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Abstract
We investigate regularized algorithms combining
with projection for least-squares regression prob-
lem over a Hilbert space, covering nonparamet-
ric regression over a reproducing kernel Hilbert
space. We prove convergence results with respect
to variants of norms, under a capacity assumption
on the hypothesis space and a regularity condi-
tion on the target function. As a result, we obtain
optimal rates for regularized algorithms with ran-
domized sketches, provided that the sketch dimen-
sion is proportional to the effective dimension up
to a logarithmic factor. As a byproduct, we ob-
tain similar results for Nyström regularized algo-
rithms. Our results provide optimal, distribution-
dependent rates that do not have any saturation ef-
fect for sketched/Nyström regularized algorithms,
considering both the attainable and non-attainable
cases.

1. Introduction
Let the input space H be a separable Hilbert space with
inner product denoted by 〈·, ·〉H , and the output space R.
Let ρ be an unknown probability measure on H ×R. In this
paper, we study the following expected risk minimization,

inf
ω∈H
Ẽ(ω), Ẽ(ω) =

∫
H×R

(〈ω, x〉H − y)2dρ(x, y), (1)

where the measure ρ is known only through a sample
z = {zi = (xi, yi)}ni=1 of size n ∈ N, independently and
identically distributed (i.i.d.) according to ρ.
The above regression setting covers nonparametric regres-
sion over a reproducing kernel Hilbert space (Cucker &
Zhou, 2007; Steinwart & Christmann, 2008), and it is close

1 Laboratory for Information and Inference Systems, École
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to functional regression (Ramsay, 2006) and linear inverse
problems (Engl et al., 1996). A basic algorithm for the
problem is ridge regression, and its generalization, spectral-
regularized algorithm. Such algorithms can be viewed as
solving an empirical, linear equation with the empirical co-
variance operator replaced by a regularized one, see (Capon-
netto & Yao, 2006; Bauer et al., 2007; Gerfo et al., 2008; Lin
et al., 2018) and references therein. Here, the regularization
is used to control the complexity of the solution to against
over-fitting and to achieve best generalization ability.
The function/estimator generated by classic regularized al-
gorithm is in the subspace span{x} of H , where x =
{x1, · · · , xn}. More often, the search of an estimator
for some specific algorithms is restricted to a different
(and possibly smaller) subspace S, which leads to reg-
ularized algorithms with projection. Such approaches
have computational advantages in nonparametric regres-
sion with kernel methods (Williams & Seeger, 2000;
Smola & Schölkopf, 2000). Typically, with a subsam-
ple/sketch dimension m < n, S = span{x̃j : 1 ≤ j ≤ m}
where x̃j is chosen randomly from the input set x,
or S = span{

∑m
j=1Gijxj : 1 ≤ i ≤ m} where G =

[Gij ]1≤i≤m,1≤j≤n is a general randomized matrix whose
rows are drawn according to a distribution. The resulted
algorithms are called Nyström regularized algorithm and
sketched-regularized algorithm, respectively.
Our starting points of this paper are recent papers (Bach,
2013; Alaoui & Mahoney, 2015; Yang et al., 2015; Rudi
et al., 2015; Myleiko et al., 2017) where convergence results
on Nyström/sketched regularized algorithms for learning
with kernel methods are given. Particularly, within the fixed
design setting, i.e., the input set x are deterministic while
the output set y = {y1, · · · , yn} treated randomly, conver-
gence results have been derived, in (Bach, 2013; Alaoui &
Mahoney, 2015) for Nyström ridge regression and in (Yang
et al., 2015) for sketched ridge regression. Within the ran-
dom design setting (which is more meaningful (Hsu et al.,
2014) in statistical learning theory) and involving a regular-
ity/smoothness condition on the target function (Smale &
Zhou, 2007), optimal statistical results on generalization er-
ror bounds (excess risks) have been obtained in (Rudi et al.,
2015) for Nyström ridge regression. The latter results were
further generalized in (Myleiko et al., 2017) to a general
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Nyström regularized algorithm.
Although results have been developed for sketched ridge
regression in the fixed design setting, it is still unclear if one
can get statistical results for a general sketched-regularized
algorithms in the random design setting. Besides, all the
derived results, either for sketched or Nyström regularized
algorithms, are only for the attainable case, i.e., the case
that the expected risk minimization (1) has at least one so-
lution in H . Moreover, they saturate (Bauer et al., 2007)
at a critical value, meaning that they can not lead to bet-
ter convergence rates even with a smoother target function.
Motivated by these, in this paper, we study statistical re-
sults of projected-regularized algorithms for least-squares
regression over a separable Hilbert space within the random
design setting.
We first extend the analysis in (Lin et al., 2018) for classic-
regularized algorithms to projected-regularized algorithms,
and prove statistical results with respect to a broader class of
norms. We then show that optimal rates can be retained for
sketched-regularized algorithms, provided that the sketch
dimension is proportional to the effective dimension (Zhang,
2005) up to a logarithmic factor. As a byproduct, we obtain
similar results for Nyström regularized algorithms.
Interestingly, our results are the first ones with optimal,
distribution-dependent rates that do not have any saturation
effect for sketched/Nyström regularized algorithms, con-
sidering both the attainable and non-attainable cases. In
our proof, we naturally integrate proof techniques from
(Smale & Zhou, 2007; Caponnetto & De Vito, 2007; Rudi
et al., 2015; Myleiko et al., 2017; Lin et al., 2018). Our
novelties lie in a new estimates on the projection error for
sketched-regularized algorithms, a novel analysis to conquer
the saturation effect, and a refined analysis for Nyström reg-
ularized algorithms, see Section 4 for details.
The rest of the paper is organized as follows. Section 2 in-
troduces some auxiliary notations and projected-regularized
algorithms. Section 3 present assumptions and our main
results, followed with simple discussions. Finally, Section 4
gives the proofs of our main results.

