Distributed Learning with Multi-pass SGM

Supplementary: Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods

In this appendix, we provide the proofs of our main theorems for distributed SGM. We begin with some basic notations.

A. Notations

We introduce the inclusion operator S, : H — Lf, «» Which is continuous under Assumption (8). Furthermore, we consider the adjoint

operator S, : LiX — H, the covariance operator 7 : H — H given by 7 = S, S,, and the operator L : L,QJX — L;‘;X given by S, S,
It can be easily proved that S, f = [ K. f(x)dpx(z) and T = [, (-, Ki) a Kzdpx (). The operators 7 and £ can be proved to be
positive trace class operators (and hence compact). In fact, by Assumption (8),

£ =T < te(T) =/ tr(Ke ® Ke)dpx (x) =/ 1Kz |7 dpx () < &*. (24)
X X
For any function f € H, the H-norm can be related to the L/% . -horm by VT (Bauer et al., 2007):

11 = 110 = |VT 1| - 5)

and furthermore .
I1£72Spfllp < Ifll&- (26)

We define the sampling operator (with respect to any given set x C X of cardinality n) Sx : H — R" by (Sxf)i = f(z:i) = (f, Kz, )=,
i € [n], where the norm || - ||g~ is the standard Euclidean norm times 1/4/n. Its adjoint operator S : R™ — H, defined by
(Sxy, /Y = (y,Sxf)rn for y € R™ is thus given by

N R
=1
Moreover, we can define the empirical covariance operator (with respect to x) 7x : H — H such that Tx = SxSx. Obviously,
Te= LS K uK
x — n e y Dy JHND ;-
By Assumption (8), similar to (24), we have

[Tl < tr(Tx) < K2 (28)

For any given inputs set x C X, £ : L3, — H is defined as that for any f € L7 such that || f]|oc < oo,

Lof = % > @)K (29)

For any A > 0, for notational simplicity, we let Ti=T+ X Tos =T« + X, and
N =tr(L(L+ X)) =tx(T(T+X)7H).

Forany f € H and x € X, the following well known reproducing property holds:

(f; Ko)u = (). (30)

and following from the above, Cauchy-Schwarz inequality and (8), one can prove that
@) = [, Ke)u| < N flallKella < &l fllm €Y
E[¢] denotes the expectation of a random variable €. || - || denotes the supreme norm with respect to px . For a given bounded operator

L:H — H', | L|l denotes the operator norm of L, i.e., | L|| = sup ey, s ;=1 I|Lf|lm. Here H' could be another separable Hilbert
space different from H.

For any s € [m], we denote the set of random variables {j i }ot—1)+1<i<vr bY Jo,t, {ds,1,Js,2, -+, Jspr} by Jo,and {J1, -, Jon}
by J. Note that js 1, js,2, - , js,b7 are conditionally independent given zs.
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B. Proof for Error Decomposition

Proof of Proposition 1. For any s € [m], using an inductive argument, one can prove that (Lin & Rosasco, 2017b)

EJS|zs[fS,t] = gs,t- (32)

Here Ej, |,, (or abbreviated as Ej,) denotes the conditional expectation with respect to Js given zs. Indeed, taking the conditional
expectation with respect to J ¢ (given z,) on both sides of (4), and noting that fs ; depends only on J 1,--- ,Js +—1 (given z;), one has

n

1
By, [fser1] = forr — M D (fot(@si) = ysi) Ka s

i=1

and thus,
n

1
Ey. [forr] = Ealfoe] —me D Ealfedl@si) = ys)Kay iy t=1,...,T,

1=1

which satisfies the iterative relationship given in (17). Similarly, using the definition of the regression function (2) and an inductive
argument, one can also prove that

By.[9s.t] = hs.u. (33)
Here, E, . denotes the conditional expectation with respect to ys given X.

Following from (3), we have

E(fr) = Efo) = ISofe = Follo = 180 fe = Sogelly + 11558t — folly + 2(Spfr — Spe, Spdt — fo)-

Taking the conditional expectation with respect to J (given z) on both sides, using (32) which implies

_ 1 &
EsSp(fe —50) = — > SpEa,[for = 954] =0,

s=1
we thus have
7 2 7 _ 2 _ 2
EJHSpft - fp“p = EJHSPft - Spgi”p + Hspgt - fp“p-

Taking the conditional expectation with respect to y = {y1,- - ,ym} (given X = {x1, - , Xmm }), noting that
Eg (1S53t — folly = Eg[l1So(Ge — he) 5] + 1Sohe — folly + 2(SoEg[ge — hel, Sphe — fo)s

and that from (33),

m

_ - - 1 -
(SpEg (gt — he], Sphe — fo)p = m Z<SP]EYS (gs,t = hs,t), Spht — fp)p =0,

s=1
we know that B ~ ~ B
EsEs&(fe) — £(fo) = EsEallS, fr — Sogells + Eg[l1So(Ge — ha)|I5] + 1Sohe — £oll3,

which leads to the desired result. O

C. Estimating Bias
In this section, we estimate bias, i.., E||S,h: — f, ||f7 We first give the following lemma, which asserts that the bias term can be estimated
in terms of the bias of a local estimator.

Lemma 1. Foranyt € [T'], we have
]E”Spht - fp”i < E”Sphl,t - fp”i

Proof. By Holder’s inequality, we know that

D (Sphss = fp)

s=1

m

2
_ 1 1
EllSphe = foll = —E < B [Sphes = foll; = EllSohae — follp-
p s=1
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Given the above lemma, in what follows, we will estimate the bias of the local estimator, E||Syh1,: — f ||f) To do so, we need to introduce
some preliminary notations and lemmas.

