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Abstract
In order to scale standard Gaussian process (GP)
regression to large-scale datasets, aggregation
models employ factorized training process and
then combine predictions from distributed ex-
perts. The state-of-the-art aggregation models,
however, either provide inconsistent predictions
or require time-consuming aggregation process.
We first prove the inconsistency of typical aggre-
gations using disjoint or random data partition,
and then present a consistent yet efficient aggre-
gation model for large-scale GP. The proposed
model inherits the advantages of aggregations,
e.g., closed-form inference and aggregation, par-
allelization and distributed computing. Further-
more, theoretical and empirical analyses reveal
that the new aggregation model performs better
due to the consistent predictions that converge
to the true underlying function when the training
size approaches infinity.

1. Introduction
Gaussian process (GP) (Rasmussen & Williams, 2006) is
a well-known statistical learning model extensively used
in various scenarios, e.g., regression, classification, opti-
mization (Shahriari et al., 2016), visualization (Lawrence,
2005), active learning (Fu et al., 2013; Liu et al., 2017) and
multi-task learning (Alvarez et al., 2012; Liu et al., 2018).
Given the training setX = {xi ∈ Rd}ni=1 and the observa-
tion set y = {y(xi) ∈ R}ni=1, as an approximation of the
underlying function η : Rd → R, GP provides informative
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predictive distributions at test points.

However, the most prominent weakness of the full GP is that
it scales poorly with the training size. Given n data points,
the time complexity of a standard GP paradigm scales as
O(n3) in the training process due to the inversion of an
n×n covariance matrix; it scales asO(n2) in the prediction
process due to the matrix-vector operation. This weakness
confines the full GP to training data of size O(104).

To cope with large-scale regression, various computation-
ally efficient approximations have been presented. The
sparse approximations reviewed in (Quiñonero-Candela &
Rasmussen, 2005) employ m (m� n) inducing points to
summarize the whole training data (Seeger et al., 2003; Snel-
son & Ghahramani, 2006; 2007; Titsias, 2009; Bauer et al.,
2016), thus reducing the training complexity of full GP to
O(nm2) and the predicting complexity to O(nm). The
complexity can be further reduced through distributed infer-
ence, stochastic variational inference or Kronecker structure
(Hensman et al., 2013; Gal et al., 2014; Wilson & Nick-
isch, 2015; Hoang et al., 2016; Peng et al., 2017). A main
drawback of sparse approximations, however, is that the
representational capability is limited by the number of in-
ducing points (Moore & Russell, 2015). For example, for
a quick-varying function, the sparse approximations need
many inducing points to capture the local structures. That
is, this kind of scheme has not reduced the scaling of the
complexity (Bui & Turner, 2014).

The method exploited in this article belongs to the aggre-
gation models (Hinton, 2002; Tresp, 2000; Cao & Fleet,
2014; Deisenroth & Ng, 2015; Rullière et al., 2017), also
known as consensus statistical methods (Genest & Zidek,
1986; Ranjan & Gneiting, 2010). This kind of scheme pro-
duces the final predictions by the aggregation of M sub-
models (GP experts) respectively trained on the subsets
{Di = {Xi,yi}}Mi=1 of D = {X,y}, thus distributing
the computations to “local” experts. Particularly, due to
the product of experts, the aggregation scheme derives a
factorized marginal likelihood for efficient training; and
then it combines the experts’ posterior distributions accord-
ing to a certain aggregation criterion. In comparison to
sparse approximations, the aggregation models (i) operate
directly on the full training data, (ii) require no additional
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inducing or variational parameters and (iii) distribute the
computations on individual experts for straightforward par-
allelization (Tavassolipour et al., 2017), thus scaling them
to arbitrarily large training data. In comparison to typi-
cal local GPs (Snelson & Ghahramani, 2007; Park et al.,
2011), the aggregations smooth out the ugly discontinuity
by the product of posterior distributions from GP experts.
Note that the aggregation methods are different from the
mixture-of-experts (Rasmussen & Ghahramani, 2002; Yuan
& Neubauer, 2009), which suffers from intractable inference
and is mainly developed for non-stationary regression.

However, it has been pointed out (Rullière et al., 2017) that
there exists a particular type of training data such that typ-
ical aggregations, e.g., product-of-experts (PoE) (Hinton,
2002; Cao & Fleet, 2014) and Bayesian committee machine
(BCM) (Tresp, 2000; Deisenroth & Ng, 2015), cannot of-
fer consistent predictions, where “consistent” means the
aggregated predictive distribution can converge to the true
underlying predictive distribution when the training size n
approaches infinity.

The major contributions of this paper are three-fold. We first
prove the inconsistency of typical aggregation models, e.g.,
the overconfident or conservative prediction variances illus-
trated in Fig. 3, using conventional disjoint or random data
partition. Thereafter, we present a consistent yet efficient
aggregation model for large-scale GP regression. Particu-
larly, the proposed generalized robust Bayesian committee
machine (GRBCM) selects a global subset to communi-
cate with the remaining subsets, leading to the consistent
aggregated predictive distribution derived under the Bayes
rule. Finally, theoretical and empirical analyses reveal that
GRBCM outperforms existing aggregations due to the con-
sistent yet efficient predictions. We release the demo codes
in https://github.com/LiuHaiTao01/GRBCM.

2. Aggregation models revisited
2.1. Factorized training

A GP usually places a probability distribution over the latent
function space as f(x) ∼ GP(0, k(x,x′)), which is defined
by the zero mean and the covariance k(x,x′). The well-
known squared exponential (SE) covariance function is

k(x,x′) = σ2
f exp

(
−1

2

d∑
i=1

(xi − x′i)2

l2i

)
, (1)

where σ2
f is an output scale amplitude, and li is an input

length-scale along the ith dimension. Given the noisy ob-
servation y(x) = f(x) + ε where the i.i.d. noise follows
ε ∼ N (0, σ2

ε ) and the training dataD, we have the marginal
likelihood p(y|X,θ) = N (0, k(X,X) + σ2

εI) where θ
represents the hyperparameters to be inferred.

In order to train the GP on large-scale datasets, the aggrega-
tion models introduce a factorized training process. It first
partitions the training set D into M subsets Di = {Xi,yi},
1 ≤ i ≤M , and then trains GP on Di as an expertMi. In
data partition, we can assign the data points randomly to
the experts (random partition), or assign disjoint subsets
obtained by clustering techniques to the experts (disjoint
partition). Ignoring the correlation between the experts
{Mi}Mi=1 leads to the factorized approximation as

p(y|X,θ) ≈
M∏
i=1

pi(yi|Xi,θi), (2)

where pi(yi|Xi,θi) ∼ N (0,Ki + σ2
ε,iIi) with Ki =

k(Xi,Xi) ∈ Rni×ni and ni being the training size of
Mi. Note that for simplicity all the M GP experts in
(2) share the same hyperparameters as θi = θ (Deisen-
roth & Ng, 2015). The factorization (2) degenerates
the full covariance matrix K = k(X,X) into a diago-
nal block matrix diag[K1, · · · ,KM ], leading to K−1 ≈
diag[K−1

1 , · · · ,K−1
M ]. Hence, compared to the full GP, the

complexity of the factorized training process is reduced to
O(nm2

0) given ni = m0 = n/M , 1 ≤ i ≤M .

