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Abstract

We study generalization properties of distributed
algorithms in the setting of nonparametric re-
gression over a reproducing kernel Hilbert space
(RKHS). We investigate distributed stochastic
gradient methods (SGM), with mini-batches and
multi-passes over the data. We show that opti-
mal generalization error bounds can be retained
for distributed SGM provided that the partition
level is not too large. Our results are superior to
the state-of-the-art theory, covering the cases that
the regression function may not be in the hypoth-
esis spaces. Particularly, our results show that
distributed SGM has a smaller theoretical com-
putational complexity, compared with distributed
kernel ridge regression (KRR) and classic SGM.

1. Introduction

In statistical learning theory, a set of [V input-output pairs
from an unknown distribution is observed. The aim is to
learn a function which can be used to predict future outputs
given the corresponding inputs. The quality of a predictor is
often measured in terms of the mean-squared error. In this
case, the conditional mean, which is called as the regression
function, is optimal among all the measurable functions
(Cucker & Zhou, 2007; Steinwart & Christmann, 2008).

In nonparametric regression problems, the properties of the
function to be estimated are not known a priori. Nonpara-
metric approaches, which can adapt their complexity to the
problem at hand, are key to good results. Kernel methods is
one of the most common nonparametric approaches to learn-
ing (Scholkopf & Smola, 2002; Shawe-Taylor & Cristianini,
2004). It is based on choosing a RKHS as the hypothesis
space in the design of learning algorithms. With an appropri-
ate reproducing kernel, RKHS can be used to approximate
any smooth function.
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The classical algorithms to perform learning task are regular-
ized algorithms, such as KRR, kernel principal component
regression (KPCR), and more generally, spectral regulariza-
tion algorithms (SRA). From the point of view of inverse
problems, such approaches amount to solving an empirical,
linear operator equation with the empirical covariance oper-
ator replaced by a regularized one (Engl et al., 1996; Bauer
et al., 2007; Gerfo et al., 2008). Here, the regularization
term is used for controlling the complexity of the solution
to against over-fitting and for ensuring best generalization
ability. Statistical results on generalization error had been
developed in (Smale & Zhou, 2007; Caponnetto & De Vito,
2007) for KRR and in (Caponnetto, 2006; Bauer et al., 2007)
for SRA.

Another type of algorithms to perform learning tasks is
based on iterative procedure (Engl et al., 1996). In this kind
of algorithms, an empirical objective function is optimized
in an iterative way with no explicit constraint or penaliza-
tion, and the regularization against overfitting is realized by
early-stopping the empirical procedure. Statistical results on
generalization error and the regularization roles of the num-
ber of iterations/passes have been investigated in (Zhang
& Yu, 2005; Yao et al., 2007) for gradient methods (GM,
also known as Landweber algorithm in inverse problems),
in (Caponnetto, 2006; Bauer et al., 2007) for accelerated
gradient methods (AGM, known as v-methods in inverse
problems) in (Blanchard & Krimer, 2010) for conjugate
gradient methods (CGM), and in (Lin & Rosasco, 2017b)
for (multi-pass) SGM.

Statistical results have been well studied for these algo-
rithms; however, these algorithms suffer from computational
burdens at least of order O(NN?) due to the nonlinearity of
kernel methods, where [V is the sample size. Indeed, a stan-
dard execution of KRR requires O(NN?) in space and O(N?)
in time, while SGM after T-iterations requires O(N) in
space and O(NT) (or T?) in time. Such approaches would
be prohibitive when dealing with large-scale learning prob-
lems, especially in the case where data cannot be stored
on a single machine. These thus motivate one to study dis-
tributed learning algorithms (Mcdonald et al., 2009; Zhang
et al., 2012). The basic idea of distributed learning is very
simple: randomly divide a dataset of size IV into m subsets
of equal size, compute an independent estimator using a
fixed algorithm on each subset, and then average the local
solutions into a global predictor. Interestingly, distributed
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learning technique has been successfully combined with
KRR (Zhang et al., 2015; Lin et al., 2017) and more gener-
ally, SRA (Guo et al., 2017; Blanchard & Miicke, 2016), and
it has been shown that statistical results on generalization
error can be retained provided that the number of partitioned
subsets is not too large. Moreover, it was highlighted (Zhang
et al., 2015) that distributed KRR not only allows one to
handle large datasets that restored on multiple machines, but
also leads to a substantial reduction in computational com-
plexity versus the standard approach of performing KRR on
all N samples.