1071 (L) = [Ty (I = mL) for t € [T — 1] and IT1., (L) = I, for any operator L : H — H, where H is a Hilbert space and I
denotes the identity operator on H. Let k,t € N. We will use the following conventional notations: 1/0 = 400, HZ =1and ZZ =0
whenever k > t. Xt = Zf:k M, Akt = (X5) 71, and specially A;.; is abbreviated as \¢. Define the function G : R — R by

t

Ge(u) = > millpa (). (34)

k=1

Throughout this paper, we assume that the step-size sequence satisfies 77, €]0, = 2] for all t € N. Thus, G;(u) and IT}, (u) are non-negative
on ]0, x2]. For notational simplicity, throughout the rest of this subsection, we will drop the index s = 1 for the first local estimator
whenever it shows up, i.e, we abbreviate h1 ; as hy, z1 as z, and Tk, as T, etc.

The key idea for our estimation on bias is that {h:}+ can be well approximated by the population sequence {r;}:. Recall that the
population sequence is defined by 1 = 0 and
Tt+1 = (I — T)’f’t + S;fp (35)

It is easy to see that the population sequence is deterministic, and it depends on the regression function f,.

We first have the following observations.

Lemma 2. The sequence {r.}, defined by (35) can be rewritten as
rip1 = Ge(T)S, fo. (36)
Similarly, for any s € [m), the sequences {gs,+}+ and {hs.:}+ defined by (17) and (19) can be rewritten as
Gs,t+1 = Gt(Tx,)Sx. Vs,

and

hst+1 = Ge(Tx, ) L%, fo-
Proof. Using the relationship (35) iteratively, introducing with r1 = 0, one can prove the first conclusion. O

According to the above lemma, we know that GM can be rewritten as a form of SRA with filter function Ga (-) = G¢(-)- In the next
lemma, we will further develop some basic properties for this filter function.

Lemma 3. For all u € [0, k%],

1) u*Ge(u) <A1 Va € [0,1].

2) (1 — uGe(u))u® = I (u)u® < (a/e)* Ny, Va €[0,00].
3) Hi(u)ua S (a/e)akg:tv Vt7 k € N.

Proof. 1). For o = 0 or 1, the proof is straightforward and can be found in (Yao et al., 2007). Indeed, for all u € [0, 5], T}, (u) < 1
and thus G (u) < 35, me = A, . Moreover, writing niu = 1 — (1 — 1), we have

t t

uGi(u) =Y () (w) = > (Mg (u) — T (u) = 1 — 0§ (u) < 1. 37)
k=1 k=1
Now we consider the case 0 < ov < 1. We have
u®Gr(u) = [uGe(u)|*|Ge ()|~ < X7,
where we used uG:(u) < 1 and G¢(u) < A;! in the above.
2) By (37), we have (1 — uGy(u))u® = I} (u)u®. Then the desired result is a direct consequence of Conclusion 3).

3) The proof can be also found, e.g., in (Lin & Rosasco, 2017b). Using the basic inequality
14+x<e” forall z > —1, (38)
with m k2 < 1, we get

My (w)u® < exp {—uSj 1 }u®.
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The maximum of the function g(u) = e~ “*u® (with ¢ > 0) over R is achieved at umax = a/¢, and thus

—Cu_« (e @
supe ~u = (&) . 39)
u>0
Using this inequality with ¢ = EZ_H, one can prove the desired result. O

According to Lemma 3, G+(-) is a filter function indexed with regularization parameter A = )., and the qualification 7 can be any positive
number, and E = 1, F> = (7/e)”. Using Lemma 3 and the spectral theorem, one can get the following results.

Lemma 4. Let L be a compact, positive operator on a separable Hilbert space H such that ||L|| < k2. Then for any >0,
DL+ XN*G(L)]] < A2 7ML+ (A A)), Yae [0,1].

2) (I = LG (L) (L 4 X)*|| = [T (L) (L + N[ < 207D+ ((a/e)* + (A A) M)A, Vo € [0, 00].

3) M (D)L < (/€)™ ARy, Wkt €N,

Proof. 1) Following from the spectral theorem, one has

(L4 XNG(L)| < sup (u+A)*Ge(u) < sup (u® + A*)Gi(u).

u€(0,x2] u€([0,k2]

Using Part 1) of Lemma 3 to the above, one can prove the first conclusion.
2) Using the spectral theorem, B B
TS (L) (L + X)) < sup (w + X)* I (u).
u€[0,x2]
When a < 1, R ~ ~
sup (u+ N)Mi(u) < sup (u® + AN (u) < (a/e)* A + A%,

u€l0,x?] u€[0,x?]

where for the last inequality, we used Part 2) of Lemma 3. Similarly, when o > 1, by Holder’s inequality, and Part 2) of Lemma 3,

sup (u—+ NI (u) <2971 sup (u® + AN (u) < 271 ((a/e)* Y + A%).

u€[0,x?] uel0,12]

From the above analysis, one can prove the second conclusion.
3) Simply applying the spectral theorem and 3) of Lemma 3, one can prove the third conclusion.