2. Learning with Projected-regularized
Algorithms

In this section, we introduce some notations as well as auxil-
iary operators, and present projected-regularized algorithms.

2.1. Notations and Auxiliary Operators

Let Z = H ×R, ρX(·) the induced marginal measure on H
of ρ, and ρ(·|x) the conditional probability measure on R
with respect to x ∈ H and ρ. For simplicity, we assume that
the support of ρX is compact and that there exists a constant
κ ∈ [1,∞[, such that

〈x, x′〉H ≤ κ2, ∀x, x′ ∈ H, ρX -almost every. (2)

Define the hypothesis space Hρ = {f : H → R|∃ω ∈
H with f(x) = 〈ω, x〉H , ρX -almost surely}. Denote L2

ρX
the Hilbert space of square integral functions from H to
R with respect to ρX , with its norm given by ‖f‖ρ =(∫
H
|f(x)|2dρX

) 1
2 .

For a given bounded operator L : L2
ρX → H,

‖L‖ denotes the operator norm of L, i.e., ‖L‖ =
supf∈L2

ρX
,‖f‖ρ=1 ‖Lf‖H . Let r ∈ N+, the set {1, · · · , r}

is denoted by [r]. For any real number a, a+ = max(a, 0),
a− = min(0, a).
Let Sρ : H → L2

ρX be the linear map ω → 〈ω, ·〉H , which
is bounded by κ under Assumption (2). Furthermore, we
consider the adjoint operator S∗ρ : L2

ρX → H , the covari-
ance operator T : H → H given by T = S∗ρSρ, and
the integeral operator L : L2

ρX → L2
ρX given by SρS∗ρ . It

can be easily proved that S∗ρg =
∫
H
xg(x)dρX(x), Lf =∫

H
f(x)〈x, ·〉HdρX(x) and T =

∫
H
〈·, x〉HxdρX(x). Un-

der Assumption (2), the operators T and L can be proved
to be positive trace class operators (and hence compact):

‖L‖ = ‖T ‖ ≤ tr(T ) =

∫
H

tr(x⊗ x)dρX(x)

=

∫
H

‖x‖2HdρX(x) ≤ κ2.

(3)

For any ω ∈ H , it is easy to prove the following isometry
property (Bauer et al., 2007),

‖Sρω‖ρ = ‖
√
T ω‖H . (4)

Moreover, according to the singular value decomposition of
a compact operator, one can prove that

‖L− 1
2Sρω‖ρ ≤ ‖ω‖H . (5)

We define the sampling operator Sx : H → Rn by
(Sxω)i = 〈ω, xi〉H , i ∈ [n], where the norm ‖ · ‖Rn in Rn
is the Euclidean norm times 1/

√
n. Its adjoint operator S∗x :

Rn → H, defined by 〈S∗xy, ω〉H = 〈y,Sxω〉Rn for y ∈ Rn
is thus given by S∗xy = 1

n

∑n
i=1 yixi. Moreover, we can

define the empirical covariance operator Tx : H → H such
that Tx = S∗xSx. Obviously, Tx = 1

n

∑n
i=1〈·, xi〉Hxi. By

Assumption (2), similar to (3), we have

‖Tx‖ ≤ tr(Tx) ≤ κ2. (6)

It is easy to see that Problem (1) is equivalent to

inf
f∈Hρ

E(f), E(f) =

∫
H×R

(f(x)− y)2dρ(x, y), (7)

The function that minimizes the expected risk over all mea-
surable functions is the regression function (Cucker & Zhou,
2007; Steinwart & Christmann, 2008), defined as,

fρ(x) =

∫
R
ydρ(y|x), x ∈ H, ρX -almost every. (8)
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A simple calculation shows that the following well-known
fact holds (Cucker & Zhou, 2007; Steinwart & Christmann,
2008), for all f ∈ L2

ρX , E(f)− E(fρ) = ‖f − fρ‖2ρ. Then
it is easy to see that (7) is equivalent to inff∈Hρ ‖f − fρ‖2ρ.
Under Assumption (2), Hρ is a subspace of L2

ρX . Using the
projection theorem, one can prove that a solution fH for
the problem (7) is the projection of the regression function
fρ onto the closure of Hρ in L2

ρX , and moreover, for all
f ∈ Hρ (Lin & Rosasco, 2017),

S∗ρfρ = S∗ρfH , (9)

and
E(f)− E(fH) = ‖f − fH‖2ρ. (10)

Note that fH does not necessarily be in Hρ, as indicated by
a simple example constructed in the appendix.
Throughput this paper, S is a closed, finite-dimensional
subspace of H , and P is the projection operator onto S.