In this paper, we study distributed SGM, with multi-passes
over the data and mini-batches. The algorithm is a combina-
tion of distributed learning technique and (multi-pass) SGM:
it randomly partitions a dataset of size NV into m subsets
of equal size, computes an independent estimator by SGM
for each subset, and then averages the local solutions into
a global predictor. It has several free parameters: step-size,
mini-batch size, total number of iterations and partition level
m.

We show that with appropriate choices of algorithmic param-
eters, optimal generalization error bounds can be achieved
provided that the partition level m is not too large. The
proposed configuration has certain advantages on compu-
tational complexity. For example, without considering any
benign properties of the studied problem such as the reg-
ularity of the regression function (Smale & Zhou, 2007;
Caponnetto & De Vito, 2007) and a capacity assumption
on the RKHS (Zhang, 2005; Caponnetto & De Vito, 2007),
even implementing on a single machine, distributed SGM
has an optimal convergence rate of order O(N ~'/2), with a
computational complexity O(N) in space and O(N3/2) in
time, compared with O(N) in space and O(N?) in time of
classic SGM performing on all N samples, or O(N3/2) in
space and O(NN?) in time of distributed KRR. Moreover, the
approach dovetails naturally with parallel and distributed
computation: we are guaranteed a superlinear speedup with
m parallel processors (though we must still communicate
the function estimates from each processor). The proof of
the main results is based on a similar error decomposition
from (Lin & Rosasco, 2017b), which decomposes the ex-
cess risk into three terms: bias, sample and computational
variance. The error decomposition allows one to study dis-
tributed GM and distributed SGM simultaneously. Different
to those in (Lin & Rosasco, 2017b) which rely heavily on
the intrinsic relationship of GM with the square loss, in
this paper, an integral operator approach (Smale & Zhou,
2007; Caponnetto & De Vito, 2007) is used, combining with
some novel and refined analysis. As a byproduct, we derive
optimal statistical results on generalization error for non-
distributed SGM, which improve on the results in (Lin &
Rosasco, 2017b). Note also that we can extend our analysis
to distributed SRA, and get better statistical results than
those from (Zhang et al., 2015; Guo et al., 2017). We report

these results in a longer version of this paper (Lin & Cevher,
2018).

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the supervised learning setting. Section
3 describes distributed SGM and its numerical realization,
and then presents theoretical results on generalization error
for distributed SGM, following with simple comments and
discussions. Section 4 discusses and compares our results
with related work. Proofs for distributed SGM and auxiliary
lemmas are provided in the appendix.

2. Supervised Learning Problems

We consider a supervised learning problem. Let p be a
probability measure on a measure space Z = X X Y, where
X is the input space and Y C R is the output space. Here,
p is fixed but unknown, with its marginal distribution on
X denoted by px and its conditional distribution on Y
given 2 € X denoted by p(-|x). Its information can be only
known through a set of samples z = {2; = (x;,y;)}}, of
N € N points, which we assume to be i.i.d..

The quality of a predictor f : X — Y can be measured in
terms of the expected risk with a square loss defined as

E(f) = /Z ((2) - y)%dp(2). )

In this case, the function minimizing the expected risk over
all measurable functions is the regression function given by

fo(z) = /Y ydp(ylz),  zeX. @)

The performance of an estimator f € Lf) . can be measured
in terms of generalization error (excess risk), i.e., £(f) —
E(f,)- Itis easy to prove that

E) = &) = I1f = Loll5- 3)

Here, ijx is the Hilbert space of square integral func-
tions with respect to px, with its induced norm given by

1fllo = I1flz2, = (Jx [F(@)Pdpx)"* Forany t € Ny,
the set {1,--- ¢} is denoted by [t].

Kernel methods are based on choosing the hypothesis
space as a RKHS. Recall that a reproducing kernel K
is a symmetric function K : X x X — R such that
(K (ug, uj))f j—1 1s positive semidefinite for any finite set
of points {u;}¢_, in X. The reproducing kernel K defines
a RKHS (H, || - ||i) as the completion of the linear span
of the set { K, (-) := K(z,-) : x € X} with respect to the
inner product (K, K,,) g := K(z,u).