O
Using Lemma 4, one can prove the following results, which give some basic properties for the population sequence {7+ }+.
Lemma 5. Let a € R. Under Assumption 3, the following results hold.
1) For any a < (, we have
1£7% (Spresr = £o) lo < (¢ — a) /€)™ RAT™".
2) We have
¢+a—1 s
a—1/2 >‘t ) U‘*CSaﬁlfga
17 retillm < R- {n2<C+a1)’ fa>1-c (40)

Proof. 1) Using (36) and noting that
S,Gi(T)S, = 8,Gi(S5,8,)S; = Gi(S5,5,)5,S, = Gi(L)L.
We thus have
L7USpripr = fo) = L7 (GU(L)L =) fp.
Taking the p-norm, applying Assumption 3 and (37), we have
1£7(Sprear = fo)llo S NILT(G(L)L = DR = || I (L) R.

Note that the condition (8) implies (24). Applying Part 3) of Lemma 4, one can prove the first desired result.
2) By (36) and Assumption 3,

||7—a71/2rt+1”H _ ||7—a71/2Gt(7—)S;prH < ‘|Ta71/2Gt(T)S;£C||R'
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Noting that

T2 GUTIS £ = 1T 2 GuU(T)S, £ 8, GuT) T2
= IGHMT* 2 = |G T,

we thus have
1T el < |Ge(T)TH|| R

f0<(+a<l,ie,—C¢ <a<1-—(,then by using 1) of Lemma 4, we get
1T e lla < AR
Similarly, when a > 1 — (, we have
T2l < IGU(DTIITI T R < £*€F7 VR,
where for the last inequality we used 1) of Lemma 4 and (24). This thus proves the second desired result. O
We also need the following two lemmas on operator inequalities.
Lemma 6. (Fujii et al., 1993) Let A and B be two positive bounded linear operators on a separable Hilbert space. Then
|A*B?|| < ||ABJ|®?, when0 <s<1.

Lemma 7. Let A and B be two non-negative bounded linear operators on a separable Hilbert space with max(|| A, | B||) < ?* for
some non-negative k2. Then for any ¢ > 0,

A = Bl < CenllA = B, @1
where
1 when ¢ <1,
K = _ - 42
Ce. {2Cn2< 2 when( > 1. “2)

Proof. Following from (Mathé & Pereverzev, 2002), one can prove the desired result for ¢ < 1. For ¢ > 1, the proof can be found in
(Dicker et al., 2017), see also (Blanchard & Miicke, 2017). O

With the above lemmas, we can prove the the following analytic result, which enables us to estimate the bias term in terms of several
random quantities.

Lemma 8. Under Assumption 3, let A>0,
AT =TT VL AS= T - Tl
and
A% = ||Lxfp — S;fp — Txris1 + Triva||m.

Then the following results hold.
1)For0< (<1,

- C\/l
A 2 zy vl -1 .z
Isomen = fol < 1V (5) ) @ @D&EA +2vER B o), @)
2) For ¢ > 1,

Y
A —1 ., 11

ISphess — follo < /BT <”<A> ><02A§+2At 2AL 4 O3 (MDD, (44)

t

Here, C1, C2 and Cs are positive constants depending only on (, k, and R.



Distributed Learning with Multi-pass SGM

Proof. Using Lemma 2 with s = 1, we can estimate ||S,her1 — fol|, as

1S Ge(To) Lxfo = Tollo SN SpGe(T)Lxfp = Sp fo = Tarerr + Treal o

Bias.1
+ || Sth('Ec)[S;fp - Trt+1] Hp
Bias.2
F IS, = Go(To) TuJresn Il
Bias.3

+ | Spreer — fo llp-
—_—

Bias.4

In the rest of the proof, we will estimate the four terms of the r.h.s separately.
Estimating Bias.4
Using 1) of Lemma 5 with a = 0, we get

|Bias.4|, < (¢/e) A\ R.

Estimating Bias.1
By a simple calculation, we know that for any f € H,

18,Ge(T) fllp < IS, 75 2 INT 2T PN T 2 Ge (Tl 1l

Note that

18,7520 = IS, T3 851 =y Jllees < 1,
and that applying 1) of Lemma 4, with (28), we have
ITH2GHTN < (L4 A/A) VA

Thus for any f € H, we have
,;
I18:Ge(Tx) fllo < (14 /M AN 2/ BE| f |22

Therefore,
= _1
|IBias.1]|, < (14 4/ A/A)A, 2/AZAS.

Estimating Bias.2
By (48), we have

IBias.2l|, < (14 \/A/A)A, 2 /AT Trips — Spfolla-
Using (with 7 = 5,8, and £ = S, S})
[ Trees = S foll = 185 (Spress = fo)llar = [1£72(Soresr = £o)lls

and applying 1) of Lemma 5 with a = —1/2, we get

IBias.2, < (¢ +1/2)/e)F/2(1 4+ \/A/A) VAEAS R.
Estimating Bias.3

By 2) of Lemma 3,
Bias.3 = Sthl(ﬂ)rtH.

When ¢ < 1/2, by a simple calculation, we have

—1/2 2 —1/2 1/2 t
|Bias.3|l, <|[S, 75 2T 2T 2T 20 (T e ||
VAT (T e |,

where for the last inequality, we used (47). By 2) of Lemma 4, with (28),

1T (T | < VA(1/Ve + /30,

(45)

(46)

(47)

(48)

(49)

(50)

(61
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and by 2) of Lemma 5,
Ire e < RAGT.
It thus follows that

|Bias.3||, < /AZ(\/A/A: + 1/v2e)RAS.
When 1/2 < ¢ < 1, by a simple computation, we have
. —1/2 1/24—1/2 1/2 —1/2 1/2— —1/2 1/2—
IBias.3, < [IS,7; N7 2T T 0 (T TS 2N 2T 2T g |
Applying (47) and 2) of Lemma 5, we have
: z 1/2 —1/2 2— —1/2
|Bias.3||, < /A7 T/ I (T TS VAINT T2 R,

By 2) of Lemma 4,
TP (T TS V21 = TSI (Tl < ((¢/e)¢ + (MA))AS
Besides, by ¢ < 1 and Lemma 6,

1/2—CC—1/2) _ —3(2¢—1) -2 (2¢-1) -3 1 2c1 z\(—1
T2 2 = 1752 U I <IT 5273 < (A7) =

It thus follows that _
[Bias.3|l, < (A1) ((A/A)C + (¢/e))RAS.
When ¢ > 1, we rewrite Bias.3 as
Sp7;\71/2 . 7—;/27;}\1/2 . 7;1{21-[3(7;)(7;471/2 + 7—471/2 . 7:571/2)7—1/2%”“.