Conditioned on the related subset Di, the predictive dis-
tribution pi(y∗|Di,x∗) ∼ N (µi(x∗), σ

2
i (x∗)) ofMi has1

µi(x∗) = kTi∗[Ki + σ2
εI]−1yi, (3a)

σ2
i (x∗) = k(x∗,x∗)− kTi∗[Ki + σ2

εI]−1ki∗ + σ2
ε , (3b)

where ki∗ = k(Xi,x∗). Thereafter, the experts’ predic-
tions {µi, σ2

i }Mi=1 are combined by the following aggrega-
tion methods to perform the final predicting.

2.2. Prediction aggregation

The state-of-the-art aggregation methods include PoE (Hin-
ton, 2002; Cao & Fleet, 2014), BCM (Tresp, 2000; Deisen-
roth & Ng, 2015), and nested pointwise aggregation of
experts (NPAE) (Rullière et al., 2017).

For the PoE and BCM family, the aggregated prediction
mean and precision are generally formulated as

µA(x∗) = σ2
A(x∗)

M∑
i=1

βiσ
−2
i (x∗)µi(x∗), (4a)

σ−2
A (x∗) =

M∑
i=1

βiσ
−2
i (x∗) + (1−

M∑
i=1

βi)σ
−2
∗∗ , (4b)

where the prior variance σ2
∗∗ = k(x∗,x∗) + σ2

ε , which is
a correction term to σ−2

A , is only available for the BCM
family; and βi is the weight of the expertMi at x∗.

1Instead of using pi(f∗|Di,x∗) in (Deisenroth & Ng, 2015),
we here consider the aggregations in a general scenario where each
expert has all its belongings at hand.

https://github.com/LiuHaiTao01/GRBCM
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The predictions of the PoE family, which omit the prior
precision σ−2

∗∗ in (4b), are derived from the product of M
experts as

pA(y∗|D,x∗) =

M∏
i=1

pβii (y∗|Di,x∗). (5)

The original PoE (Hinton, 2002) employs the constant
weight βi = 1, resulting in the aggregated prediction vari-
ances that vanish with increasing M . On the contrary, the
generalized PoE (GPoE) (Cao & Fleet, 2014) considers a
varying βi = 0.5(log σ2

∗∗ − log σ2
i (x∗)), which represents

the difference in the differential entropy between the prior
p(y∗|x∗) and the posterior p(y∗|Di,x∗), to weigh the con-
tribution ofMi at x∗. This varying βi brings the flexibility
of increasing or reducing the importance of experts based
on the predictive uncertainty. However, the varying βi may
produce undesirable errors for GPoE. For instance, when x∗
is far away from the training data such that σ2

i (x∗)→ σ2
∗∗,

we have βi → 0 and σ2
GPoE →∞.

The BCM family, which is opposite to the PoE family, ex-
plicitly incorporates the GP prior p(y∗|x∗) when combining
predictions. For two expertsMi andMj , BCM introduces
a conditional independence assumption Di ⊥ Dj |y∗, lead-
ing to the aggregated predictive distribution as

pA(y∗|D,x∗) =

∏M
i=1 p

βi
i (y∗|Di,x∗)

p
∑
i βi−1(y∗|x∗)

. (6)

The original BCM (Tresp, 2000) employs βi = 1 but
its predictions suffer from weak experts when leaving the
data. Hence, inspired by GPoE, the robust BCM (RBCM)
(Deisenroth & Ng, 2015) uses a varying βi to produce robust
predictions by reducing the weights of weak experts. When
x∗ is far away from the training data X , the correction
term brought by the GP prior in (4b) helps the (R)BCM’s
prediction variance recover σ2

∗∗. However, given M = 1,
the predictions of RBCM as well as GPoE cannot recover
the full GP predictions because usually β1 = 0.5(log σ2

∗∗ −
log σ2

1(x∗)) = 0.5(log σ2
∗∗ − log σ2

full(x∗)) 6= 1.

To achieve computation gains, the above aggregations intro-
duce additional independence assumption for the experts’
predictions, which however is often violated in practice
and yields poor results. Hence, in the aggregation process,
NPAE (Rullière et al., 2017) regards the prediction mean
µi(x∗) in (3a) as a random variable by assuming that yi
has not yet been observed, thus allowing for considering the
covariances between the experts’ predictions. Thereafter,
for the random vector [µ1, · · · , µM , y∗]T, the covariances
are derived as

cov[µi, y∗] = kTi∗K
−1
i,ε ki∗, (7a)

cov[µi, µj ] =

{
kTi∗K

−1
i,εKijK

−1
j,ε kj∗, i 6= j,

kTi∗K
−1
i,εKij,εK

−1
j,ε kj∗, i = j,

(7b)

where Kij = k(Xi,Xj) ∈ Rni×nj , Ki,ε = Ki + σ2
εI ,

Kj,ε = Kj + σ2
εI , and Kij,ε = Kij + σ2

εI . With these
covariances, a nested GP training process is performed to
derive the aggregated prediction mean and variance as

µNPAE(x∗) = kTA∗K
−1
A µ, (8a)

σ2
NPAE(x∗) = k(x∗,x∗)− kTA∗K−1

A kA∗ + σ2
ε , (8b)

where kA∗ ∈ RM×1 has the ith element as cov[µi, y∗],
KA ∈ RM×M has Kij

A = cov[µi, µj ], and µ =
[µ1(x∗), · · · , µM (x∗)]

T. The NPAE is capable of provid-
ing consistent predictions at the cost of implementing a
much more time-consuming aggregation because of the in-
version ofKA at each test point.

2.3. Discussions of existing aggregations

Though showcasing promising results (Deisenroth & Ng,
2015), given that n→∞ and the experts are noise-free GPs,
(G)PoE and (R)BCM have been proved to be inconsistent,
since there exists particular triangular array of data points
that are dense in the input domain Ω such that the prediction
variances do not go to zero (Rullière et al., 2017).