Given only the samples z, the goal is to learn the regression
function f, through efficient learning algorithms.
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3. Distributed Learning with Stochastic
Gradient Methods

In this section, we first state distributed SGM and discuss
its numerical realization. We then present theoretical results
on generalization properties for distributed SGM and non-
distributed SGM, following with simple discussions.

3.1. Distributed SGM and Numerical Realization

Throughout this paper, as that in (Zhang et al., 2015), we
assume that! the sample size N = mn for some positive
integers n, m, and we randomly decompose z as z; U zo U
-+ Uz, with |z1| = |22| = -+ = |2zm| = n. For any
s € [m], we write z; = {(Zs,,Ys,i)}1=1. We study the
following distributed SGM, with mini-batches and multi-
pass over the data.

Algorithm 1. Let b € [n]. The b-minibatch stochastic gra-
dient methods over the sample z is defined by f, 1 = 0 and
forallt € [T,

bt

1
fspr1 = fs,t_ntg Z (fsyt(xS,js,l)_ys,js,i)Kms,js,i

i=b(t—1)+1
“4)
where {n, > 0} is a step-size sequence.  Here,
Js1,Js,2," ", Jspr are Lid. random variables from the

uniform distribution on [n].> The global predictor averag-
ing over these local estimators is given by

_ 1 &
ft = E;fs,t-

In the above algorithm, at each iteration ¢, for each s € [m],
the local estimator updates its current solution by subtracting
a scaled gradient estimate. It is easy to see that the gradient
estimate at each iteration for the s-th local estimator is an
unbiased estimate of the full gradient of the empirical risk
over zs. The global predictor is the average over these local
solutions. In the special case m = 1, the algorithm reduces
to the classic multi-pass SGM.

There are several free parameters in the algorithm, the step-
size 7, the mini-batch size b, the total number of itera-
tions/passes, and the number of partition/subsets m. All
these parameters will affect the algorithm’s generalization
properties and computational complexity. In the coming
subsection, we will show how these parameters can be cho-
sen so that the algorithm can generalize optimally, as long as
the number of subsets m is not too large. Different choices

"For the general case, one can consider the weighted averaging
scheme, as that in (Lin et al., 2017), and our analysis still applies
with a simple modification.

2Note that the random variables o1,
ally independent given the sample zs.

, Js,or are condition-

on 7, b, and T correspond to different regularization strate-
gies. In this paper, we are particularly interested in the cases
that both 7, and b are fixed as some universal constants that
may depend on the local sample size n, while 7' is tuned.
The total number of iterations 1" for each local estimator can
be bigger than the local sample size n, which means that
the algorithm can use the data more than once, or in another
words, we can run the algorithm with multiple passes over
the data. Here and in what follows, the number of (effective)
‘passes’ over the data is referred to % after ¢ iterations of
the algorithm.

For any finite subsets x and x’ in X, denote the |x| X |x
kernel matrix [K(x, ')]zex,2’ex’ bY Kxx/. Obviously, us-
ing an inductive argument, one can prove that Algorithm 1
is equivalent to

th = % Z st,t(i)Kws,“

s=1i=1

'

where for all s € [m], by, = [bs¢(1), -+ ,bs.(n)]" €
R"™ and it is generated by, with by ; = 0 € R", for all

t € [T],
. bt
b1 = bs,t*f Z (b;r,thsts,js)i —Ys,jei )€
i=b(t—1)+1
&)
Here, eq, - - - , e,, are standard basis of R™. The space and

time complexities for each local estimator are

O(n) and O(bnT), (6)

respectively. The total space and time complexities of the

algorithm are
O(N)

and O(bNT), respectively. (7

In order to see the empirical performance of the studied
algorithm, we carried out some numerical simulations on a
non-parametric regression problem with simulated datasets.
We constructed a training data {(z;,v;)}Y.; € R x R with
N = 22 from the regression model y = f,(z) + &, where
the regression function f,(z) = |z — 1/2| — 1/2, the in-
put z is uniformly drawn from [0, 1], and £ is a Gaussian
noise with zero mean and standard deviation 1. In all the
simulations, the RKHS is associated with a Gaussian ker-
nel K(z,2') = exp(—lI;f;F) where ¢ = 0.2, and the
mini-batch size b = 1. For each number of partitions
m € {2,8,32,64}, we set the step-size as 7, = é as
that suggested by Part 1) of Corollary 2 in the coming sub-
section’, and executed simulation 50 times. In each trial,

an approximated generalization error is computed over an

31t would be interesting to run the algorithm with other step-
sizes suggested by Corollary 2.
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Figure 1. Approximated Generalization Errors for Distributed SGM with Different Partition Levels m = {2, 8, 32, 64}.