2.2. Projected-regularized Algorithms

In this subsection, we demonstrate and introduce projected-
regularized algorithms.
The expected risk Ẽ(ω) in (1) can not be computed ex-
actly. It can be only approximated through the empirical
risk Ẽz(ω), Ẽz(ω) = 1

n

∑n
i=1(〈ω, xi〉H − yi)2. A first idea

to deal with the problem is to replace the objective func-
tion in (1) with the empirical risk. Moreover, we restrict
the solution to the subspace S. This leads to the projected
empirical risk minimization, infω∈S Ẽz(ω). Using P 2 = P,
a simple calculation shows that a solution for the above is
given by ω̂ = Pα̂, with α̂ satisfying PTxPα̂ = PS∗xy.
Motivated by the classic (iterated) ridge regression, we re-
place PTxP with a regularized one, and thus leads to the
following projected (iterated) ridge regression.

Algorithm 1. The projected (iterated) ridge regression al-
gorithm of order τ over the samples z and the subspace S
is given by fzλ = Sρωz

λ, where 1

ωz
λ = PGλ(PTxP )PS∗xy, Gλ(u) =

τ∑
i=1

λi−1(λ+ u)−i.

(11)

Remark 1. 1) In this paper, we focus on projected ridge
regression, but all the derived results hold for a general
projected-regularized algorithm, in which Gλ is a general
filter function. Given Λ ⊂ R+, a class of functions {Gλ :
[0, κ2] → [0,∞[, λ ∈ Λ} are called filter functions with
qualification τ (τ ≥ 1) if there exist some positive constants

1Let L be a self-adjoint, compact operator over a separable
Hilbert space H . Gλ(L) is an operator on L defined by spectral
calculus: suppose that {(σi, ψi)}i is a set of normalized eigenpairs
of L with the eigenfunctions {ψi}i forming an orthonormal basis
of H , then Gλ(L) =

∑
i Gλ(σi)ψi ⊗ ψi.

E,F <∞ such that

sup
λ∈Λ

sup
u∈]0,κ2]

|Gλ(u)(u+ λ)| ≤ E. (12)

and

sup
α∈[0,τ ]

sup
λ∈Λ

sup
u∈]0,κ2]

|1− Gλ(u)u|(u+ λ)αλ−α ≤ F. (13)

2) A simple calculation shows that

Gλ(u) =
1− qτ

u
=

∑τ−1
i=0 q

i

u+ λ
, q =

λ

λ+ u
. (14)

Thus, Gλ(u) is a filter function with qualification τ , E = τ
and F = 1. When τ = 1, it is a filter function for classic
ridge regression and the algorithm is projected ridge regres-
sion.
3) Another typical filter function studied in the literature is
Gλ(u) = u−11{u≥λ}, which corresponds to principal com-
ponent (spectral cut-off) regularization. Here, 1{·} denotes
the indication function. In this case, E = 2, F = 2τ and τ
could be any positive number.

In the above, λ is a regularization parameter which needs
to be well chosen in order to achieve best performance.
Throughout this paper, we assume that 1/n ≤ λ ≤ 1.
The performance of an estimator fzλ can be measured
in terms of excess risk (generalization error), E(fzλ) −
infHρ E = Ẽ(ωz

λ)−infH Ẽ ,which is exactly ‖fzλ−fH‖2ρ ac-
cording to (10). Assuming that fH ∈ Hρ, i.e., fH = Sρω∗
for some ω∗ ∈ H (in this case, the solution with minimalH-
norm for fH = Sρω is denoted by ωH ), it can be measured
in terms of H-norm, ‖ωz

λ − ωH‖H , which is closely related
to ‖L− 1

2Sρ(ωz
λ−ωH)‖H = ‖L− 1

2 (fzλ − fH)‖ρ, according
to (5). In what follows, we will measure the performance
of an estimator fzλ in terms of a broader class of norms,
‖L−a(fzλ − fH)‖ρ, where a ∈ [0, 1

2 ] is such that L−afH is
well defined. But one should keep in mind that all the de-
rived results also hold if we replace ‖L−a(fzλ − fH)‖ρ with
‖T 1

2−a(ωz
λ − ωH)‖H in the attainable case, i.e., fH ∈ Hρ.

We will report these results in a longer version of this paper.
Convergence with respect to different norms has its strong
backgrounds in convex optimization, inverse problems, and
statistical learning theory. Particularly, convergence with
respect to target function values and H-norm has been stud-
ied in convex optimization. Interestingly, convergence in
H-norm can imply convergence in target function values
(although the derived rate is not optimal), while the opposite
is not true.