Particularly, we further show below the inconsistency of
(G)PoE and (R)BCM using two typical data partitions (ran-
dom and disjoint partition) in the scenario where the obser-
vations are blurred with noise. Note that since GPoE using
a varying βi may produce undesirable errors, we adopt
βi = 1/M as suggested in (Deisenroth & Ng, 2015). Now
the GPoE’s prediction mean is the same as that of PoE; but
the prediction variance blows up as M times that of PoE.

Definition 1. When n → ∞, let X ∈ Rn×d be dense
in Ω ∈ [0, 1]d such that for any x ∈ Ω we have
limn→∞min1≤i≤n ‖xi − x‖ = 0. Besides, the underlying
function to be approximated has true continuous response
µη(x) and true noise variance σ2

η .

Firstly, for the disjoint partition that uses clustering tech-
niques to partition the data D into disjoint local subsets
{Di}Mi=1, The proposition below reveals that when n→∞,
PoE and (R)BCM produce overconfident prediction vari-
ance that shrinks to zero; on the contrary, GPoE provides
conservative prediction variance.

Proposition 1. Let {Di}Mn
i=1 be a disjoint partition of the

training data D. Let the expertMi trained on Di be GP
with zero mean and stationary covariance function k(.) > 0.
We further assume that (i) limn→∞Mn = ∞ and (ii)
limn→∞ n/M2

n > 0, where the second condition implies
that the subset size m0 = n/Mn and the number of ex-
perts Mn are comparable such that too weak experts are
not preferred. Besides, from the second condition we have
m0 →n→∞ ∞, which implies that the experts become more
informative with increasing n. Then, PoE and (R)BCM
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produce overconfident prediction variance at x∗ ∈ Ω as

lim
n→∞

σ2
A,n(x∗) = 0, (9)

whereas GPoE yields conservative prediction variance

σ2
η < lim

n→∞
σ2
A,n(x∗) < σ2

bn(x∗) < σ2
∗∗, (10)

where σ2
bn

(x∗) is offered by the farthest expertMbn (1 ≤
bn ≤Mn) whose prediction variance is closet to σ2

∗∗.

The detailed proof is given in Appendix A. Moreover, we
have the following findings.
Remark 1. For the averaging σ−2

GPoE = 1
M

∑M
i=1 σ

−2
i and

µ(G)PoE =
∑M
i=1

σ−2
i∑
σ−2
i

µi using disjoint partition, more
and more experts become relatively far away from x∗ when
n→∞, i.e., the prediction variances at x∗ approach σ2

∗∗
and the prediction means approach the prior mean µ∗∗.
Hence, empirically, when n→∞, the conservative σ2

GPoE

approaches σ2
bn

, and the µ(G)PoE approaches µ∗∗.
Remark 2. The BCM’s prediction variance is always larger
than that of PoE since

a∗ =
σ−2

PoE(x∗)

σ−2
BCM(x∗)

=

∑M
i=1 σ

−2
i (x∗)∑M

i=1 σ
−2
i (x∗)− (M − 1)σ−2

∗∗
> 1

for M > 1. This means σ2
PoE deteriorates faster to zero

when n→∞. Besides, it is observed that µBCM is a∗ times
that of PoE, which alleviates the deterioration of prediction
mean when n → ∞. However, when x∗ is leaving X ,
a∗ →M since σ−2

i (x∗)→ σ−2
∗∗ . That is why BCM suffers

from undesirable prediction mean when leavingX .

Secondly, for the random partition that assigns the data
points randomly to the experts without replacement, The
proposition below implies that when n→∞, the prediction
variances of PoE and (R)BCM will shrink to zero; the PoE’s
prediction mean will recover µη(x), but the (R)BCM’s pre-
diction mean cannot; interestingly, the simple GPoE can
converge to the underlying true predictive distribution.

Proposition 2. Let {Di}Mn
i=1 be a random partition of

the training data D with (i) limn→∞Mn = ∞ and (ii)
limn→∞ n/M2

n > 0. Let the experts {Mi}Mn
i=1 be GPs with

zero mean and stationary covariance function k(.) > 0.
Then, for the aggregated predictions at x∗ ∈ Ω we have

lim
n→∞

µPoE(x∗) = µη(x∗), lim
n→∞

σ2
PoE(x∗) = 0,

lim
n→∞

µGPoE(x∗) = µη(x∗), lim
n→∞

σ2
GPoE(x∗) = σ2

η,

lim
n→∞

µ(R)BCM(x∗) = aµη(x∗), lim
n→∞

σ2
(R)BCM(x∗) = 0,

(11)

where a = σ−2
η /(σ−2

η − σ−2
∗∗ ) ≥ 1 and the equality holds

when σ2
η = 0.

The detailed proof is provided in Appendix B. Propositions 1
and 2 imply that no matter what kind of data partition has
been used, the prediction variances of PoE and (R)BCM
will shrink to zero when n→∞, which strictly limits their
usability since no benefits can be gained from such useless
uncertainty information.

As for data partition, intuitively, the random partition pro-
vides overlapping and coarse global information about the
target function, which limits the ability to describe quick-
varying characteristics. On the contrary, the disjoint parti-
tion provides separate and refined local information, which
enables the model to capture the variability of target func-
tion. The superiority of disjoint partition has been empiri-
cally confirmed in (Rullière et al., 2017). Therefore, unless
otherwise indicated, we employ disjoint partition for the
aggregation models throughout the article.

As for time complexity, the five aggregation models have
the same training process, and they only differ in how to
combine the experts’ predictions. For (G)PoE and (R)BCM,
their time complexity in prediction scales as O(nm2

0) +
O(n′nm0) where n′ is the number of test points.2 For the
complicated NPAE, it however needs to invert an M ×M
matrixKA at each test point, leading to a greatly increased
time complexity in prediction as O(n′n2).3

The inconsistency of (G)PoE and (R)BCM and the ex-
tremely time-consuming process of NPAE impose the de-
mand of developing a consistent yet efficient aggregation
model for large-scale GP regression.

3. Generalized robust Bayesian committee
machine

3.1. GRBCM

Our proposed GRBCM divides M experts into two groups.
The first group has a global communication expert Mc

trained on the subset Dc = D1, and the second group con-
tains the remainingM−1 global or local experts4 {Mi}Mi=2

trained on {Di}Mi=2, respectively. The training process of
GRBCM is identical to that of typical aggregations in sec-
tion 2.1. The prediction process of GRBCM, however, is
different. Particularly, GRBCM assigns the global commu-
nication expert with the following properties:

• (Random selection) The communication subset Dc is
a random subset wherein the points are randomly se-

2O(nm2
0) is induced by the update of M GP experts after

optimizing hyperparameters.
3The predicting complexity of NPAE can be reduced by em-

ploying various hierarchical computing structure (Rullière et al.,
2017), which however cannot provide identical predictions.