By a simple calculation, we can upper bound ||Bias.3||, by

< NS, T AN AT AN TP (T T2+ 1T P (T T2 = T 2T |-

Introducing with (47) and (51), and applying 2) of Lemma 5,
IBias.3|l, < /AT I (T T 2] + (1/V2e + /A AT 2 = T V2R

By 2) of Lemma 4,
TP (T T2 < ITST (T < 2571 ((¢/e)* + (/A )AL

Moreover, by Lemma 7 and max(|| 7|, | Tx||) < #?,
A e B R e
Therefore, when ¢ > 1, Bias.3 can be estimated as

|Bias.3||,
< /AT (2<’1<<</e><+<x/xt>¢> (2R ) e (1330 4 /3 A VA (A € WI)R

From the above analysis, we know that || Bias.3||, can be upper bounded by

VATV XA+ 1/3/2e) RA if ¢ €]0,1/2],
)

)R/\i if ¢ €]1/2,1],

AD(A/n) + (¢/e
VAT (276 + 0N + oo (G + [ VAAD M) R, ¢ et

Introducing (46), (49), (50) and (52) into (45), and by a simple calculation, one can prove the desired results with

:R(<</e> F2(CH DTV Do 2+1),

CFR(@C‘lH)(c/e) +2((¢ + )/e)“?+2C >

and  Cs = (2¢K>?)H2231 (1/1/2e 4 1)

(52)
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The upper bounds in (43) and (44) depend on three random quantities, AT, A% and A5. To derive error bounds for the bias term from
Lemma 8, it is necessary to estimate these three random quantities.

We first introduce the following concentration result for Hilbert space valued random variable used in (Caponnetto & De Vito, 2007) and
based on the results in (Pinelis & Sakhanenko, 1986).

Lemma9. Let w1, -+ ,wm be i.i.d random variables in a separable Hilbert space with norm || - ||. Suppose that there are two positive
constants B and o* such that

E[||w: — E[un]]|"] < %Z!B“za?, vl > 2. (53)

Then for any 0 < 6 < 1/2, the following holds with probability at least 1 — 0,

1 — B o 2
— m — E <2(—4+ —)log=.
m;w o] = <m+\/7n) %85
In particular, (53) holds if
|lwi|| < B/2 a.s., and E[HunHQ] <o (54)

Using the above lemma, we can prove the following two results.

Lemma 10. Let f : X — Y be a measurable function such that || f||c < 00, then with probability at least 1 — § (0 < § < 1/2),

g(s-

Lxf—L 2K J + log 2

Proof. Let& = f(xi) Ky, fori =1,---,|x|. Obviously,

[x|
Luf — Lf = @ ;(& ~E[&)),

and by Assumption (8), we have
€1l < A flloo 1 Kaller < £l flloo

and
Ell¢l7 < &2 fI13

Applying Lemma 9 with B’ = 2x/| f||« and o = &|| f||,, one can prove the desired result. O

Lemma 11. Ler 0 < & < 1/2. It holds with probability at least 1 — ¢ :

2
L

2
Vix[ o

|7 = Txllas <

Here,

- || s denotes the Hilbert-Schmidt norm.

Proof. Let&; = K, ® K, forall ¢ € [|x]|]. Obviously,

x|

T Te= g D (BiE] - )

and by Assumption (8), ||&||ms = || Kx,; |3 < #°. Applying Lemma 9 with B’ = 2x? and ¢’ = 2, one can prove the desire result. [J

We next introduce the following concentration inequality for norms of self-adjoint operators on a Hilbert space.

Lemma 12. Let X1, - -- , X, be a sequence of independently and identically distributed self-adjoint Hilbert-Schmidt operators on a
separable Hilbert space. Assume that E[X1] = 0, and || X1|| < B almost surely for some B > 0. Let V be a positive trace-class operator
such that E[X£] < V. Then with probability at least 1 — &, (§ €]0, 1]), there holds

m

1
w2

i=1

2B3  [2|V||3 Atry
< = =1 .
Sqm Vw0 PRl
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Proof. The proof can be found in, e.g., (Rudi et al., 2015; Dicker et al., 2017). Following from the argument in (Minsker, 2011), we can
generalize (Tropp, 2012) from a sequence of self- adjoint matrices to a sequence of self-adjoint Hilbert-Schmidt operators on a separable
HV

+ =

3m )

Hilbert space, and get that for any ¢ >

4trV —mit?
) v o (s rass) 2

Rewriting

4try exp ( —mit? ) 5
4l 2|Vl +2Bt/3 ’

as a quadratic equation with respect to the variable ¢, and then solving the quadratic equation, we get

to =

BB+\/<136)2+26IIV| _2B8, [ _ .