3. Convergence Results
In this section, we first introduce some basic assump-
tions and then present convergence results for projected-
regularized algorithms. Finally, we give results for
sketched/Nyström regularized algorithms.
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3.1. Assumptions

In this subsection, we introduce three standard assumptions
made in statistical learning theory (Steinwart & Christmann,
2008; Cucker & Zhou, 2007; Lin et al., 2018). The first
assumption relates to a moment condition on the output
value y.

Assumption 1. There exist positive constants Q and M
such that for all l ≥ 2 with l ∈ N,∫

R
|y|ldρ(y|x) ≤ 1

2
l!M l−2Q2, (15)

ρX -almost surely.

Typically, the above assumption is satisfied if y is bounded
almost surely, or if y = 〈ω∗, x〉H + ε, where ε is a Gaussian
random variable with zero mean and it is independent from
x. Condition (15) implies that the regression function is
bounded almost surely, using the Cauchy-Schwarz inequal-
ity.
The next assumption relates to the regularity/smoothness of
the target function fH .

Assumption 2. fH satisfies∫
H

(fH(x)− fρ(x))2x⊗ xdρX(x) � B2T , (16)

and the following Hölder source condition

fH = Lζg0, with ‖g0‖ρ ≤ R. (17)

Here, B,R, ζ are non-negative numbers.

Condition (16) is trivially satisfied if fH − fρ is bounded al-
most surely. Moreover, when making a consistency assump-
tion, i.e., infHρ E = E(fρ), as that in (Smale & Zhou, 2007;
Caponnetto, 2006; Caponnetto & De Vito, 2007; Steinwart
et al., 2009), for kernel-based non-parametric regression,
it is satisfied with B = 0. Condition (17) characterizes
the regularity of the target function fH (Smale & Zhou,
2007). A bigger ζ corresponds to a higher regularity and a
stronger assumption, and it can lead to a faster convergence
rate. Particularly, when ζ ≥ 1/2, fH ∈ Hρ (Steinwart &
Christmann, 2008). This means that the expected risk mini-
mization (1) has at least one solution inH , which is referred
to as the attainable case.
Finally, the last assumption relates to the capacity of the
space H (Hρ).

Assumption 3. For some γ ∈ [0, 1] and cγ > 0, T satisfies

tr(T (T + λI)−1) ≤ cγλ−γ , for all λ > 0. (18)

The left hand-side of (18) is called degrees of freedom
(Zhang, 2005), or effective dimension (Caponnetto &
De Vito, 2007). Assumption 3 is always true for γ = 1

and cγ = κ2, since T is a trace class operator. This is re-
ferred to as the capacity independent setting. Assumption
3 with γ ∈ [0, 1] allows to derive better rates. It is satisfied,
e.g., if the eigenvalues of T satisfy a polynomial decaying
condition σi ∼ i−1/γ , or with γ = 0 if T is finite rank.

3.2. Results for Projected-regularized Algorithms

We are now ready to state our first result as follows.
Throughout this paper, C denotes a positive constant that
depends only on κ2, cγ , γ, ζ B,M,Q,R, τ and ‖T ‖, and
it could be different at its each appearance. Moreover, we
write a1 . a2 to mean a1 ≤ Ca2.

Theorem 1. Under Assumptions 1, 2 and 3, let λ = nθ−1

for some θ ∈ [0, 1], τ ≥ ζ, and a ∈ [0, 1
2 ∧ ζ]. Then the

following holds with probability at least 1− δ (0 < δ < 1).
1) If ζ ∈ [0, 1],

‖L−a(fzλ − fH)‖ρ . λ−a log2 3

δ
t1−aθ,n ×(

λζ +
1√
nλγ

+ λζ−1
(
∆5 + ∆1−a

5 λa
))

. (19)

2) If ζ ≥ 1 and λ ≥ n−1/2,

‖L−a(fzλ − fH)‖ρ . λ−a log2 3

δ
×(

λζ +
1√
nλγ

+ (∆5 + λ∆
(ζ−1)∧1
5 + ∆1−a

5 λa)

)
. (20)

Here, ∆5 is the projection error ‖(I − P )T 1
2 ‖2 and

tθ,n = [1 ∨ (θ−1 ∧ log nγ)]. (21)

The above result provides high-probability error bounds
with respect to variants of norms for projected-regularized
algorithms. The upper bound consists of three terms. The
first term depends on the regularity parameter ζ, and it
arises from estimating bias. The second term depends on
the sample size, and it arises from estimating variance. The
third term depends on the projection error. Note that there
is a trade-off between the bias and variance terms. Ignoring
the projection error, solving this trade-off leads to the best
choice on λ and the following results.

Corollary 2. Under the assumptions and notations of The-
orem 1, let λ = n−

1
1∨(2ζ+γ) . Then the following holds with

probability at least 1− δ.
1) If 2ζ + γ ≤ 1,

‖L−a(fzλ − fH)‖ρ

. n−(ζ−a)
(
1 + (γ log n)1−a)(1 + λ−1∆5

)
log2 3

δ
.