4“Global” means the expert is trained on a random subset,
whereas “local” means it is trained on a disjoint subset.
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lected without replacement from D. It indicates that
the points inXc spread over the entire domain, which
enablesMc to capture the main features of the target
function. Note that there is no limit to the partition
type for the remaining M − 1 subsets.

• (Expert communication) The expertMc with predic-
tive distribution pc(y∗|Dc,x∗) ∼ N (µc, σ

2
c ) is al-

lowed to communicate with each of the remaining
experts {Mi}Mi=2. It means we can utilize the aug-
mented dataD+i = {Dc,Di} to improve over the base
expertMc, leading to a new expertM+i with the im-
proved predictive distribution as p+i(y∗|D+i,x∗) ∼
N (µ+i, σ

2
+i) for 2 ≤ i ≤M .

• (Conditional independence) Given the communication
subset Dc and y∗, the independence assumption Di ⊥
Dj |Dc, y∗ holds for 2 ≤ i 6= j ≤M .

Given the conditional independence assumption and the
weights {βi}Mi=2, we approximate the exact predictive dis-
tribution p(y∗|D,x∗) using the Bayes rule as

p(y∗|D,x∗)

∝ p(y∗|x∗)p(Dc|y∗,x∗)
M∏
i=2

p(Di|{Dj}i−1
j=1, y∗,x∗)

≈ p(y∗|x∗)p(Dc|y∗,x∗)
M∏
i=2

pβi(Di|Dc, y∗,x∗)

=
p(y∗|x∗)

∏M
i=2 p

βi(D+i|y∗,x∗)
p
∑M
i=2 βi−1(Dc|y∗,x∗)

.

(12)
Note that p(D2|Dc, y∗,x∗) is exact with no approximation
in (12). Hence, we set β2 = 1.

With (12), GRBCM’s predictive distribution is

pA(y∗|D,x∗) =

∏M
i=2 p

βi
+i(y∗|D+i,x∗)

p
∑M
i=2 βi−1

c (y∗|Dc,x∗)
. (13)

with

µA(x∗) = σ2
A(x∗)

[
M∑
i=2

βiσ
−2
+i (x∗)µ+i(x∗)

−

(
M∑
i=2

βi − 1

)
σ−2
c (x∗)µc(x∗)

]
, (14a)

σ−2
A (x∗) =

M∑
i=2

βiσ
−2
+i (x∗)−

(
M∑
i=2

βi − 1

)
σ−2
c (x∗).

(14b)

Different from (R)BCM, GRBCM employs the informa-
tive σ−2

c rather than the prior σ−2
∗∗ to correct the prediction

precision in (14b), leading to consistent predictions when
n → ∞, which will be proved below. Also, the predic-
tion mean of GRBCM in (14a) now is corrected by µc(x∗).
Fig. 1 depicts the structure of the GRBCM aggregation
model.

Figure 1. The GRBCM aggregation model.

In (14a) and (14b), the parameter βi (i > 2) akin to that of
RBCM is defined as the difference in the differential entropy
between the base predictive distribution pc(y∗|Dc,x∗) and
the enhanced predictive distribution p+i(y∗|D+i,x∗) as

βi =

{
1, i = 2,

0.5(log σ2
c (x∗)− log σ2

+i(x∗)), 3 ≤ i ≤M.
(15)

It is found that after adding a subset Di (i ≥ 2) into the
communication subset Dc, if there is little improvement of
p+i(y∗|D+i,x∗) over pc(y∗|Dc,x∗), we weak the vote of
M+i by assigning a small βi that approaches zero.

As for the size of Xc, more data points bring more infor-
mativeMc and better GRBCM predictions at the cost of
higher computing complexity. In this article, we assign all
the experts with the same training size as nc = ni = m0

and n+i = 2m0 for 2 ≤ i ≤M .

Next, we show that the GRBCM’s predictive distribution
will converge to the underlying true predictive distribution
when n→∞.
Proposition 3. Let {Di}Mn

i=1 be a partition of the train-
ing data D with (i) limn→∞Mn = ∞ and (ii)
limn→∞ n/M2

n > 0. Besides, among the M subsets, there
is a global communication subset Dc, the points in which
are randomly selected from D without replacement. Let
the global expertMc and the enhanced experts {M+i}Mn

i=2

be GPs with zero mean and stationary covariance function
k(.) > 0. Then, GRBCM yields consistent predictions as lim

n→∞
µGRBCM(x∗) = µη(x∗),

lim
n→∞

σ2
GRBCM(x∗) = σ2

η.
(16)

The detailed proof is provided in Appendix C. It is found
in Proposition 3 that apart from the requirement that the
communication subset Dc should be a random subset, the
consistency of GRBCM holds for any partition of the re-
maining data D\Dc. Besides, according to Propositions 2
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and 3, both GPoE and GRBCM produce consistent pre-
dictions using random partition. It is known that the GP
modelM provides more confident predictions, i.e., lower
uncertainty U(M) =

∫
σ2(x)dx, with more data points.

Since GRBCM trains experts on more informative subsets
{D+i}Mi=2, we have the following finding.
Remark 3. When using random subsets, the GRBCM’s pre-
diction uncertainty is always lower than that of GPoE, since
the discrepancy δU−1 = U−1

GRBCM − U
−1
GPoE satisfies

δU−1 =

[
U−1(M+2)− 1

Mn

Mn∑
i=1

U−1(Mi)

]

+

∫ Mn∑
i=3

βi
(
σ−2

+i (x∗)− σ−2
c (x∗)

)
dx∗ > 0

for a large enough n. It means compared to GPoE, GRBCM
converges faster to the underlying function when n→∞.

Finally, similar to RBCM, GRBCM can be executed in
multi-layer computing architectures with identical predic-
tions (Deisenroth & Ng, 2015; Ionescu, 2015), which allow
to run optimally and efficiently with the available computing
infrastructure for distributed computing.

3.2. Complexity

Assuming that the experts {Mi}Mi=1 have the same training
size ni = m0 = n/M for 1 ≤ i ≤ M . Compared to
(G)PoE and (R)BCM, the proposed GRBCM has a higher
time complexity in prediction due to the construction of new
experts {M+i}Mi=2. In prediction, it first needs to calculate
the inverse of k(Xc,Xc) and M − 1 augmented covari-
ance matrices {k({Xi,Xc}, {Xi,Xc})}Mi=2, which scales
as O(8nm2

0 − 7m3
0), in order to obtain the predictions µc,

{µ+i}Mi=2 and σ2
c , {σ2

+i}Mi=2. Then, it combines the predic-
tions of Mc and {M+i}Mi=2 at n′ test points. Therefore,
the time complexity of the GRBCM prediction process is
O(αnm2

0) + O(βn′nm0), where α = (8M − 7)/M and
β = (4M − 3)/M .

