e)ζRλζt /

√
n
)
.
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When ζ ≥ 1/2, we know that there exists a fH ∈ H such that SρfH = fρ (Steinwart & Christmann, 2008) and thus

‖rt+1 − fρ‖∞ =‖rt+1 − fH‖∞
≤κ‖rt+1 − fH‖H
≤κ‖L−1/2(Sρrt+1 − SρfH)‖ρ
≤κ‖L−1/2(Sρrt+1 − fρ)‖ρ
≤κ((ζ − 1/2)/e)ζ−1/2Rλ

ζ−1/2
t .

In the above, we used (31) for the second inequality, (26) for the third inequality, and Lemma 5 for the last inequality. When ζ < 1/2, by
Part 2) of Lemma 5, ‖rt+1‖H ≤ Rλζ−1/2

t . Combining with (31) and (10), we have

‖rt+1 − fρ‖∞ ≤ κ‖rt+1‖H + ‖fρ‖∞ ≤ κλζ−1/2
t R+M.

From the above analysis, we get that with probability at least 1− δ,

∆z
2 ≤ log

2

δ

{
2κR

(
2κ((ζ − 1/2)/e)ζ−1/2/(λtn) + (ζ/e)ζ/

√
λtn
)
λ
ζ+1/2
t , if ζ ≥ 1/2,

2κ
(
2κR/(λtn) + 2M(nλt)

−ζ−1/2 + (ζ/e)ζR/
√
nλt
)
λ
ζ+1/2
t , if ζ < 1/2,

which can be further relaxed as

∆z
2 ≤ C4(1 ∨ (λtn)−1)λ

ζ+1/2
t log

2

δ
, (62)

where

C4 ≤

{
2κR

(
2κ((ζ − 1/2)/e)ζ−1/2 + (ζ/e)ζ

)
, if ζ ≥ 1/2,

2κ
(
2κR+ 2M + (ζ/e)ζR

)
, if ζ < 1/2.

Applying Lemma 11, and combining with the fact that ‖T − Tx‖ ≤ ‖T − Tx‖HS , we have that with probability at least 1− δ,

∆z
3 ≤

6κ2

√
n

log
2

δ
. (63)

For 0 < ζ ≤ 1, by Pat 1) of Lemma 8, (61) and (62), we have that with probability at least 1− 2δ,

‖Sρht+1 − fρ‖ρ ≤
(

3ζ∨
1
2C1a

ζ∨ 1
2

n,δ,γ(1− θ) + 2
√

3C4a
1
2
n,δ,γ(1− θ) log

2

δ

)1 ∨
(
λ̃

λt

)ζ∨ 1
2

∨ 1

nλt

λζt .

Rescaling δ, and then combining with Lemma 15, we get

E‖Sρht+1 − fρ‖2ρ

≤
∫ 1

0

(
3ζ∨

1
2C1a

ζ∨ 1
2

n,δ/2,γ(1− θ) + 2
√

3C4a
1
2
n,δ/2,γ(1− θ) log

4

δ

)2

dδ

(
1 ∨

(
λ̃

λt

)2ζ∨1

∨ 1

n2λ2
t

)
λ2ζ
t .

By a direct computation, noting that since λ̃ ≥ n−1 and 2ζ ≤ 2,

1 ∨
(
λ̃

λt

)2ζ∨1

∨ 1

n2λ2
t

≤ 1 ∨
(
λ̃

λt

)2

,

and that for all b ∈ R+, ∫ 1

0

logb
1

t
dt = Γ(b+ 1), (64)

one can prove the first desired result with

C5 = 2[C2
1 (48κ2)2ζ∨1(A2ζ∨1 + 2) + 192κ2C2

4 (A(log2 4 + 2 + 2 log 4) + log2 4 + 4 log 4 + 6)], A = log
8κ2(cγ + 1)e

‖T ‖ .



Distributed Learning with Multi-pass SGM

For ζ > 1, by Part 2) of Lemma 8, (61), (62) and (63), we know that with probability at least 1− 3δ,

‖Sρht+1 − fρ‖ρ

≤
√

3(C2 + 2C4 + 6κ2C3)a
1
2
n,δ,γ(1− θ) log

2

δ

1 ∨ λ̃
ζ

λζt
∨ 1

nλt
∨ λ

1
2
−ζ

t

(
1

n

) (ζ− 1
2
)∧1

2

λζt .