(22)
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2) If ζ ∈ [0, 1] and 2ζ + γ > 1,

‖L−a(fzλ − fH)‖ρ . n−
ζ−a
2ζ+γ

(
1 + λ−1∆5

)
log2 3

δ
.

(23)

3) If ζ ≥ 1,

‖L−a(fzλ − fH)‖ρ . λ−a log2 3

δ
×(

n−
ζ

2ζ+γ + ∆5

(
1 +

( λ

∆5

)
∆

(ζ−1)∧1
5 +

( λ

∆5

)a))
.

(24)

Comparing the derived upper bound for projected-
regularized algorithms with that for classic regularized al-
gorithms in (Lin et al., 2018), we see that the former has
an extra term, which is caused by projection. The above
result asserts that projected-regularized algorithms perform
similarly as classic regularized algorithms if the projection
operator is well chosen such that the projection error is small
enough.
In the special case that P = I , we get the follow result.

Corollary 3. Under the assumptions and notations of The-
orem 1, let λ = n−

1
1∨(2ζ+γ) and P = I . Then with proba-

bility at least 1− δ,

‖L−a(fzλ − fH)‖ρ

. log2 3

δ

{
n−(ζ−a)

(
1 + (γ log n)1−a) , if 2ζ + γ ≤ 1,

n−
ζ−a
2ζ+γ , if 2ζ + γ > 1.

(25)

The above result recovers the result derived in (Lin et al.,
2018). The convergence rates are optimal as they match
the mini-max rates with ζ ≥ 1/2 derived in (Caponnetto &
De Vito, 2007; Blanchard & Mucke, 2016).

3.3. Results for Sketched-regularized Algorithms

In this subsection, we state results for sketched-regularized
algorithms.
In sketched-regularized algorithms, the range of the pro-
jection operator P is the subspace range{S∗xG∗}, where
G ∈ Cm×n is a sketch matrix whose rows are i.i.d drawn
according to a distribution F . In this paper, we assume the
distribution F satisfies the following two properties.

• Isotropy property: We say that F obeys the isotropy
property if

E[aa∗] = I, a ∼ F. (26)

• Bounded property: We assume that the random vec-
tor a ∼ F is bounded almost surely: for some µ > 0,

‖a‖2 ≤
√
nµ. (27)

Examples for the above sketch mechanics include subsam-
pled orthogonal systems (OS), subsampled tight or continu-
ous frames, and random convolutions, etc, see (Candes &
Plan, 2011) for further details. In this paper, we focus on OS
sketches, which are based on randomly sampling the rows
of a fixed orthonormal matrix K ∈ Rn×n. Examples of
such matrices include the discrete Fourier transform (DFT)
matrix, and the Hadamard matrix. Using OS sketches has
an advantage in computation, as that for suitably chosen
orthonormal matrices such as the DFT and Hadamard matri-
ces, a matrix-vector product can be executed in O(n logm)
time, in contrast to O(nm) time required for the same oper-
ation with generic dense sketches.
Conditions (27) implies that µ ≥ 1, due to the isotropy
property. Without loss of generality, we assume that µ = 1
throughout.
The following corollary shows that sketched-regularized al-
gorithms have optimal rates provided the sketch dimension
m is not too small.

Corollary 4. Under the assumptions of Theorem 1, let S =
range{S∗xG∗}, where G ∈ Cm×n is a randomized matrix
whose rows are i.i.d drawn from the distribution F . Let
λ = n−

1
1∨(2ζ+γ) and

m &


nγ log2 3nγ

δ log 3
δ if 2ζ + γ ≤ 1,

n
γ(ζ−a)

(1−a)(2ζ+γ) log 3nγ

δ log2 3
δ if ζ ≥ 1,

n
γ

2ζ+γ log 3nγ

δ log2 3
δ otherwise.

(28)

Then with confidence at least 1− δ, for ζ ≤ 1, or ζ > 1 and
a ≤ γ/(2ζ + γ − 2), the following holds

‖L−a(fzλ − fH)‖ρ

. log3 3

δ

{
n−(ζ−a)

(
1 + (γ log n)2(1−a)

)
, if 2ζ + γ ≤ 1,

n−
ζ−a
2ζ+γ , if 2ζ + γ > 1.

(29)

The above results assert that sketched-regularized algo-
rithms converge optimally, provided the sketch dimension
is not too small, or in another words the error caused by
projection is negligible when the sketch dimension is large
enough. Note that the minimal sketch dimension from the
above is proportional to the effective dimension λ−γ up to
a logarithmic factor for the case ζ ≤ 1.