4. Numerical experiments
4.1. Toy example

We employ a 1D toy example

f(x) = 5x2 sin(12x) + (x3 − 0.5) sin(3x− 0.5)

+ 4 cos(2x) + ε,
(17)

where ε ∼ N (0, 0.25), to illustrate the characteristics of
existing aggregation models.

We generate n = 104, 5× 104, 105, 5× 105 and 106 train-
ing points, respectively, in [0, 1], and select n′ = 0.1n test
points randomly in [−0.2, 1.2]. We pre-normalize each col-
umn of X and y to zero mean and unit variance. Due to

the global expertMc in GRBCM, we slightly modify the
disjoint partition: we first generate a random subset and then
use the k-means technique to generateM−1 disjoint subsets.
Each expert is assigned with m0 = 500 data points. We im-
plement the aggregations by the GPML toolbox5 using the
SE kernel in (1) and the conjugate gradients algorithm with
the maximum number of evaluations as 500, and execute the
code on a workstation with four 3.70 GHz cores and 16 GB
RAM (multi-core computing in Matalb is employed). Fi-
nally, we use the Standardized Mean Square Error (SMSE)
to evaluate the accuracy of prediction mean, and the Mean
Standardized Log Loss (MSLL) to quantify the quality of
predictive distribution (Rasmussen & Williams, 2006).
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Figure 2. Comparison of different aggregation models on the toy
example in terms of (a) computing time, (b) SMSE and (c) MSLL.

Fig. 2 depicts the comparative results of six aggregation
models on the toy example. Note that NPAE using n >
5 × 104 is unavailable due to the time-consuming predic-
tion process. Fig. 2(a) shows that these models require the
same training time, but they differ in the predicting time.
Due to the communication expert, the GRBCM’s predicting
time slightly offsets the curves of (G)PoE and (R)BCM.
The NPAE however exhibits significantly larger predicting
time with increasing M and n′. Besides, Fig. 2(b) and
(c) reveal that GRBCM and NPAE yield better predictions
with increasing n, which confirm their consistency when
n→∞.6 As for NPAE, though performing slightly better
than GRBCM using n = 5× 104, it requires several orders
of magnitude larger predicting time, rendering it unsuitable
for cases with many test points and subsets.

Fig. 3 illustrates the six aggregation models using n = 104

and n = 5× 105, respectively, in comparison to the full GP
(ground truth) using n = 104.7 It is observed that in terms

5http://www.gaussianprocess.org/gpml/
code/matlab/doc/

6Further discussions of GRBCM is shown in Appendix D.
7The full GP is intractable using our computer for n = 5×105.

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
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Figure 3. Illustrations of the aggregation models on the toy exam-
ple. The green “+” symbols represent the 104 data points. The
shaded area indicates 99% confidence intervals of the full GP
predictions using n = 104.

of prediction mean, as discussed in remark 1, PoE and GPoE
provide poorer results in the entire domain with increasing n.
On the contrary, BCM and RBCM provide good predictions
in the range [0, 1]. As discussed in remark 2, BCM however
yields unreliable predictions when leaving the training data.
RBCM alleviates the issue by using a varying βi. In terms
of prediction variance, with increasing n, PoE and (R)BCM
tend to shrink to zero (overconfident), while GPoE tends to
approach σ2

∗∗ (too conservative). Particularly, PoE always
has the largest MSLL value in Fig. 2(b), since as discussed
in remark 2, its prediction variance approaches zero faster.

4.2. Medium-scale datasets

We use two realistic datasets, kin40k (8D, 104 training
points, 3× 104 test points) (Seeger et al., 2003) and sarcos
(21D, 44484 training points, 4449 test points) (Rasmussen &
Williams, 2006), to assess the performance of our approach.

The comparison includes all the aggregations except the ex-
pensive NPAE.8 Besides, we employ the fully independent
training conditional (FITC) (Snelson & Ghahramani, 2006),
the GP using stochastic variational inference (SVI)9 (Hens-
man et al., 2013), and the subset-of-data (SOD) (Chalupka
et al., 2013) for comparison. We select the inducing size
m for FITC and SVI, the batch size mb for SVI, and the

8The comparison of NPAE and GRBCM are separately pro-
vided in Appendix E.

9https://github.com/SheffieldML/GPy

subset size msod for SOD, such that the computing time is
similar to or a bit larger than that of GRBCM. Particularly,
we choose m = 200, mb = 0.1n and msod = 2500 for
kin40k, and m = 300, mb = 0.1n and msod = 3000 for
sarcos. Differently, SVI employs the stochastic gradients
algorithm with tsg = 1200 iterations. Finally, we adopt the
disjoint partition used before to divide the kin40k dataset
into 16 subsets, and the sarcos dataset into 72 subsets for
the aggregations. Each experiment is repeated ten times.
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Figure 4. Comparison of the approximation models on the kin40k
and sarcos datasets.

Fig. 4 depicts the comparative results of different approxima-
tion models over 10 runs on the kin40k and sarcos datasets.
The horizontal axis represents the sum of training and pre-
dicting time. It is first observed that GRBCM provides the
best performance on the two datasets in terms of both SMSE
and MSLL at the cost of requiring a bit more computing
time than (G)PoE and (R)BCM. As for (R)BCM, the small
SMSE values reveal that they provide better prediction mean
than FITC and SOD; but the large MSLL values again con-
firm that they provide overconfident prediction variance.
As for (G)PoE, they suffer from poor prediction mean, as
indicated by the large SMSE; but GPoE performs well in
terms of MSLL. Finally, the simple SOD outperforms FITC
and SVI on the kin40k dataset, and performs similarly on
the sarcos dataset, which are consistent with the findings in
(Chalupka et al., 2013).

Next, we explore the impact of the number M of experts on
the performance of aggregations. To this end, we run them
on the kin40k dataset with M respectively being 8, 16 and
64, and we run on the sarcos dataset with M respectively
being 36, 72 and 288. The results in Fig. 5 turn out that all
the aggregations perform worse with increasing M , since
the experts become weaker; but GRBCM still yields the best
performance with different M . Besides, with increasing
M , the poor prediction mean and the vanishing prediction
variance of PoE result in the sharp increase of MSLL values.

https://github.com/SheffieldML/GPy
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Figure 5. Comparison of the aggregation models using different
numbers of experts on the kin40k and sarcos datasets.
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Figure 6. Comparison of the aggregation models using disjoint and
random partitions on the kin40k dataset (M = 16) and the sarcos
dataset (M = 72).