3m 3m m ~ 3m m

where we used v/a + b < /a + Vb, Va, b > 0. Note that 8 > 1, and thus to > ”V + 3>-. By

(e (i)

and applying (55) to bound the left-hand side, one can get the desire result. O

Lemma 13. Let 0 < § < 1 and X > 0. With probability at least 1 — 6, the following holds:

42N (N) + 1)
el

2
[T+ 22T =TT+ 22| < 38 2o

= 3x|A x|\’

Proof. The proof can be also found in (Rudi et al., 2015; Dicker et al., 2017). We will use Lemma 12 to prove the result. Let |x| = m and
X = 7}—1/2(7’ - 7;01,)7;—1/27 for all i € [m]. Then 7%—1/2(7— _ 7;)7}\—1/2 = LS~ X;. Obviously, for any X = X;, E[X] = 0,
and

X0 < B [T 2T 20 + 1T AT ) < 26,
where for the last inequality, we used Assumption (8) which implies
1T P TRTs 2 < (T PR T ) = (T Te) = (T3 K Ky < 2/
Also,by E(A —EA)? S EA?
EX? < IE(T VLTV =BT K Ko T VP K @ KT,

2
< ~IE[T ViR, @ K, T ) = ~7'{17':V,
A

Note that || 75~ T = HT\H < 1. Therefore, ||V| < =2 and

(V) _ NITI + (T, 17—)>\<N(:\)|\T|I+tr(7')<m2(./\/(/~\)+1)
VIl 7 - 17 - [/

where for the last inequality we used (24). Now, the result can be proved by applying Lemma 12. O

We will use Lemmas 10 and 5 to estimate the quantity A5. The quantity A% can be estimated by Lemma 11 directly, as || T — Tx|| <
|7 — Tx||zs. The quantity A% can be estimated by the following lemma, whose proof is based on Lemma 13.
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Lemma 14. Under Assumption 4, let ¢, 6 € (0,1), A = |x| ™ for some 6 > 0, and

3252 4Kk?(cy 4+ 1) 1
x ,0) = 1 - 0y min | ————,1 ) 56
)= ¢t (o8 S v (g e ) G0

Then with probability at least 1 — 9,

T+ 072 (T + N3P < (L + Qayugoq (e, )LV [x]°71), and

T+ 02 (T + 27207 < (1= ) a0 (e, 0)(LV [x] 7).

Remark 1. Typically, we will choose ¢ = 2/3. In this case,

4k%(cy + 1 4 1
Apxl,54(2/3,0) = 8 <log % + 0 min (m, log |x|>) . (57)

We have with probability at least 1 — 6,

T+ X2 (Toe + 07217 < By 5,(2/3,6)(1V [x|"7).

Proof. We use Lemma 13 to prove the result. Let ¢ € (0, 1]. By a simple calculation, we have that if 0 < u < 7%4‘3737 then

2u?/3 +u < c. Letting 4/ i’f‘iﬁ} = u, and combining with Lemma 13, we know that if

2K203 \/9 + 24c — 3

|X|)\’ - 4
which is equivalent to
x| > 32626 B=1lo 4k%(1 4+ N(N)) 58)
= VOt 2dc— 32N’ Eemr
then with probability at least 1 — 6,
,7—71/2 —1/2
VAT =TT, <ec (59)
Note that from (59), we can prove
ITe TN < et 1 ITP T PP < -7 (60)

Indeed, by simple calculations,

T 2T = T 2 T T 2 = 1T VAT = T T3 2 41
< VAT =TT 2+ Il < e+ 1,

and (Caponnetto & De Vito, 2007)

I AT 1P = T T

1/2 —1/2 —1/2 —
DT =10 =T AT =TT A < (=07
From the above analysis, we know that for any fixed \’ > 0 such that (58), then with probability at least 1 — §, (60) hold.

Now let A = aX when 6 € [0,1) and \' = a|x| ™' when 6 > 1, where for notational simplicity, we denote a|x| 5, (c, 6) by a. We will
prove that the choice on \" ensures the condition (58) is satisfied, as thus with probability at least 1 — J, (60) holds. Obviously, one can
easily prove that ¢ > 1, using k2 > 1 and (24). Therefore, X’ > X, and

1/24+—1/2 1/24—1/2 1/24—1/2 1/2 —1/2 1/2 —1/2
IT T2 < T 2T PN P T PINTEP TR 21 < T2 T 2 /N A

x/ x)\’

where for the last inequality, we used H’7:\1/27‘>\71/2H2 < sup,> 5j§, < 1land H’TI/2 1/2H2 <sup,sg % < X'/ Similarly,

—12 1/2 —1/2 1/2
T 2T < T AT I A
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Combining with (60), and by a simple calculation, one can prove the desired bounds. What remains is to prove that the condition (58) is
satisfied. By Assumption4 and a > 1,

2 — (A1) 2 O~ 2
45°(1 4+ cya™ x| ) < log 45°(1 4 cy) x| ~ log 45°(1 4 ¢y)

< lo = A v o
p<log kal = ikl Bkal

+ O log |x|.

If6 > 1,0r 6y =0, orlog|x| < m, then the condition (58) follows trivially. Now consider the case 8 € (0,1), 6 # 0 and
. B x|1—0
. In this case, we apply (38) to get 19_—79 log |x|'7% < 19%9 L]

log |x| > , and thus

1
(1-0)4e e

4 (L4er) | by x|

<
psloe—m— + 19

Therefore, a sufficient condition for (58) is

Ix|'*"%a 4k (1 + ¢y) 0 10 32K2
>1 + R P —
gl = 7 4TI o —o) ™ 90 = (oot — 3y

From the definition of a in (56),

— o) (1o 4k*(cy 4+ 1) Oy
“‘g”<lg il +e<1fe>+>’

and by a direct calculation, one can prove that the condition (58) is satisfied. The proof is complete. O

We also need the following lemma, which enables one to derive convergence results in expectation from convergence results in high
probability.