empirical measure with 1000 points. The mean and the
standard deviation of these computed generalization errors
over 50 trials with respect to the number of passes are de-
picted in the above figures. As we can see from the figures,
distributed SGM performs well, and after some number of
passes, it achieves the minimal (approximated) generaliza-
tion error. As the number of subsets m increases, the error
and the number of passes to reach minimal error will also
slightly increase. Note that the computational cost for n
iteration (one pass) of the global estimator is O(N?/m).
Thus the total computational cost for the algorithm to reach
minimal error would be reduced if one enlarges the number
of partition m. Finally, the accuracy is comparable with
0.809 x 10~3 of KRR with cross validation.

3.2. Generalization Properties for Distributed
Stochastic Gradient Methods

In this section, we state our theoretical results on general-
ization error for distributed SGM, following with simple
discussions. To do so, we need to introduce some basic
assumptions. Throughout this paper, we make the following

two basic assumptions.

Assumption 1. H is separable, K is measurable and fur-
thermore, there exists a constant k € [1, 00|, such that for
all x € X,

K(z,r) < &% (8)

Assumption 2. For some M,o > 0,

/dep(y|:E) <M, and
%

/ (f,(z) —y)?dp(y|z) < o2, almost surely.  (9)
Y

The above two assumptions are quite common in statistical
learning theory, see, e.g., (Steinwart & Christmann, 2008;
Cucker & Zhou, 2007). The constant ¢ from Equation
(9) measures the noise level of the studied problem. The
condition [, y*dp(ylz) < M implies that the regression

function is bounded almost surely,
|fo(z)] < M. (10)

It is trivially satisfied when the output domain Y is bounded,
for example, Y = {—1, 1} in the classification problem.
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Corollary 1. Assume that f, € H and
B ].

Consider Algorithm I with any of the following choices on
n, band T.

1)ny ~m/VN forallt € [T,],b=1, and T, ~ N/m.
2) = e forallt € [T.), b~ VN/m, and T, =~

v/ Nlog N.
Then, B
EE(fr, 1) — E(f,) SN~/?log N.

Here, we use the notations a1 < as to mean a; < Cag for
some positive constant C which is depending only on (a
polynomial function) k, M, o, || T, || follz , and a1 =~ ao
to mean az < a1 < as.

The above result provides generalization error bounds for
distributed SGM with two different choices on step-size 7;,
mini-batch size b and total number of iterations/passes. The
convergence rate is optimal up to a logarithmic factor, in
the sense that it matches the minimax rate in (Caponnetto &
De Vito, 2007) and the convergence rate for KRR (Smale
& Zhou, 2007; Caponnetto & De Vito, 2007). The number
of passes to achieve optimal error bounds in both cases is
roughly one. The above result asserts that distributed SGM
generalizes optimally after one pass over the data for two
different choices on step-size and mini-batch size, provided
that the partition level m is not too large. In the case that
m ~ +/N, according to (7), the computational complexities
are O(N) in space and O(N'?) in time, comparing with
O(N) in space and O(NN?) in time of classic SGM.
Corollary 1 provides statistical results on generaliza-
tion error bounds with a convergence rate of order
O(N~'21log N) for distributed SGM. It does not consider
any benign assumptions about the learning problem, such as
the regularity of the regression function and the capacity of
the RKHS. In what follows, we will show how the conver-
gence rate can be further improved, if we make two benign
assumptions of the learning problem.

The first benign assumption relates to the regularity of
the regression function. We introduce the integer operator
L:L2 — L2, definedby Lf = [ f(x)K(x,-)dpx.
Under Assumption (8), L is positive and trace-class, and
hence £ is well defined using the spectral theory.

Assumption 3. There exist ( > 0 and R > 0, such that
1L follp < R.

This assumption characterizes how large the subspace that
the regression function lies in. The bigger the ( is, the
smaller the subspace is, the stronger the assumption is,
and the easier the learning problem is, as £¢' (L2 ) C
L2(L2 ) if {1 > Ca. Moreover, if ¢ = 0, we are making
no assumption, and if ( = %, we are requiring that there

exists some f, € H suchthat fi = f, almost surely (Stein-
wart & Christmann, 2008).