Finally, we investigate the impact of data partition (disjoint
or random) on the performance of aggregations. The av-
erage results in Fig. 6 turn out that the disjoint partition
is more beneficial for the aggregations. The results are
expectable since the disjoint subsets provide separate and
refined local information, whereas the random subsets pro-
vide overlapping and coarse global information. But we
observe that GPoE performs well on the sarcos dataset us-
ing random partition, which confirms the conclusions in
Proposition 2. Besides, as revealed in remark 3, even using
random partition, GRBCM outperforms GPoE.

4.3. Large-scale datasets

This section explores the performance of aggregations and
SVI on two large-scale datasets. We first assess them on
the 90D song dataset, which is a subset of the million song
dataset (Bertin-Mahieux et al., 2011). The song dataset
is partitioned into 450000 training points and 65345 test

Table 1. Comparative results of the aggregation models and SVI
on the song and electric datasets.

song (450K) electric (1.8M)
SMSE MSLL SMSE MSLL

POE 0.8527 328.82 0.1632 1040.3
GPOE 0.8527 0.1159 0.1632 24.940
BCM 2.6919 156.62 0.0073 51.081
RBCM 1.3383 24.930 0.0027 85.657
SVI 0.7909 -0.1885 0.0042 -1.1410
GRBCM 0.7321 -0.1571 0.0024 -1.3161

points. We then assess the models on the 11D electric
dataset that is partitioned into 1.8 million training points
and 249280 test points. We follow the normalization and
data pre-processing in (Wilson et al., 2016) to generate the
two datasets.10 For the song dataset, we use the foregoing
disjoint partition to divide it into M = 720 subsets, and
use m = 800, mb = 5000 and tsg = 1300 for SVI; for the
electric dataset, we divide it into M = 2880 subsets, and
use m = 1000, mb = 5000 and tsg = 1500 for SVI. As a
result, each expert is assigned with m0 = 625 data points
for the aggregations.

Table 1 reveals that the (G)PoE’s SMSE value is smaller
than that of (R)BCM on the song dataset. The poor pre-
diction mean of BCM is caused by the fact that the song
dataset is highly clustered such that BCM suffers from weak
experts in regions with scarce points. On the contrary, due
to the almost uniform distribution of the electric data points,
the (R)BCM’s SMSE is much smaller than that of (G)PoE.
Besides, unlike the vanishing prediction variances of PoE
and (R)BCM when n → ∞, GPoE provides conservative
prediction variance, resulting in small MSLL values on the
two datasets. The proposed GRBCM always outperforms
the other aggregations in terms of both SMSE and MSLL
on the two datasets due to the consistency. Finally, GRBCM
performs similarly to SVI on the song dataset; but GRBCM
outperforms SVI on the electric dataset.

5. Conclusions
To scale the standard GP to large-scale regression, we
present the GRBCM aggregation model, which introduces
a global communication expert to yield consistent yet effi-
cient predictions when n → ∞. Through theoretical and
empirical analyses, we demonstrated the superiority of GR-
BCM over existing aggregations on datasets with up to 1.8M
training points.

The superiority of local experts is the capability of captur-
ing local patterns. Hence, further works will consider the
experts with individual hyperparameters in order to capture
non-stationary and heteroscedastic features.

10The datasets and the pre-processing scripts are available in
https://people.orie.cornell.edu/andrew/.

https://people.orie.cornell.edu/andrew/
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Hensman, James, Fusi, Nicolò, and Lawrence, Neil D. Gaus-
sian processes for big data. In Proceedings of the 29th
Conference on Uncertainty in Artificial Intelligence, pp.
282–290. AUAI Press, 2013.

Hinton, Geoffrey E. Training products of experts by mini-
mizing contrastive divergence. Neural Computation, 14
(8):1771–1800, 2002.

Hoang, Trong Nghia, Hoang, Quang Minh, and Low, Bryan
Kian Hsiang. A distributed variational inference frame-
work for unifying parallel sparse Gaussian process regres-
sion models. In International Conference on Machine
Learning, pp. 382–391. PMLR, 2016.

Ionescu, Radu Cristian. Revisiting large scale distributed
machine learning. arXiv preprint arXiv:1507.01461,
2015.

Lawrence, Neil. Probabilistic non-linear principal com-
ponent analysis with Gaussian process latent variable
models. Journal of Machine Learning Research, 6(Nov):
1783–1816, 2005.

Liu, Haitao, Cai, Jianfei, and Ong, Yew-Soon. An adaptive
sampling approach for Kriging metamodeling by maxi-
mizing expected prediction error. Computers & Chemical
Engineering, 106(Nov):171–182, 2017.

Liu, Haitao, Cai, Jianfei, and Ong, Yew-Soon. Remarks on
multi-output Gaussian process regression. Knowledge-
Based Systems, 144(March):102–121, 2018.

Moore, David and Russell, Stuart J. Gaussian process ran-
dom fields. In Advances in Neural Information Process-
ing Systems, pp. 3357–3365. Curran Associates, Inc.,
2015.

Park, Chiwoo, Huang, Jianhua Z, and Ding, Yu. Domain
decomposition approach for fast Gaussian process re-
gression of large spatial data sets. Journal of Machine
Learning Research, 12(May):1697–1728, 2011.

Peng, Hao, Zhe, Shandian, Zhang, Xiao, and Qi, Yuan.
Asynchronous distributed variational Gaussian process
for regression. In International Conference on Machine
Learning, pp. 2788–2797. PMLR, 2017.
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A. Proof of Proposition 1
With disjoint partition, we consider two extreme local GP
experts. For the first extreme expertMan (1 ≤ an ≤Mn),
the test point x∗ falls into the local region defined byXan ,
i.e., x∗ is adherent toXan when n→∞. Hence, we have
(Vazquez & Bect, 2010)

lim
n→∞

σ2
an(x∗) = lim

n→∞
σ2
ε,n = σ2

η.

For the other extreme expert Mbn , it lies farthest away
from x∗ such that the related prediction variance σ2

bn
(x∗)

is closest to σ2
∗∗. It is known that for any Mi (i 6= an)

where x∗ is away from the training data Xi, given the
relative distance ri = min ‖x∗ − x‖∀x∈Xi , we have
limri→∞ σ2

i (x∗) = σ2
∗∗. Since, however, we here focus

on the GP predictions in the bounded region Ω ∈ [0, 1]d

and employ the covariance function k(.) > 0, then the posi-
tive sequence cn = {σ−2

bn
(x∗)− σ−2

∗∗ } is small but satisfies
limn→∞ cn > 0 and

σ−2
i (x∗)− σ−2

∗∗ ≥ cn, 1 ≤ i 6= an ≤Mn.

The equality holds only when i = bn.