Rescaling δ, and applying Lemma 15, we get

E‖Sρht+1 − fρ‖2ρ

≤ 3(C2 + 2C4 + 6κ2C3)2

∫ 1

0

an,δ/3,γ(1− θ) log2 6

δ
dδ

(
1 ∨ λ̃

2ζ

λ2ζ
t

∨ 1

n2λ2
t

∨ λ1−2ζ
t

(
1

n

)(ζ− 1
2

)∧1
)
λ2ζ
t .

This leads to the second desired result with

C6 = 24κ2(C2 + 2C4 + 6κ2C3)2((A+ 1) log2 6 + 2(A+ 2) log 6 + 2A+ 6), A = log
12κ2(cγ + 1)e

‖T ‖ ,

by noting that n−1 ≤ λ̃. The proof is complete.

Combining Proposition 2 with Lemma 1, we get the following results for the bias of the fully averaged estimator.

Proposition 3. Under Assumptions 3 and 4, let 0 < ζ ≤ 1. For any λ̃ = n−1+θ with θ ∈ [0, 1] and any t ∈ [T ], there holds

E‖Sρh̄t+1 − fρ‖2ρ ≤ C5

(
1 ∨ λ̃

2

λ2
t

∨ [γ(θ−1 ∧ logn)]2ζ∨1

)
λ2ζ
t , λt =

1∑t
k=1 ηk

. (65)

Here, C5 is given by Proposition 2.

D. Estimating Sample Variance
In this section, we estimate sample variance ‖Sρ(ḡt − h̄t)‖ρ. We first introduce the following lemma.

Lemma 16. For any t ∈ [T ], we have

E‖Sρ(ḡt − h̄t)‖ρ =
1

m
E‖Sρ(g1,t − h1,t)‖2ρ. (66)

Proof. Note that from the independence of z1, · · · , zm and (33), we have

Eȳ‖Sρ(ḡt − h̄t)‖ρ =
1

m2

m∑
s,l=1

Eȳ〈Sρ(gs,t − hs,t),Sρ(gl,t − hl,t)〉ρ =
1

m2

m∑
s=1

Eys‖Sρ(gs,t − hs,t)‖
2
ρ.

Taking the expectation with respect to x̄, we get

E‖Sρ(ḡt − h̄t)‖ρ =
1

m2

m∑
s=1

E‖Sρ(gs,t − hs,t)‖2ρ =
1

m
E‖Sρ(g1,t − h1,t)‖2ρ.

The proof is complete.

According to Lemma 16, we know that the sample variance of the averaging over m local estimators can be well controlled in terms of the
sample variance of a local estimator. In what follows, we will estimate the local sample variance, E‖Sρ(g1,t − h1,t)‖2ρ. Throughout the
rest of this subsection, we shall drop the index s = 1 for the first local estimator whenever it shows up, i.e., we rewrite g1,t as gt, z1 as z,
etc.

Proposition 4. Under Assumption 4, let λ̃ = nθ−1 for some θ ∈ [0, 1]. Then for any t ∈ [T ],

E‖Sρ(gt+1 − ht+1)‖2ρ ≤ C8
1

nλ̃γ

(
1 ∨ λ̃

λt
∨ [γ(θ−1 ∧ logn])

)
.

Here, C8 is a positive constant depending only on σ, κ, γ, cγ , ‖T ‖ and will be given explicitly in the proof.
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Proof. Following from Lemma 2,
gt+1 − ht+1 = Gt(Tx)(S∗xy − Lxfρ).

For notational simplicity, we let εi = yi − fρ(xi) for all i ∈ [n] and ε = (εi)1≤i≤n. Then the above can be written as

gt+1 − ht+1 = Gt(Tx)S∗xε.