The next assumption relates to the capacity of the hypothesis
space.

Assumption 4. For some v € [0, 1] and c,, > 0, L satisfies

tr(L(L+ M) < e AT, forallA>0.  (11)

The left hand-side of (11) is called effective dimension
(Zhang, 2005) or degrees of freedom (Caponnetto & De Vito,
2007). It is related to covering/entropy number conditions,
see (Steinwart & Christmann, 2008). The condition (11)
is naturally satisfied with v = 1, since L is a trace class
operator which implies that its eigenvalues {0}, satisfy
o; < i~ 1. Moreover, if the eigenvalues of £ satisfy a poly-
nomial decaying condition o; ~ ¢~¢ for some ¢ > 1, or
if £ is of finite rank, then the condition (11) holds with
v = 1/¢, or with v = 0. The case v = 1 is refereed as
the capacity independent case. A smaller  allows deriving
faster convergence rates for the studied algorithms, as will
be shown in the following results.

Making these two assumptions, we have the following gen-
eral results on generalization error for the studied algo-
rithms.

Theorem 1. Under Assumptions 3 and 4, let ( < 1 and
ne = n for all t € [T with n satisfying

0 < . 12
<n_4/i2logT (12)

Then for all t € [T] and any X = n®~' with € [0, 1],
= 1 1 n

E - <t . 1.

x (Agt)? V [y(07F Alogn)]?VE v 1 viogt). (13)

Here and throughout the rest of this paper, we use the no-
tation a1 < as to mean a; < Cag for some positive con-

stant C which is depending only on x, M, (, R, v, Cy, o and
[171l-

In the above result, we only consider the setting of a fixed
step-size. Results with a decaying step-size can be directly
derived following our proofs in the coming sections, com-
bining with some basic estimates from (Lin & Rosasco,
2017b). The derived error bound from (13) depends on the
number of iteration ¢, the step-size 1, the mini-batch size,
the number of sample points N and the partition level m.
It holds for any pseudo regularization parameter A where
A € [n~1,1]. When t < n/n, we can choose A = (nt) !,
and ignoring the logarithmic factor, (13) reads as

1 (nt)”

TN

EE(fir1) —E(fo) S + (14)

n
mb’



Distributed Learning with Multi-pass SGM

The right-hand side of the above inequality is composed of
three terms. The first term is related to the regularity pa-
rameter ¢ of the regression function f,, and it results from
estimating bias. The second term depends on the sample
size N, and it results from estimating sample variance. The
last term results from estimating computational variance
due to random choices of the sample points. In comparing
with the error bounds derived for classic SGM performed on
a local machine, one can see that averaging over the local
solutions can reduce sample and computational variances,
but keeps bias unchanged. As the number of iteration ¢
increases, the bias term decreases, and the sample variance
term increases. This is a so-called trade-off problem in sta-
tistical learning theory. Solving this trade-off problem leads
to the best choice on number of iterations. Notice that the
computational variance term is independent of the number
of iterations ¢ and it depends on the step-size, the mini-batch
size, and the partition level. To derive optimal rates, it is
necessary to choose a small step-size, and/or a large mini-
batch size, and a suitable partition level. In what follows, we
provide different choices of these algorithmic parameters,
corresponding to different regularization strategies, while
leading to the same optimal convergence rates.

Corollary 2. Under Assumptions 3 and 4, let ¢ < 1, 2¢ +
v > 1and

2 -1
with0 < g < 2771 45
20+
Consider Algorithm 1 with any of the following choices on
1, band T.
1
Dy ~n"tforallt € [T, b=1,and T, ~ N n.
) =~ n" V2 forallt € [T.], b ~ /n, and T, =~
N7 \/n.
3)m ~ N %tmforallt € [I.],b =1, and T, ~
2041
N2+ /m.
B = gew foralt € [T, b =~ N7 /m, and
T, ~ N log N.
— 2
Then, BE(fr,+1) — £(f,) < N™747 log N.