Lemma 15. Let F :)0,1] — Ry be a monotone non-increasing, continuous function, and & a nonnegative real random variable such that
Prl¢ > F(t)] <t, Vte (0,1].

Then

E[¢] < /01 P(b)dt.

The proof of the above lemma can be found in, e.g., (Blanchard & Miicke, 2017). Now we are ready to state and prove the following
result for the local bias.

Proposition 2. Under Assumptions 3 and 4, we let X\ = n~ "1 for some 6 € [0, 1]. Then for any t € [T, the following results hold.
1)For0 < ¢ <1,
1

B ZZ}:I Mk '

5\2
BlSohen - 4l < G (1v 55

1 V007 Alogn) ) L
t

2)For ¢ > 1,

2 A% 1—2¢ (1 (C=z)nt —1 2¢
BlSohen - £l < o (13 52 VA (1) V(6! Alogn)] | A

n
t
Here, C's and Cs are positive constants depending only on k,(, R, M and can be given explicitly in the proof.

Remark 2. It should be noted that the constants Cs and Cg can be further optimized if one considers a delicate but fundamental
calculation in the proof, or one considers the special case, e.g., v = 0.

Proof. We will use Lemma 8 to prove the results. To do so, we need to estimate AT, A5 and Af.

By Lemma 14, we have that with probability at least 1 — 9,

4r%e(cy + 1)

A% < 3an,5(1—0) < (1VA[0~" Alogn])24k> log S

(61)

where an,5,4(1 — 0) = an,5,~(2/3,1 — 0), given by (57). By Lemma 10, we have that with probability at least 1 — 4,

z 2||re+1 — fplloo ISpre+1 — follo 2
AZ <2 log =.
252N ( n + Jn ¥

Applying Part 1) of Lemma 5 with a = 0 to estimate ||S,7:+1 — f,||,, we get that with probability at least 1 — 4,

A3 < 2% (2ress = fylloo/n+ (/) RA V) -
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When ¢ > 1/2, we know that there exists a fz € H such that S, fz = f, (Steinwart & Christmann, 2008) and thus

Ire+1 — folloo =lresr — frlloo
<kllre+1 — fulla

<KLV (Spreer — Spfu)ll,
<KLV (Sorer1 — fo)llo
<k((¢ —1/2)/e) T2 RAT2,

In the above, we used (31) for the second inequality, (26) for the third inequality, and Lemma 5 for the last inequality. When ¢ < 1/2, by
Part 2) of Lemma 5, |71 |z < RAS ™'/, Combining with (31) and (10), we have

71 = folloo < Kllresallm + [ follo < wXST?R+ M.

From the above analysis, we get that with probability at least 1 — 4§,

AT <o 2{%R@d@1mva<”7um»+«mfhﬁwo&“”, it¢>1/2,

= %85\ 26(26R/(Aem) + 2M(nAe) V2 + (¢ /) R/Vr) A2, if¢ < 1/2,

which can be further relaxed as
AZ < Ca(1V (Aen) YA 2 10g % ©2)

where

0, < J2RRER((C—1/2)/e) "2 4 (C[e)), ifC>1/2,
* =) 26(26R + 2M + (¢/e)°R), if ¢ <1/2.

Applying Lemma 11, and combining with the fact that |7 — 7Tx|| < |7 — 7x|| zs, we have that with probability at least 1 — 4,

6r2 2
A5 < —log <. 63
RN 0g 5 (63)
For 0 < ¢ <1, by Pat 1) of Lemma 8, (61) and (62), we have that with probability at least 1 — 24,
vl evl 1 2 ANTEO1 ) .
1Sphir1 — follp < (3 2Clan75?w(1 —-0)+ 2\/§C4aj,5,w(l —0)log $> 1v ()\7) \% . AL
Rescaling 4, and then combining with Lemma 15, we get
El|Sphe1 — folly
1 2 T\ 20Vl
C\/l ¢vi 1 4 A 1 2¢
S/O (3 2Cha,, 55, (1—=0)+ 2\/§C4a72115/2ﬁ(1 —6)log 5 dé {1V N \Y% N Ap.
By a direct computation, noting that since A>n"land 2¢ < 2,
T\ 20Vl T\ 2
A 1 A
1v | — V—— <1V |—
() vew=()
and that for all b € R,
1
/ log® %dt =T(b+1), (64)
0

one can prove the first desired result with

8k%(cy + 1)e

Cs = 2[CT(48k%)*VH(AXY! 1+ 2) + 1926°CF (A(log® 4 + 2 + 21og 4) + log” 4 4 4log 4 + 6)], A = log Tl
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For ¢ > 1, by Part 2) of Lemma 8, (61), (62) and (63), we know that with probability at least 1 — 3¢,

ISphet1 — follo

C-4Hn

9 1 2 X1 1¢:/1 2 ¢
< V3(C2 4204 + 6k Cs)az s, (1 —0)log 1v7§vnTthg = AS.