Using the above relationship and the isometric property (25), we have

Ey‖Sρ(gt+1 − ht+1)‖2ρ = Ey‖SρGt(Tx)S∗xε‖2ρ
= Ey‖T 1/2Gt(Tx)S∗xε‖2H

=
1

n2

n∑
l,k=1

Ey[εlεk] tr (Gt(Tx)T Gt(Tx)Kxl ⊗Kxk ) .

From the definition of fρ and the independence of zl and zk when l 6= k, we know that Ey[εlεk] = 0 whenever l 6= k. Therefore,

Ey‖Sρ(gt+1 − ht+1)‖2ρ =
1

n2

n∑
k=1

Ey[ε2k] tr (Gt(Tx)T Gt(Tx)Kxk ⊗Kxk ) .

Using Assumption 2,

Ey‖Sρ(gt+1 − ht+1)‖2ρ ≤
σ2

n2

n∑
k=1

tr (Gt(Tx)T Gt(Tx)Kxk ⊗Kxk )

=
σ2

n
tr
(
T (Gt(Tx))2Tx

)
≤σ

2

n
tr(T −1/2

λ̃
T T −1/2

λ̃
)‖T 1/2

λ̃
Gt(Tx)2TxT 1/2

λ̃
‖

≤σ
2N (λ̃)

n
‖T 1/2

λ̃
T −1/2

xλ̃
‖‖T 1/2

xλ̃
Gt(Tx)2TxT 1/2

xλ̃
‖‖T −1/2

xλ̃
T 1/2

λ̃
‖

≤σ
2N (λ̃)

n
∆z

1‖Gt(Tx)Tx‖‖Gt(Tx)Txλ̃‖

≤σ
2N (λ̃)

n
∆z

1(1 + λ̃/λt),

where ∆z
1 is given by Lemme 8 and we used 1) of Lemma 4 for the last inequality. Taking the expectation with respect to x, this leads to

E‖Sρ(gt+1 − ht+1)‖2ρ ≤
σ2N (λ̃)

n
(1 + λ̃/λt)E[∆z

1].

Applying Lemmas 14 and 15, we get

E‖Sρ(gt+1 − ht+1)‖2ρ ≤ 6
σ2N (λ̃)

n
(1 ∨ (λ̃/λt))

∫ 1

0

an,δ,γ(2/3, 1− θ)dδ

≤C7
σ2N (λ̃)

n
(1 ∨ (λ̃/λt) ∨ [γ(θ−1 ∧ logn])),

where C7 = 48κ2 log
4κ2(cγ+1)e

‖T ‖ . Using Assumption 4, we get the desired result with C8 = cγC7σ
2.

Using the above proposition and Lemma 16, we derive the following results for sample variance.

Proposition 5. Under Assumption 4, let λ̃ = nθ−1 for some θ ∈ [0, 1]. Then for any t ∈ [T ],

E‖Sρ(ḡt+1 − h̄t+1)‖2ρ ≤ C8
1

Nλ̃γ

(
1 ∨

(
λ̃

λt

)
∨ [γ(θ−1 ∧ logn)]

)
, λt =

1∑t
k=1 ηk

. (67)

Here, C8 is a positive constant depending only on κ2, cγ , ‖T ‖ and σ2.



Distributed Learning with Multi-pass SGM

E. Estimating Computational Variance
In this section, we estimate computational variance, E[‖Sρ(f̄t − h̄t)‖2ρ]. We begin with the following lemma, from which we can see that
the global computational variance can be estimated in terms of local computational variances.

Lemma 17. For any t ∈ [T ], we have

E‖Sρ(f̄t − ḡt)‖ρ =
1

m2

m∑
s=1

E‖Sρ(fs,t − gs,t)‖2ρ. (68)

Proof. Note that by (32) and from the conditional independence of Js, · · ·Jm (given z̄), we have

EJ‖Sρ(f̄t − ḡt)‖ρ =
1

m2

m∑
s,l=1

EJ〈Sρ(fs,t − gs,t),Sρ(fl,t − gl,t)〉ρ =
1

m2

m∑
s=1

EJs‖Sρ(fs,t − gs,t)‖
2
ρ.

Taking the expectation with respect to z̄, we thus prove the desired result. The proof is complete.