Remark 2. 1) The bounded assumption (27) may be re-
placed with a high-probability bounded assumption as that
in (Candes & Plan, 2011), which is satisfied for Gaussian
sketches.
2) Considering only the case ζ = 1/2 and a = 0, (Yang
et al., 2015) provides optimal error bounds for sketched
ridge regression within the fixed design setting.
3) Letting ζ = 1/2, the minimal sketch dimension from
the above is smaller than O(n

γ
γ+1 log4 n) from (Yang et al.,

2015) using OS sketches.
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3.4. Results for Nyström Regularized Algorithms

As a byproduct of the paper, using Corollary 2, we derive
the following results for Nyström regularized algorithms.
Corollary 5. Under the assumptions of Theorem 1, let S =

span{x1, · · · , xm}, 2ζ + γ > 1, and λ = n−
1

2ζ+γ . Then
with probability at least 1− δ,

‖L−a(fzλ − fH)‖ρ . n−
ζ−a
2ζ+γ log3 3

δ
,

provided that

m & (1 + log nγ)

{
n

ζ−a
(1−a)(2ζ+γ) if ζ ≥ 1,

n
1

2ζ+γ if ζ ≤ 1.

Remark 3. 1) In the above, we only consider the plain
Nyström subsampling. Using the ALS Nyström subsampling
(Drineas et al., 2012; Gittens & Mahoney, 2013; Alaoui &
Mahoney, 2015) and the proof technique developed in this
paper and (Rudi et al., 2015), we can further improve the
projection dimension condition to (28) (possibly with an
extra log n). We will report this result in a longer version of
this paper.
2) Considering only the case 1/2 ≤ ζ ≤ 1 and a = 0,
(Rudi et al., 2015) provides optimal generalization error
bounds for Nyström ridge regression. This result was fur-
ther extended in (Myleiko et al., 2017) to a general Nyström
regularized algorithm with a general source assumption
indexed with an operator monotone function (but only in the
attainable cases). Note that as in classic ridge regression,
Nyström ridge regression saturates over ζ ≥ 1, i.e., it does
not have a better rate even for a bigger ζ ≥ 1.
3) For the case ζ ≥ 1 and a = 0, (Myleiko et al.,
2017) provides certain generalization error bounds for
plain Nyström regularized algorithms, but the rates are
capacity-independent, and the minimal projection dimen-
sion O(n

2ζ−1
2ζ+1 ) is larger than ours (considering the case

γ = 1 for the sake of fairness).

All the results stated in this section will be proved in the
next section.

4. Proof
In this section, we prove the results stated in Section 3.
We first give some deterministic estimates and an analytics
result. We then give some probabilistic estimates. Apply-
ing the probabilistic estimates into the analytics result, we
prove the results for projected-regularized algorithms. We
finally estimate the projection errors and present the proof
for sketched-regularized algorithms.

4.1. Deterministic Estimates

In this subsection, we introduce some deterministic esti-
mates. For notational simplicity, throughout this paper, we

denote
Tλ = T + λ, Txλ = Tx + λ.

We define a deterministic vector ωλ as follows,

ωλ = Gλ(T )S∗ρfH . (30)

The vector ωλ is often called population function. We in-
troduce the following lemma. The proof is essentially the
same as that for Lemma 26 from (Lin & Cevher, 2018). We
thus omit it.

Lemma 6. Under Assumption 2, the following holds.
1) For any ζ − τ ≤ a ≤ ζ,

‖L−a(Sρωλ − fH)‖ρ ≤ Rλζ−a. (31)

2)

‖T a−1/2ωλ‖H ≤ τR·

{
λζ+a−1, if − ζ ≤ a ≤ 1− ζ,
κ2(ζ+a−1), if a ≥ 1− ζ.

(32)

The above lemma provides some basic properties for the
population function. It will be useful for the proof of our
main results. The left hand-side of (31) is often called true
bias.
Using the above lemma and some basic operator inequalities,
we can prove the following analytic, deterministic result.

Proposition 7. Under Assumption 2, let

1 ∨ ‖T
1
2

λ T
− 1

2

xλ ‖
2 ∨ ‖T −

1
2

λ T
1
2

xλ‖
2 ≤ ∆1,

‖T −1/2
λ [(Txωλ − S∗xy)− (T ωλ − S∗ρfH)]‖H ≤ ∆2,

‖T − Tx‖ ≤ ∆3,

‖T −
1
2

λ (T − Tx)‖ ≤ ∆4,

‖(I − P )T 1
2 ‖2 = ∆5.

Then, for any 0 ≤ a ≤ ζ ∧ 1
2 , the following holds.

1) If ζ ∈ [0, 1],

‖L−a(Sρωz
λ − fH)‖ρ ≤ τλ−a∆1−a

1

×
(

∆2 + 2(τ + 1)Rλζ + τRλζ−1(∆5 + ∆1−a
5 λa)

)
.

(33)

2) If ζ ≥ 1,

‖L−a(Sρωz
λ − fH)‖ρ ≤ τλ−a∆1−a

1

×
(

∆2 + 3Rλζ + κ2(ζ−1)R
(
κτ∆4 + τ∆5

+λ(∆3 + ∆5)(ζ−1)∧1 + λ
1
2 ∆

(ζ− 1
2 )∧1

3 + ∆1−a
5 λa

))
.