mSN’@,

We add some comments on the above theorem. First, the
convergence rate is optimal, as it is the same as that for
KRR from (Caponnetto & De Vito, 2007; Smale & Zhou,
2007) and also it matches the minimax rate in (Caponnetto
& De Vito, 2007), up to a logarithmic factor. Second, dis-
tributed SGM saturates when ¢ > 1. The reason for this is
that averaging over local solutions can only reduce sample
and computational variances, not bias. Similar saturation
phenomenon is also observed when analyzing distributed
KRR in (Zhang et al., 2015; Lin et al., 2017). Third, the
condition 2¢ + v > 1 is equivalent to assuming that the
learning problem can not be too difficult. We believe that
such a condition is necessary for applying distributed learn-
ing technique to reduce computational costs, as there are no

means to reduce computational costs if the learning problem
itself is not easy. Fourth, as the learning problem becomes
easier (corresponds to a bigger (), the faster the convergence
rate is, and moreover the larger the number of partition m
can be. Finally, different parameter choices leads to differ-
ent regularization strategies. In the first two regimes, the
step-size and the mini-batch size are fixed as some prior
constants (which only depends on n), while the number of
iterations depends on some unknown distribution parame-
ters. In this case, the regularization parameter is the number
of iterations, which in practice can be tuned by using cross-
validation methods. Besides, the step-size and the number
of iterations in the third regime, or the mini-batch size and
the number of iterations in the last regime, depend on the
unknown distribution parameters, and they have some regu-
larization effects. The above theorem asserts that distributed
SGM with differently suitable choices of parameters can
generalize optimally, provided the partition level m is not
too large.

3.3. Optimal Convergence for Multi-pass SGM on a
Single Dataset

As a byproduct of our new analysis in the coming sections,
we derive the following results for classic multi-pass SGM.

Theorem 2. Under Assumptions 3 and 4, consider Algo-
rithm 1 with m = 1 and any of the following choices on 1,
bandT.

Dne~ N1 forallt € [T, b= 1, and T, ~ N*+1.
2)n ~ N~YV2 forallt € [Ty], b ~ VN, and T, ~
Na+1/2'

3)n; ~ N~ forallt € [T,),b=1,and T, ~ N*(2¢+1),
4)n ~ loéN forallt € [T.], b ~ N*% and T, ~
N%logT.

_ 1
Here, o = [Ce=vGE Then,

N’%logN, if2¢ +v > 1;

EE(fr,11) — E(fp) S {NQC log N,

otherwise.

(16)

The above results provide generalization error bounds for
multi-pass SGM trained on a single dataset. The derived
convergence rate is optimal in the minimax sense (Capon-
netto & De Vito, 2007; Blanchard & Miicke, 2017). Note
that SGM does not have a saturation effect, and optimal
convergence rates can be derived for any ¢ €]0, oo]. Theo-
rem 2 improves the result in (Lin & Rosasco, 2017b) in two
aspects. First, the convergence rates are better than those
(e, O(N™ 757 log N) if 2¢ + v > 1 or O(N—% log* N)
otherwise) from (Lin & Rosasco, 2017b). Second, the above
theorem does not require the extra condition m > mg made
in (Lin & Rosasco, 2017b).
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3.4. Error Decomposition

The key to our proof is an error decomposition. To introduce
the error decomposition, we need to introduce two auxiliary
sequences. The first auxiliary sequence is generated by
distributed GM.

Algorithm 2. For any s € [m], the GM over the sample set
z, is defined by g;1 = Oand fort =1,--- T,

n

1
Gs.t41 = Gt — T Z(gs,t(fﬂs,i) —Ys,i) Ko, s (A7)

i=1

where {n; > 0} is a step-size sequence given by Algorithm
1. The average estimator over these local estimators is given
by

1 m
G = Ez_ggs,t. (18)

The second auxiliary sequence is generated by distributed
pseudo GM as follows.

Algorithm 3. For any s € [m], the pseudo GM over the
input set X, is defined by hg 1 = 0andfort =1,--- T,

n

1
hs,t+1 = hs7t_77tﬁ Z(hs,t(xs,i)_fp(xsj))szﬂa (19)

=1

where {n; > 0} is a step-size sequence given by Algorithm
1. The average estimator over these local estimators is given
by

_ 1 &
hy = ~ ; oy (20)

Note that Algorithm (19) can not be implemented in practice,
as f,(x) is unknown in general.