In what follows, we will estimate the local computational variance, i.e., E‖Sρ(fs,t − gs,t)‖2ρ. As in Subsections C and D, we will drop
the index s for the s-th local estimator whenever it shows up. We first introduce the following two lemmas, whose proof can be found in
(Lin & Rosasco, 2017b). The empirical risk Ez(f) of a function f with respect to the samples z is defined as

Ez(f) =
1

n

∑
(x,y)∈z

(f(x)− y)2.

Lemma 18. Assume that for all t ∈ [T ] with t ≥ 2,

1

ηt

t−1∑
k=1

1

k(k + 1)

t−1∑
i=t−k

η2
i ≤

1

4κ2
. (69)

Then for all t ∈ [T ],

sup
k∈[t]

EJ[Ez(fk)] ≤ 8Ez(0)Σt1
ηtt

. (70)

Lemma 19. For any t ∈ [T ], we have

EJ‖Sρft+1 − Sρgt+1‖2ρ ≤
κ2

b

t∑
k=1

η2
k

∥∥∥T 1
2 Πt

k+1(Tx)
∥∥∥2

EJ[Ez(fk)]. (71)

Now, we are ready to state and prove the result for local computational variance as follows.

Proposition 6. Assume that (70) holds for any t ∈ [T ] with t ≥ 2. Let λ̃ = n−θ+1 for some θ ∈ [0, 1]. For any t ∈ [T ],

E‖Sρft+1 − Sρgt+1‖2ρ ≤ C9(1 ∨ [γ(θ−1 ∧ logn)])b−1 sup
k∈[t]

{
Σk1
ηkk

}(t−1∑
k=1

η2
k(λ̃+ λk+1:te

−1) + η2
t

)
.

Here, C9 is a positive constant depending only on κ,M, cγ , ‖T ‖ and can be given explicitly in the proof.

Proof. Following from Lemmas 19 and 18, we have that,

EJ‖Sρft+1 − Sρgt+1‖2ρ ≤
8κ2Ez(0)

b

t∑
k=1

η2
k

∥∥∥T 1
2 Πt

k+1(Tx)
∥∥∥2

sup
k∈[t]

{
Σk1
ηkk

}
.

Taking the expectation with respect to y|x and then with respect to x, noting that
∫
Y
y2dρ(y|x) ≤M, we get

E‖Sρft+1 − Sρgt+1‖2ρ ≤
8κ2M2

b
sup
k∈[t]

{
Σk1
ηkk

} t∑
k=1

η2
kE
∥∥∥T 1

2 Πt
k+1(Tx)

∥∥∥2

.
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Note that ∥∥∥T 1
2 Πt

k(Tx)
∥∥∥2

≤ ‖T
1
2 T −1/2

xλ̃
‖2‖T 1/2

xλ̃
Πt
k(Tx)‖2 ≤ ∆z

1‖Txλ̃(Πt
k(Tx))2‖

≤ ∆z
1(‖TxΠt

k(Tx)‖+ λ̃‖Πt
k(Tx)‖)‖Πt

k(Tx)‖ ≤ ∆z
1(λk:te

−1 + λ̃),

where ∆z
1 is given by Lemma 8 and for the last inequality we used Part 2) of Lemma 4. Therefore,

E‖Sρft+1 − Sρgt+1‖2ρ ≤ E[∆z
1]

8κ2M2

b
sup
k∈[t]

{
Σk1
ηkk

}(t−1∑
k=1

η2
k(λ̃+ λk+1:te

−1) + η2
t

)
.

Using Lemmas 14 and 15, and by a simple calculation, one can upper bound E[∆z
1] and consequently prove the desired result with C9

given by

C9 = 192κ4M2 log
4κ2(cγ + 1)e

‖T ‖ .

The proof is complete.

Combining Lemma 17 with Proposition 6, we have the following error bounds for computational variance.

Proposition 7. Assume that (70) holds for any t ∈ [T ] with t ≥ 2. Let λ̃ = n−θ+1 for some θ ∈ [0, 1]. For any t ∈ [T ],

E‖Sρ(f̄t+1 − ḡt+1‖2ρ ≤ C9(1 ∨ [γ(θ−1 ∧ logn)])
1

mb
sup
k∈[t]

{
Σk1
ηkk

}(t−1∑
k=1

η2
k(λ̃+ λk+1:te

−1) + η2
t

)
. (72)

Here, C9 is the positive constant from Proposition 6.