(34)
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The above proposition is key to our proof. The proof of the
above proposition for the case ζ ≤ 1 borrows ideas from
(Smale & Zhou, 2007; Caponnetto & De Vito, 2007; Rudi
et al., 2015; Myleiko et al., 2017; Lin et al., 2018), whereas
the key step is an error decomposition from (Lin & Cevher,
2018). Our novelty lies in the proof for the case ζ ≥ 1, see
the appendix for further details.

4.2. Proof for Projected-regularized Algorithms

To derive total error bounds from Proposition 7, it is nec-
essary to develop probabilistic estimates for the random
quantities ∆1, ∆2, ∆3 and ∆4. We thus introduce the fol-
lowing four lemmas.
Lemma 8. (Lin et al., 2018) Under Assumption 3, let δ ∈
(0, 1), λ = n−θ for some θ ≥ 0, and

an,δ,γ(θ)

= 8κ2

(
log

4κ2(cγ + 1)

δ‖T ‖
+ θγmin

(
1

e(1− θ)+
, log n

))
.

(35)

We have with probability at least 1− δ,

‖(T + λ)1/2(Tx + λ)−1/2‖2 ≤ 3an,δ,γ(θ)(1 ∨ nθ−1),

and

‖(T + λ)−1/2(Tx + λ)1/2‖2 ≤ 4

3
an,δ,γ(θ)(1 ∨ nθ−1).

Lemma 9. Let 0 < δ < 1/2. It holds with probability at
least 1− δ :

‖T − Tx‖HS ≤
6κ2

√
n

log
2

δ
.

Here, ‖ · ‖HS denotes the Hilbert-Schmidt norm.
Lemma 10. Under Assumption 3, let 0 < δ < 1/2. It holds
with probability at least 1− δ :

‖T −
1
2

λ (T − Tx)‖HS ≤ 2κ

(
2κ

n
√
λ

+

√
cγ
nλγ

)
log

2

δ
.

The proof of the above lemmas can be done simply applying
concentration inequalities for sums of Hilbert-space-valued
random variables. We refer to (Lin & Rosasco, 2017) for
the proofs.
Lemma 11. (Lin et al., 2018) Under Assumptions 1, 2 and
3, let ωλ be given by (30). For all δ ∈]0, 1/2[, the following
holds with probability at least 1− δ :

‖T −1/2
λ [(Txωλ − S∗xy)− (T ωλ − S∗ρfρ)]‖H

≤

(
C1

nλ
1
2∨(1−ζ)

+

√
C2λ2ζ

nλ
+

C3

nλγ

)
log

2

δ
.

(36)

Here, C1 = 4(M + Rκ(2ζ−1)+), C2 = 96R2κ2 and C3 =
32(3B2 + 4Q2)cγ .

With the above probabilistic estimates and the analytics
result, Proposition 7, we are now ready prove results for
projected-regularized algorithms.

Proof of Theorem 1. We use Proposition 7 to prove the re-
sult. We thus need to estimate ∆1, ∆2, ∆3 and ∆4. Follow-
ing from Lemmas 8, 9, 10 and 11, with n−1 ≤ λ ≤ 1, we
know that with probability at least 1− δ,

∆1 . tθ,n log
3

δ
, (37)

∆2 .

(
1

nλ
1
2∨(1−ζ)

+ λζ +
1√
nλγ

)
log

3

δ
,

∆3 .
1√
n

log
3

δ
, (38)

∆4 .
1√
nλγ

log
3

δ
.

The results thus follow by introducing the above estimates
into (33) or (34), combining with a direct calculation and
1/n ≤ λ ≤ 1.

4.3. Proof for Sketched-regularized Algorithms

In order to use Corollary 2 for sketched-regularized algo-
rithms, we need to estimate the projection error. The ba-
sic idea is to approximate the projection error in terms of
its ‘empirical’ version, ‖(I − P )T

1
2

x ‖2. The estimate for

‖(I −P )T
1
2

x ‖2 is quite lengthy and it is divided into several
steps. We begin with the following concentration inequali-
ties.

Lemma 12. Let 0 < δ < 1 and λ > 0. For any given
x ⊆ Hn, there exists a subset Ux of Rm×n with measure at
least 1− δ, such that for all G ∈ Ux,∥∥∥(Tx + λ)−1/2(Tx −m−1S∗xG∗GSx)(Tx + λ)−1/2

∥∥∥
≤ 4Nx(λ)β

3m
+

√
2Nx(λ)β

m
,

where
Nx(λ) = tr((Tx + λ)−1Tx),

β = log
4Nx(λ)(1 + λ/‖Tx‖)

δ
.

The above lemma can be proved using the concentration
inequalities from (Tropp, 2012; Minsker, 2011). With the
above lemma and Lemma 8, we can estimate ‖(I−P )T

1
2

x ‖2
as follows.