Thereafter, with the sequence εn = min{cn, 1
Mα
n
} →n→∞

0 where α > 0 we have

σ−2
i (x∗)− σ−2

∗∗ ≥ cn ≥ εn, 1 ≤ i 6= an ≤Mn.

It is found that cn = εn is possible to hold only when Mn

is small. With the increase of n, εn quickly becomes much
smaller than cn since limn→∞ 1/Mα

n = 0.

The typical aggregated prediction variance writes

σ−2
A,n(x∗) =

Mn∑
i=1

βi(σ
−2
i (x∗)− σ−2

∗∗ ) + σ−2
∗∗ , (18)

where for (G)PoE we remove the prior precision σ−2
∗∗ . We

prove below the inconsistency of (G)PoE and (R)BCM using
disjoint partition.

For PoE, (18) is
∑Mn

i=1 σ
−2
i (x∗) > Mnσ

−2
∗∗ →n→∞ ∞,

leading to the inconsistent variance limn→∞ σ2
A,n = 0. For

(R)BCM, the first term of σ−2
A,n(x∗) in (18) satisfies, given
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that n is large enough,

Mn∑
i=1

βi(σ
−2
i (x∗)− σ−2

∗∗ ) > εn

Mn∑
i=1

βi =
1

Mα
n

Mn∑
i=1

βi.

Taking βi = 1 for BCM and α = 0.5, we have
1
Mα
n

∑Mn

i=1 βi =
√
Mn →n→∞ ∞, leading to the incon-

sistent variance limn→∞ σ2
A,n = 0. For RBCM, since

βi = 0.5(log σ2
∗∗ − log σ2

i (x∗)) ≥ 0.5 log(1 + cnσ
2
∗∗)

where the equality holds only when i = bn, we have
1
Mα
n

∑Mn

i=1 βi > 0.5 log(1 + cnσ
2
∗∗)
√
Mn →n→∞ ∞, lead-

ing to the inconsistent variance limn→∞ σ2
A,n = 0.

Finally, for GPoE, we know that when n → ∞, σ−2
an (x∗)

converges to σ−2
η ; but the other prediction precisions satisfy

cn + σ−2
∗∗ ≤ σ−2

i (x∗) < σ−2
ε,n →n→∞ σ−2

η for 1 ≤ i 6=
an ≤ Mn, since x∗ is away from their training points.
Hence, we have

lim
n→∞

(
σ−2
η − σ−2

GPoE(x∗)
)

= lim
n→∞

1

Mn

(
σ−2
η − σ−2

an (x∗)
)

+ lim
n→∞

1

Mn

Mn∑
i6=an

(
σ−2
η − σ−2

i (x∗)
)

> lim
n→∞

1

Mn

(
σ−2
η − σ−2

an (x∗)
)

+ lim
n→∞

1

Mn

Mn∑
i6=an

(
σ−2
η − σ−2

ε,n(x∗)
)

= 0,

which means that σ2
GPoE(x∗) is inconsistent since

limn→∞ σ2
GPoE(x∗) > σ2

η. Meanwhile, we easily
find that limn→∞ σ−2

GPoE(x∗) > cn + σ−2
∗∗ , leading to

limn→∞ σ2
GPoE(x∗) < σ2

bn
(x∗) < σ2

∗∗.

B. Proof of Proposition 2
With smoothness assumption and particularly distributed
noise (normal or Laplacian distribution), it has been proved
that the GP predictions would converge to the true predic-
tions when n → ∞ (Choi & Schervish, 2004). Hence,
given that the points in Xi are randomly selected without
replacement fromX and ni = n/Mn →n→∞ ∞, we have

lim
n→∞

µi(x∗) = µη(x∗), lim
n→∞

σ2
i (x∗) = σ2

η, 1 ≤ i ≤Mn.

For the aggregated prediction variance, we have

lim
n→∞

σ−2
A,n(x∗) = lim

n→∞

[
Mn∑
i=1

βi(σ
−2
i (x∗)− σ−2

∗∗ ) + σ−2
∗∗

]
,

where for (G)PoE we remove σ−2
∗∗ . For PoE, given βi =

1 and limn→∞ σ−2
i (x∗) = σ−2

η , we have the inconsis-
tent variance limn→∞ σ−2

A,n(x∗) = limn→∞Mnσ
−2
η =

∞. For GPoE, given βi = 1/Mn we have the consis-
tent variance limn→∞ σ−2

A,n(x∗) = Mn
1
Mn

σ−2
η = σ−2

η .
For BCM, given βi = 1 we have the inconsistent vari-
ance limn→∞ σ−2

A,n(x∗) = limn→∞[Mn(σ−2
η − σ−2

∗∗ ) +

σ−2
∗∗ ] = ∞. Finally, for RBCM, given limn→∞ βi =
β = 0.5 log(σ2

∗∗/σ
2
η), we have the inconsistent vari-

ance limn→∞ σ−2
A,n(x∗) = limn→∞[Mnβ(σ−2

η − σ−2
∗∗ ) +

σ−2
∗∗ ] =∞.

Then, for the aggregated prediction mean we have

lim
n→∞

µA,n(x∗) = lim
n→∞

σ2
A,n(x∗)

Mn∑
i=1

βiσ
−2
i (x∗)µi(x∗).

For PoE, given βi = 1 and limn→∞ σ−2
i (x∗)/σ

−2
A,n(x∗) =

1/Mn, we have the consistent prediction mean
limn→∞ µA,n(x∗) = µη(x∗). For GPoE, given
βi = 1/Mn and limn→∞ σ−2

i (x∗)/σ
−2
A,n(x∗) = 1, we

have the consistent prediction mean limn→∞ µA,n(x∗) =
µη(x∗). For (R)BCM, given βi = β = 1 or
limn→∞ βi = β = 0.5 log(σ2

∗∗/σ
2
η), we have the

inconsistent prediction mean limn→∞ µA,n(x∗) =
limn→∞ βσ−2

η µη(x∗)/(β(σ−2
η − σ−2

∗∗ ) + σ−2
∗∗ /Mn) =

aµη(x∗) where a = σ−2
η /(σ−2

η − σ−2
∗∗ ) ≥ 1 and the

equality holds when σ2
η = 0.

C. Proof of Proposition 3
Given that the points in the communication subset Dc are
randomly selected without replacement from D and nc =
n/Mn →n→∞ ∞, we have limn→∞ µc(x∗) = µη(x∗)
and limn→∞ σ2

c (x∗) = σ2
η forMc. Likewise, for the expert

M+i trained on the augmented dataset D+i = {Di,Dc}
with size n+i = 2n/Mn, we have limn→∞ µ+i(x∗) =
µη(x∗) and limn→∞ σ2

+i(x∗) = σ2
η for 2 ≤ i ≤M .