Rescaling d, and applying Lemma 15, we get
E|Sphitr = foll3

3(Cy + 2C4 + 6K%Cs)? ' 1—0)log> Sas (1 A% 1 A2 (1 o A%
(Ce 4 2C4 4+ 6K°C3) Oan,a/s,w( — ) log 3 VT?C\/”Q/\EV " o a

This leads to the second desired result with

1252 1
Co = 24K%(Ca + 2C4 + 652C5)2((A + 1)1og? 6 + 2(A + 2)log 6 + 24 + 6), A = log %
by noting that n =1 < X. The proof is complete. O

Combining Proposition 2 with Lemma 1, we get the following results for the bias of the fully averaged estimator.

Proposition 3. Under Assumptions 3 and 4, let 0 < ¢ < 1. Forany A = n= "% with 0 € [0, 1] and any t € [T), there holds

_ 2 1
E[S,her1 — foll5 < Cs (1 FeRdtCE Mogn)fw) XS N (65)
PR
Here, Cs is given by Proposition 2.
D. Estimating Sample Variance
In this section, we estimate sample variance ||S,(g: — h¢)||,- We first introduce the following lemma.
Lemma 16. For any t € [T'], we have
_ - 1
E|S,(G: — he)ll, = EEHSP(QIJ — has)ll3- (66)
Proof. Note that from the independence of z1, - - - , z,, and (33), we have
_ 1
EyHSp(gt ht Hp = ﬁ ;11[‘3 gs t — hs ) S (gl t — hl t = ZEysHS gs,t — s,t)Hi'

Taking the expectation with respect to X, we get
-z 1\ 2 1 >
EllSp(ge = ho)lle = 5 > ElISy(gs.t = hs) = E[[Sp(gre = hae) .

The proof is complete. O

According to Lemma 16, we know that the sample variance of the averaging over m local estimators can be well controlled in terms of the
sample variance of a local estimator. In what follows, we will estimate the local sample variance, E||S,(g1,¢ — h1,¢)||2. Throughout the
rest of this subsection, we shall drop the index s = 1 for the first local estimator whenever it shows up, i.e., we rewrite g1 + as g, z1 as z,
etc.

Proposition 4. Under Assumption 4, let X = n°~! for some 6 € [0, 1]. Then for any t € [T,

1 A _
E[S,(ge+1 — heyr)|[5 < = (1 V= V(e A logn})> :
n\Y At

Here, Cs is a positive constant depending only on o, K, 7, ¢+, | T|| and will be given explicitly in the proof.
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Proof. Following from Lemma 2,
gt+1 — her1 = Ge(Tx)(Sxy — Lx fo)-

For notational simplicity, we let ¢; = y; — f,(z;) forall ¢ € [n] and € = (€;)1<i<n. Then the above can be written as
ge41 — hip1 = Ge(Tx)Sxe.
Using the above relationship and the isometric property (25), we have

Ey ISy (ge41 — hes1) |12 = Ey [|S,Ge(Tx) Sxell;
= By || T2 Ge(Tx)Sxell

1 n
= 5 > Bylaes] tr (Gu(T)TGu(Tx) Kz, @ Ka,).

I,k=1

From the definition of f, and the independence of z; and zi when [ # k, we know that Ey [e,€x] = 0 whenever | # k. Therefore,
Ey||1Sp(ge+1 — hegr) | = Wz ZE e tr (Gi(T) TG (T Ky, ® Koy) -
Using Assumption 2,

2 n
EylISp(gre1 = heea) 5 <75 37 0 (Gr(T) TG (Tw) Ky © Ko )
k=1
2

:% tr (T(G+(T%))*Tx)

2
o 71/2 —1/2\ || -1/2 2 1/2

2
L SR (RN AR A el

UN()AZHGt( T TG (T Tos |

g#ﬂ(wx/m,

where AT is given by Lemme 8 and we used 1) of Lemma 4 for the last inequality. Taking the expectation with respect to x, this leads to

E[[So(gi+1 — hug1)|[5 < (1+ XA/A)E[AT].

2N (N
n
Applying Lemmas 14 and 15, we get

/\/ by
E||Sp(ge+1 — hes1)|2 < 67 )

1V (M) /01 an,s,(2/3,1 — 0)dd

<C-

UQNT(% V(A A) V(67" Alogn))),

2
where C7 = 48«2 log %. Using Assumption 4, we get the desired result with Cs = ¢, Cr0?. O

Using the above proposition and Lemma 16, we derive the following results for sample variance.

Proposition 5. Under Assumption 4, let X\ = n®~* for some 0 € [0, 1]. Then for any t € [T,

hy . !
. <1 \Y <)\—t> V [y(0 /\logn)]) . = m (67)

Here, Cs is a positive constant depending only on k*, ¢, || T || and 0.

- 1
E||S,(Ger1 — hey1)|l; < Cs Y5
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E. Estimating Computational Variance

In this section, we estimate computational variance, E[||S,(f; — he)||3]. We begin with the following lemma, from which we can see that
the global computational variance can be estimated in terms of local computational variances.

Lemma 17. Foranyt € [T], we have

E[So(fe = g)llo = — ZEHS (fst = 9s.0)lp- (68)

Proof. Note that by (32) and from the conditional independence of J, - - - J,,, (given z), we have

EJHSp(ft Gt Hp_ Z fst_gst) (flt—glt 2z:]EJbHS fst_g&t Hp
Taking the expectation with respect to z, we thus prove the desired result. The proof is complete. O

In what follows, we will estimate the local computational variance, i.e., E||S,(fs,: — gs,¢)||2. As in Subsections C and D, we will drop
the index s for the s-th local estimator whenever it shows up. We first introduce the following two lemmas, whose proof can be found in
(Lin & Rosasco, 2017b). The empirical risk &, (f) of a function f with respect to the samples z is defined as

Lemma 18. Assume that for all t € [T| witht > 2,

t—1

1 - 1
*Z k+1 Z S e (69)

Then for all t € [T,

8E,(0)%}
sup Ea[£,(fu)] < 2e=0)Z1 (70)
kelt] net
Lemma 19. For any t € [T, we have
2t 2
2 K 2
Es(|Sp fe+1 — Spget1ll, < 5 2 (Tx)|| Es[&a(fr)]- (71)
k=1

Now, we are ready to state and prove the result for local computational variance as follows.