Lemma 13. Let 0 < δ < 1 and θ ∈ [0, 1]. Given a fix
x ∈ Hn, assume that for λ = n−θ,

tr((Tx + λ)−1Tx) ≤ bγλ−γ (39)
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holds for some bγ > 0, γ ∈ [0, 1]. Then there exists a subset
Ux of Rm×n with measure at least 1− δ, such that for all
G ∈ Ux,

‖(I − P )T
1
2

x ‖2 ≤
3

nθ
,

provided that

m ≥ 8bγnθγ log
8bγn

θγ

δ
. (40)

Under the condition (39), Lemma 13 provides an upper
bound for ‖(I − P )T

1
2

x ‖, which will be used to control the
projection error using the following lemma.

Lemma 14. Let P be a projection operator in a Hilbert
space H , and A, B be two semidefinite positive operators
on H. For any 0 ≤ s, t ≤ 1

2 , we have

‖As(I − P )At‖ ≤ ‖A−B‖s+t + ‖B 1
2 (I − P )B

1
2 ‖s+t.

The left-hand side of (39) is called empirical effective di-
mension. It can be estimated as follows.

Lemma 15. Under Assumption 3, let λ = n−θ for some
θ ∈ [0, 1] and 0 < δ < 1. With confidence 1− δ,

tr((Tx + λ)−1Tx)

≤ 3(4κ2 + 2κ
√
cγ + cγ) log

4

δ
an,δ/2,γ(θ)λ−γ ,

(41)

where an,δ/2,γ(θ) is given as in Lemma 8.

The above lemma improves Proposition 1 of (Rudi et al.,
2015). It does not require the extra assumption that the
sample size is large enough, and our proof is simpler.
Now we are ready to estimate the projection error and give
the proof for sketched-regularized algorithms.

Proof of Corollary 4. Let λ′ = n−θ
′
, with

θ′ =


1, if 2ζ + γ ≤ 1,

ζ−a
(1−a)(2ζ+γ) , if ζ ≥ 1,

1
2ζ+γ , otherwise

Following from Corollary 2, Lemmas 8, 9 and 15, we know
that there exists a subset V of Zn with measure at least
1− 4δ, such that for all z ∈ V , (22) (or (23), or (24)), (37),
(38), and (41) (with θ and λ replaced by θ′ and λ′ in (41),
respectively) hold.
For any z ∈ V , using Lemma 13 with

bγ =3(4κ2 + 2κ
√
cγ + cγ) log

4

δ
an,δ/2,γ(θ′)

.(1 ∨ [(1− θ′)−1 ∧ log nγ ] + log
3

δ
) log

3

δ
,

we know that there exists a subsetUz of Rm×n with measure
at least 1− δ, such that for all G ∈ Uz,

‖(I − P )T
1
2

x ‖2 .
1

nθ′
, (42)

provided m & nθ
′γbγ log

3bγn
θ′γ

δ , which is guaranteed by

Condition (28). Using ‖(I −P )T
1
2

x ‖2 = ‖T
1
2

x (I −P )T
1
2

x ‖,
and Lemma 14,

‖T 1
2 (I − P )T 1

2 ‖ ≤ ‖Tx − T ‖+ ‖(I − P )T
1
2

x ‖2.

Introducing with (38), and (42), and noting that ‖T 1
2 (I −

P )T 1
2 ‖ = ‖(I − P )T 1

2 ‖2, we get

‖(I − P )T 1
2 ‖2 .

log 3
δ√
n

+
1

nθ′
.

Introduce the above into (24), one can prove the desired
results for the case ζ ≥ 1.
Now consider the case ζ ≤ 1. Note that

‖(I − P )T 1
2 ‖2 ≤ ‖(I − P )T

1
2

xλ‖
2‖T −

1
2

xλ T
1
2

λ ‖
2.

Introducing with (37) and using a similar argument as that
for (50),

‖(I − P )T 1
2 ‖2 . (‖(I − P )T

1
2

x ‖2 + λ)tθ,n log
3

δ
.

Applying (42), ‖(I − P )T 1
2 ‖2 . ( 1

nθ′
+ λ)tθ,n log 3

δ . In-
troducing the above into (22), or (23), one can prove the
desired results for the case ζ ≤ 1.

The proof of Corollary 5 will be given in the appendix due
to space limitation.

5. Conclusion
In this paper, we prove optimal statistical results with re-
spect to variants of norms for sketched/Nyström regularized
algorithms. Our contributions are mainly on theoretical as-
pects. First, our results for sketched-regularized algorithms
generalize previous results (Yang et al., 2015) from the fixed
design setting to the random design setting. Moreover, our
results involve the regularity/smoothness of the target func-
tion and thus can have a faster convergence rate. Second,
our results cover the non-attainable cases, which have not
been studied before for both Nyström and sketched regu-
larized algorithms. Third, our results provide the first opti-
mal, capacity-dependent rates even when ζ ≥ 1. This may
suggest that sketched/Nyström regularized algorithms have
certain advantages in comparison with distributed learning
algorithms (Zhang et al., 2015), as the latter suffer a satura-
tion effect over ζ = 1. A future direction is to extend our
analysis to learning with random features, see (Sriperum-
budur & Sterge, 2017; Lin & Rosasco, 2018) and references
therein.
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