We first derive the upper bound of σ2
c (x∗). For the stationary

covariance function k(.) > 0, when nc is large enough we
have (Vazquez & Bect, 2010)

σ2
c (x∗) ≤ k(x∗,x∗)−

k2(x∗,x
′)

k(x′,x′)
+ σ2

ε,n,

where x′ ∈Xc is the nearest data point to x∗. It is known
that the relative distance rc = ‖x∗ − x′‖ is proportional
to the inverse of the training size nc, i.e., rc ∝ 1/nc =
Mn/n→n→∞ 0. Conventional stationary covariance func-
tions only relay on the relative distance (once the covari-
ance parameters have been determined) and decrease with
rc. Consequently, the prediction variance σ2

c (x∗) increases
with rc. Taking the SE covariance function in (1) for ex-
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ample,11 when rc → 0 we have, given l0 = min1≤i≤d{li},

σ2
c (x∗) ≤ σ2

f − σ2
f exp(−r2

c/l
2
0) + σ2

ε,n

<
σ2
f

l20
r2
c + σ2

ε,n = ar2
c + σ2

ε,n.
(19)

We clearly see from this inequality that when rc → 0,
σ2
c (x∗) goes to σ2

η since limn→∞ σ2
ε,n = σ2

η .

Then, we rewrite the precision of GRBCM in (14b) as, given
β2 = 1,

σ−2
GRBCM(x∗) = σ−2

+2(x∗)+

Mn∑
i=3

βi
(
σ−2

+i (x∗)− σ−2
c (x∗)

)
.

(20)
Compared toMc,M+i is trained on a more dense dataset
D+i, leading to σ2

+i(x∗) ≤ σ2
c (x∗) for a large enough n.12

Given (19) and σ2
+i(x∗) > σ2

ε,n, the weight βi satisfies, for
3 ≤ i ≤Mn,

0 ≤ βi =
1

2
log

(
σ2
c (x∗)

σ2
+i(x∗)

)
<

1

2
log

(
σ2
c (x∗)

σ2
ε,n

)
<

1

2
log

(
ar2
c + σ2

ε,n

σ2
ε,n

)
≤ a

2σ2
ε,n

r2
c .

(21)

Besides, the precision discrepancy satisfies, for 3 ≤ i ≤
Mn,

0 ≤ σ−2
+i (x∗)− σ−2

c (x∗) = σ−2
c (x∗)

(
σ2
c (x∗)

σ2
+i(x∗)

− 1

)
<

1

σ2
ε,n

a

σ2
ε,n

r2
c .

(22)
Hence, the second term in the right-hand side of (20) satis-
fies

Mn∑
i=3

βi
(
σ−2

+i (x∗)− σ−2
c (x∗)

)
<

Mn∑
i=3

a2

2σ6
ε,n

r4
c ∝

M5
n

n4
.

Since limn→∞ n/M2
n > 0, we have limn→∞ n4/M5

n =∞,
and furthermore,

lim
n→∞

Mn∑
i=3

βi
(
σ−2

+i (x∗)− σ−2
c (x∗)

)
= 0. (23)

Substituting (23) and limn→∞ σ−2
+2(x∗) = σ−2

η into (20),
we have a consistent prediction precision as

lim
n→∞

σ−2
GRBCM(x∗) = σ−2

η .

11We take the SE kernel for example since conventional kernels,
e.g., the rational quadratic kernel and the Matérn class of kernels,
can reduce to the SE kernel under some conditions.

12The equality is possible to hold when we employ disjoint
partition for {Di}Mn

i=2 and x∗ is away from Xi.

Similarly, we rewrite the GRBCM’s prediction mean in
(14a) as

µGRBCM(x∗) = σ2
GRBCM(x∗)

(
µ∆ + σ−2

+2(x∗)µ+2(x∗)
)
,

(24)
where

µ∆ =

Mn∑
i=3

βi
(
σ−2

+i (x∗)µ+i(x∗)− σ−2
c (x∗)µc(x∗)

)
.

Let δmax = max3≤i≤Mn

∣∣∣ σ2
c(x∗)

σ2
+i(x∗)

µ+i(x∗)− µc(x∗)
∣∣∣→n→∞

0, we have

|µ∆| ≤
Mn∑
i=3

βiσ
−2
c

∣∣∣∣ σ2
c (x∗)

σ2
+i(x∗)

µ+i(x∗)− µc(x∗)
∣∣∣∣

Eq.(21)
<

Mn∑
i=3

ar2
c

2σ4
ε,n

δmax →n→∞ 0.

(25)

Substituting (25) into (24), we have the consistent prediction
mean as

lim
n→∞

µGRBCM(x∗) = µη(x∗).

D. Discussions of GRBCM on the toy example
It is observed that the proposed GRBCM showcases superi-
ority over existing aggregations on the toy example, which
is brought by the particularly designed aggregation struc-
ture: the global communication expertMc to capture the
long-term features of the target function, and the remaining
experts {M+i}Mi=2 to refine local predictions.
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Figure 7. Comparative results of GRBCM andMc on the toy ex-
ample.

To verify the capability of GRBCM, we compare it with the
pure global expertMc which relies on a random subsetXc.
Fig. 7 shows the comparative results of GRBCM andMc

on the toy example. It is found that with increasing n, (i)
GRBCM always outperformsMc because of the benefits
brought by local experts; and (ii) the predictions of Mc

generally become poorer since it becomes intractable to
choose a good subset from the increasing dataset.

E. Experimental results of NPAE
Table 2 compares the results of GRBCM and NPAE over
10 runs on the kin40k dataset (M = 16) and the sarcos
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Table 2. Comparative results (mean and standard deviation) of
GRBCM and NPAE over 10 runs on the kin40k dataset (M =
16) and the sarcos dataset (M = 72) using disjoint partition.
The computing time t for each model involves the training and
predicting time.

kin40k GRBCM NPAE

SMSE 0.0223 ± 0.0005 0.0246 ± 0.0007
MSLL -1.9927 ± 0.0177 -1.9565 ± 0.0170
t [S] 78.1 ± 4.4 2852.4 ± 16.7

sarcos GRBCM NPAE

SMSE 0.0074 ± 0.0002 0.0054 ± 0.0001
MSLL -2.3681 ± 0.0242 -2.5900 ± 0.0068
t [S] 445.6 ± 49.4 26444.0 ± 1213.0

dataset (M = 72) using disjoint partition. It is observed
that GRBCM performs slightly better than NPAE on the
kin40k dataset, and produces competitive results on the
sarcos dataset. But in terms of the computing efficiency,
since NPAE needs to build and invert an M ×M covariance
matrix at each test point, it requires much more running
time, especially for the sarcos dataset with M = 72.