Proposition 6. Assume that (70) holds for any t € [T witht > 2. Let \ = n~%* for some 6 € [0,1]. For anyt € [T},

_ _ LI
B[S, fe41 — Spgerils < Co(1V [y(6~" Alogn)])b~" sup {nkk} (Z e+ Negree™ ") + 17 |
Here, Cy is a positive constant depending only on k, M, c, | T|| and can be given explicitly in the proof.

Proof. Following from Lemmas 19 and 18, we have that,

8k? 5
Es||Sp fe41 — Spgt+1\|,27 — an HTQ 111 (7%)

2 E’f
sup { — } .
ke MKk

Taking the expectation with respect to y|x and then with respect to x, noting that [, yrdp(ylz) < M, we get

8k*M? oi 2
B, fesr = Sall < S0 sup {21 } S| Tia
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Note that
1 2 1 z
||| < ITA TS A IPIT I T < AT T (T (T)))
< AT (Tl + AT (T DI TN < Af e +3),

where AT is given by Lemma 8 and for the last inequality we used Part 2) of Lemma 4. Therefore,

Ek t—1

1 2,3 -1 2
sup {7} <Z77k()‘+/\k+1:te )+77t) :
ke[t] ik 1

E||S, fr41 — Spgeslls < E[AT

Using Lemmas 14 and 15, and by a simple calculation, one can upper bound E[A%] and consequently prove the desired result with Cy
given by
4% (cy 4+ 1)e

1771

The proof is complete. O

Co = 192x*M? log

Combining Lemma 17 with Proposition 6, we have the following error bounds for computational variance.
Proposition 7. Assume that (70) holds for any t € [T] witht > 2. Let X = n~%*1 for some 0 € [0,1]. Foranyt € [T},

r = 2 — 1 Zlf Lt 2/ —1 2
EIIS,(frs — Gl < Go(1V 1@ Alogn)])mbk:p{m}(;nk@uwe ). &

Here, Cy is the positive constant from Proposition 6.

F. Deriving Total Errors

We are now ready to derive total error bounds for (distributed) SGM and to prove the main theorems for (distributed) SGM of this paper.

Proof of Theorem 1. We will use Propositions 1, 3, 5 and 7 to prove the result.

We first show that the condition (12) implies (69). Indeed, when 7, = 7, for any ¢ € [T]

1=t 1 t—1 t t ko
2 _
Ezk(kﬂ) Zm_"ZESUZ/ p 4 =nlogt =
i=t—k k=2 k=2 k-1

k=1

where for the last inequality, we used the condition (12). Thus, by Proposition 7, (72) holds. Note also that A\y41.: = and \; =

as 7 = 7. It thus follows from (72) that

n(t k) 7

E||S,(fi41 = Getally < Co(1V (07" A logn)])% <5\n(t -1+ Z ﬁ + 77) .

k=1

Applying

t—1 1 t—1 1 — 1

PPt SER SRt Z/k e < 1+logt,

k=1 k=1 k=2
and (12), we get

_ _ 1
E([Sy(frt1r — Gesalls < Co(1V [v(0~" Alogn)] v Ayt V logt) —— "y (2 + @) :

Introducing the above inequality, (65), and (67) into the error decomposition (23), by a direct calculation, one can prove the desired result.
The proof is complete. O

Proof of Corollary 2. In Theorem 1, we let A=N" 20 . In this case, with Condition (15), it is easy to show that

129:log)\ 1= log A Y1 1 log N
logn log N —logm 2¢ +vlog N — Blog N

+1>0.

The proof can be done by simply applying Theorem 1 and plugging with the specific choices of 7., b, and 7. O
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Proof of Corollary 1. Since f, € H, we know from (26) that Assumption 3 holds with ¢ = 3 and R < || f,|| . As noted in comments
after Assumption 4, (11) trivially holds with v = 1 and ¢, = x*. Applying Corollary 2, one can prove the desired results. O

Proof of Theorem 2. When ¢ < 1, we apply Theorem 1 withm = 1and n = N to get

_ ~ 1 1
2 2 -1 2¢Vv1 n
ElSoferr = Folls S ((Ant)™ V [7(077 Alog N)I™ " V1V logt)[W te T Ak (73)

We let A = N%! with § = 1 — o Then it is easy to see that

(2¢+y)
(07" Alog N) < 22 if oy > 1,
~ \ylogN, if2¢+v <1

Following from the aboves and plugging with the specific choices on 7, T, b, one can prove the desired error bounds for the case ¢ < 1.

The proof for the case ¢ > 1 is similar as that for the case ( < 1. Following the same lines as those for (73) (with Proposition 2.(1)
replaced by Proposition 2.(2)), we get

_ - _ $)3¢—1 1 1
IS, fors = £l S () v 16" Ao N)] v (572750 V 1 VIog Ol e + o+ 11

Letting A= N"“and plugging with the specific choices on 7;, 7%, b and § = 1 — «, one can prove the desired result for the case
¢>1. O