For any s € [m], using an inductive argument, one can
prove that (Lin & Rosasco, 2017b)

Ey,jz. [fs.t] = gst- 1)

Here Ej |, (or abbreviated as Ej, ) denotes the conditional
expectation with respect to J 5 given z;. Similarly, using the
definition of the regression function (2) and an inductive
argument, one can also prove that

Ey.[gs,t] = hs.s- (22)

With the above two equalities, we can prove the following
error decomposition. We introduce the inclusion operator
S, H— L% .

Proposition 1. We have that for any t € [T},

EE(f) = £(f,) = EllSph: — £l

e - e (23)
+ E[IS,(ge = ho)ll) + ESo(fr = o)l

The error decomposition is similar as the one given in (Lin &
Rosasco, 2017b) for classic multi-pass SGM. There are three
terms in the right-hand side of (23). The first term depends
on the regularity of the regression function (Assumption 3)
and it is called as bias. The second term depends on the
noise level o2 from (9) and it is called as sample variance.
The last term is caused by the random estimates of the full
gradients and it is called as computational variance. In
the appendix, we will estimate these three terms separately.
Total error bounds can be thus derived by substituting these
estimates into the error decomposition.

4. Discussion

We briefly review convergence results for SGM. SGM (Rob-
bins & Monro, 1951) has been widely used in convex op-
timization and machine learning, see e.g. (Cesa-Bianchi
et al., 2004; Nemirovski et al., 2009; Bottou et al., 2016)
and references therein. In what follows, we will briefly
recall some recent works on generalization error for non-
parametric regression on a RKHS considering the square
loss. We will use the term “online learning algorithm” (OL)
to mean one-pass SGM, i.e, SGM that each sample can be
used only once. Different variants of OL, either with or
without regularization, have been studied. Most of them
take the form

fror = (L= M) fe — ne(fee) — yt)wat =1--,N.

Here, the regularization parameter \; could be zero (Zhang,
2004; Ying & Pontil, 2008), or a positive (Smale & Yao,
2006; Ying & Pontil, 2008) and possibly time-varying con-
stant (Tarres & Yao, 2014). Particularly, (Tarres & Yao,
2014) studied OL with time-varying regularization param-

eters and convergence rate of order O(IN 2T ) (€€ [5,1)
in high probability was proved. (Ying & Pontil, 2008)
studied OL without regularization and convergence rate
of order O(N 72;‘%) in expectation was shown. Both
convergence rates from (Ying & Pontil, 2008; Tarres &
Yao, 2014) are capacity-independently optimal and they
do not take the capacity assumption into account. Consid-
ering an averaging step (Polyak & Juditsky, 1992) and a
proof technique motivated by (Bach & Moulines, 2013),
(Dieuleveut & Bach, 2016) proved capacity-dependently

optimal rate O(N _ﬁ) for OL in the case that ¢ < 1.
Recently, (Lin & Rosasco, 2017b) studied (multi-pass)
SGM, i.e, Algorithm 1 with m = 1. They showed that
SGM with suitable parameter choices, achieves conver-
gence rate of order O(N_ﬁ logﬁ N) with g = 2
when 2a + v > 1 or 8 = 4 otherwise, after some number
of iterations. In comparisons, the derived results for SGM
in Theorem 2 are better than those from (Lin & Rosasco,
2017b), and the convergence rates are the same as those
from (Dieuleveut & Bach, 2016) for averaging OL when
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¢ <1and 2+ > 1. For the case 2¢ 4+ -y < 1, the conver-
gence rate O(N~2¢(1 V log N7)) for SGM in Theorem 2
is worser than O(N~2¢) in (Dieuleveut & Bach, 2016) for
averaging OL. However, averaging OL saturates for ¢ > 1,
while SGM does not.

To meet the challenge of large-scale learning, a line of re-
search focus on designing learning algorithms with Nystrom
subsampling, or more generally sketching. Interestingly, the
latter has also been applied to compressed sensing, low rank
matrix recovery and kernel methods, see e.g. (Candes et al.,
2006; Yurtsever et al., 2017; Yang et al., 2012) and refer-
ences therein. The basic idea of Nystrom subsampling is
to replace a standard large matrix with a smaller matrix ob-
tained by subsampling (Smola & Scholkopf, 2000; Williams
& Seeger, 2000). For kernel methods, Nystrom subsam-
pling has been successfully combined with KRR (Alaoui &
Mahoney, 2015; Yang et al., 2015; Rudi et al., 2015) and
SGM (Lu et al., 2016; Lin & Rosasco, 2017a). General-
ization error bounds of order O(N %) (Rudi et al., 2015;
Lin & Rosasco, 2017a) were derived, provided that the
subsampling level is suitably chosen, considering the case
¢ e [%, 1]. Computational advantages of these algorithms
were highlighted. Here, we summarize their computational
costs in Table 1, from which we see that distributed SGM
has advantages on both memory and time.