F. Deriving Total Errors
We are now ready to derive total error bounds for (distributed) SGM and to prove the main theorems for (distributed) SGM of this paper.

Proof of Theorem 1. We will use Propositions 1, 3, 5 and 7 to prove the result.

We first show that the condition (12) implies (69). Indeed, when ηt = η, for any t ∈ [T ]

1

ηt

t−1∑
k=1

1

k(k + 1)

t−1∑
i=t−k

η2
i = η

t∑
k=2

1

k
≤ η

t∑
k=2

∫ k

k−1

1

x
dx = η log t ≤ 1

4κ2

where for the last inequality, we used the condition (12). Thus, by Proposition 7, (72) holds. Note also that λk+1:t = 1
η(t−k)

and λt = 1
ηt

as ηt = η. It thus follows from (72) that

E‖Sρ(f̄t+1 − ḡt+1‖2ρ ≤ C9(1 ∨ [γ(θ−1 ∧ logn)])
η

mb

(
λ̃η(t− 1) +

t−1∑
k=1

1

e(t− k)
+ η

)
.

Applying
t−1∑
k=1

1

t− k =

t−1∑
k=1

1

k
≤ 1 +

t−1∑
k=2

∫ k

k−1

1

x
dx ≤ 1 + log t,

and (12), we get

E‖Sρ(f̄t+1 − ḡt+1‖2ρ ≤ C9(1 ∨ [γ(θ−1 ∧ logn)] ∨ λ̃ηt ∨ log t)
η

mb

(
2 +

1

4κ2

)
.

Introducing the above inequality, (65), and (67) into the error decomposition (23), by a direct calculation, one can prove the desired result.
The proof is complete.

Proof of Corollary 2. In Theorem 1, we let λ̃ = N
− 1

2ζ+γ . In this case, with Condition (15), it is easy to show that

1 ≥ θ =
log λ̃

logn
+ 1 =

log λ̃

logN − logm
+ 1 ≥ − 1

2ζ + γ

logN

logN − β logN
+ 1 > 0.

The proof can be done by simply applying Theorem 1 and plugging with the specific choices of ηt, b, and T∗.
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Proof of Corollary 1. Since fρ ∈ H, we know from (26) that Assumption 3 holds with ζ = 1
2

and R ≤ ‖fρ‖H . As noted in comments
after Assumption 4, (11) trivially holds with γ = 1 and cγ = κ2. Applying Corollary 2, one can prove the desired results.

Proof of Theorem 2. When ζ ≤ 1, we apply Theorem 1 with m = 1 and n = N to get

E‖Sρf̄t+1 − fρ‖2ρ . ((λ̃ηt)2 ∨ [γ(θ−1 ∧ logN)]2ζ∨1 ∨ 1 ∨ log t)[
1

(ηt)2ζ
+

1

Nλ̃γ
+
η

b
]. (73)

We let λ̃ = Nθ−1 with θ = 1− α. Then it is easy to see that

γ(θ−1 ∧ logN) ≤

{
γ(2ζ+γ)
2ζ+γ−1

, if 2ζ + γ > 1,

γ logN, if 2ζ + γ ≤ 1.

Following from the aboves and plugging with the specific choices on ηt, T∗, b, one can prove the desired error bounds for the case ζ ≤ 1.

The proof for the case ζ > 1 is similar as that for the case ζ ≤ 1. Following the same lines as those for (73) (with Proposition 2.(1)
replaced by Proposition 2.(2)), we get

E‖Sρf̄t+1 − fρ‖2ρ . ((λ̃ηt)2ζ ∨ [γ(θ−1 ∧ logN)] ∨ (
(ηt)2ζ−1

N (ζ−1/2)∧1
) ∨ 1 ∨ log t)[

1

(ηt)2ζ
+

1

Nλ̃γ
+
η

b
].

Letting λ̃ = N−α and plugging with the specific choices on ηt, T∗, b and θ = 1 − α, one can prove the desired result for the case
ζ ≥ 1.