Another line of research for large-scale learning focus on
distributed (parallelizing) learning. Distributed learning,
based on a divide-and-conquer approach, has been used for,
e.g., perceptron-based algorithms (Mcdonald et al., 2009),
parametric smooth convex optimization problems (Zhang
et al., 2012), and sparse regression (Lee et al., 2017). Re-
cently, this approach has been successfully applied to learn-
ing algorithms with kernel methods, such as KRR (Zhang
et al., 2015), and SRA (Guo et al., 2017; Blanchard &
Miicke, 2017). (Zhang et al., 2015) first studied distributed
KRR and showed that distributed KRR retains optimal rates
O(N _25%) (for ¢ € [%,1]) provided the partition level is
not too large. The number of partition to retain optimal rate
shown in (Zhang et al., 2015) for distributed KRR depends
on some conditions which may be less well understood and
thus potentially leads to a suboptimal partition number. (Lin
et al., 2017) provided an alternative and refined analysis for
distributed KRR, leading to a less strict condition on the
partition number. (Guo et al., 2017) extended the analysis to
distributed SRA, an proved optimal convergence rate for the
case ¢ > 1/2, if the number of partitions m < N%. In
comparison, the condition on partition number from Corol-
lary 2 for distributed SGM is less strict. Moreover, Corollary
2 shows that distributed SGM can retain optimal rate even
in the non-attainable case. According to Corollary 2, dis-
tributed SGM with appropriate choices of parameters can
achieve optimal rate if the partition number is not too large.
In comparison of the derived results for distributed KRR

Table 1. Summary of assumptions and costs for distributed SGM
(DSGM), KRR, GM, one-pass SGM with averaging (AveOL),
SGM, Nystrom KRR (NyKRR), Nystrom SGM (NySGM), and
distributed KRR (DKRR).

Alg. Ass. (¢/7) Space/Time

KRR [1,1],]0,1] N2&N3

GM [0, 0c], [0,1] N & N2N =¥z
AveOL [0,1], [0, 1] N & N2

SGM [0, 0], [0, 1] N & N2N 255
NyKRR [1,1],]0,1] NS & NSF
NySGM  [1,1],]0,1] N#= V1 g Nocs
DKRR [1,1,]0,1] N & N
DsGM  [0,1],10,1] N & NS

Note: 1) For AveOL and DSGM, 2¢ + ~ > 1. 2) The costs here for the distributed algorithms

are the costs of running the distributed algorithms on a single machine.

with those for distributed SGM, we see from Table 1 that
the latter has advantages on both memory and time. The
most related to our works are (Zinkevich et al., 2010; Jain
et al., 2016). (Zinkevich et al., 2010) studied distributed OL
for optimization problems over a finite-dimensional domain,
and proved convergence results assuming that the objective
function is strongly convex. (Jain et al., 2016) considered
distributed OL with averaging for least square regression
problems over a finite-dimension space and proved certain
convergence results that may depend on the smallest eigen-
value of the covariance matrix. These results do not apply
to our cases, as we consider distributed multi-pass SGM for
nonparametric regression over a RKHS and our objective
function is not strongly convex. We finally remark that using
a partition approach (Thomann et al., 2016; Tandon et al.,
2016), one can also scale up the kernel methods, with a com-
putational advantage similar as those of using distributed
learning technique.

We conclude this section with some further questions. First,
in this paper, we assume that all parameter choices are
given priorly. In practice, these parameters can be possibly
tuned by cross-validation method. Second, the derived rate
for SGM in the case 2¢ + v < 1is O(N~2¢(1V1log N7)),
which is worser than O (N ~2¢) of averaging OL (Dieuleveut
& Bach, 2016). It would be interesting to improve the rate,
or to derive a minimax rate for the case 2¢ + v < 1. Third,
all results stated in this paper are in expectation, and it would
be interesting to derive high-probability results in the future
(and possibly by a proof technique from (London, 2017)).
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