
Towards Black-box Iterative Machine Teaching

Appendix

A. Details of the Proofs
We analyze the sample complexity by separating the teaching procedure into two stages in each iteration, i.e., the active
query stage by conducting examination for the student and the teaching stage by providing samples to the student.

A.1. Error Decomposition

Recall that there is a mapping G from the feature space of the teacher to that of the student, and we have 〈w, x̃〉 = 〈w,G(x)〉 =〈
G>(w), x

〉
where G> denotes the conjugate mapping of G. We also denote the σmax = maxx>x=1 G>(x)G(x), σmin =

minx>x=1 G>(x)G(x) > 0 since the operator G is invertible, and κ
(
G>G

)
= σmax

σmin
. To involve the inconsistency between

the student’s parameters wt, and the teacher’s estimator vt, at t-th iteration into the analysis, we first provide the recursion
with error decomposition. For simplicity, we denote β(〈w, x〉 , y) := ∇〈w,x〉` (〈w, x〉 , y). Then, we have the update rule of
student as

wt+1 = wt − ηβ
(〈
wt,G(xt)

〉
, yt
)
G(xt),

where xt = γ (vt − v∗) is constructed by teacher with the estimator vt. Plug into the difference, we have∥∥G>(wt+1)− v∗
∥∥2

=
∥∥G>(wt)− v∗

∥∥2 + η2β2
(〈
wt,G(xt)

〉
, yt
) ∥∥G>G(xt)

∥∥2 − 2ηβ
(〈
wt,G(xt)

〉
, yt
) 〈
G>G(xt),G>(wt)− v∗

〉
=
∥∥G>(wt)− v∗

∥∥2 + η2β2
(〈
vt, xt

〉
, yt
) ∥∥G>G(xt)

∥∥2 − 2ηβ
(〈
vt, xt

〉
, yt
) 〈
G>G(xt),G>(wt)− v∗

〉
+ η2

∥∥G>G(xt)
∥∥2 (β2

(〈
G>(wt), xt

〉
, yt
)
− β2

(〈
vt, xt

〉
, yt
))

− 2η
〈
G>G(xt),G>(wt)− v∗

〉 (
β
(〈
G>(wt), xt

〉
, yt
)
− β

(〈
vt, xt

〉
, yt
))
.

Suppose the loss function is L-Lipschitz smooth and x ∈ X =
{
x ∈ Rd, ‖x‖ ≤ R

}
,

|β (〈v1, x〉 , y)− β (〈v2, x〉 , y)| ≤ LR ‖v1 − v2‖ ,

which implies
β (〈v2, x〉 , y)− LR ‖v1 − v2‖ ≤ β (〈v1, x〉 , y) ≤ β (〈v2, x〉 , y) + LR ‖v1 − v2‖ .

We have the error decomposition as follows,∥∥G>(wt+1)− v∗
∥∥2 ≤ ∥∥G>(wt)− v∗

∥∥2 + η2β2
(〈
vt, γ(vt − v∗)

〉
, yt
)
γ2
∥∥G>G(vt − v∗)

∥∥2
− 2ηβ

(〈
vt, γ(vt − v∗)

〉
, yt
)
γ
〈
G>G(vt − v∗),G>(wt)− v∗

〉
+ η2γ2LR

∥∥G>G(vt − v∗)
∥∥2 ∥∥G>(wt)− vt

∥∥ (β (〈G>(wt), xt
〉
, yt
)

+ β
(〈
vt, xt

〉
, yt
))

+ 2ηγLR
〈
G>G(vt − v∗),G>(wt)− v∗

〉 ∥∥G>(wt)− vt
∥∥

≤
∥∥G>(wt)− v∗

∥∥2 + η2γ2σ2
maxβ

2
(〈
vt, γ(vt − v∗), yt

〉) ∥∥vt − v∗∥∥2 (5)

− 2ηβ
(〈
vt, γ(vt − v∗)

〉
, yt
)
γ
(
σmin

∥∥vt − v∗∥∥2 − σmax

∥∥G>(wt)− vt
∥∥∥∥vt − v∗∥∥)

+ η2γ2LR
∥∥G>G(vt − v∗)

∥∥2 ∥∥G>(wt)− vt
∥∥ (2β (〈vt, xt〉 , yt)+ LR

∥∥G>(wt)− vt
∥∥)

+ 2ηγLR
(∥∥G>G∥∥∥∥vt − v∗∥∥2 +

∥∥G>G∥∥∥∥vt − v∗∥∥∥∥G>(wt)− vt
∥∥)∥∥G>(wt)− vt

∥∥
where the last two terms represent the inconsistency on the teacher’s side and the student’s side in computing β.

A.2. Exact Recovery of G>(w)

Theorem 2 Suppose the teacher is able to recover G>(wt) exactly using m samples at each iteration. If for any v∈Rd,
there exists γ 6=0 and ŷ such that x̂=γ (v−v∗) and

0 < γ∇〈vt,x̂〉`
(〈
vt, x̂

〉
, ŷ
)
<

2σmin

ησ2
max

,
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then (`,G) is ET with O
(
(m+ 1) log 1

ε

)
samples.

Proof Plug
∥∥G>(wt)− vt

∥∥ = 0 into the error decomposition (5), we have∥∥G>(wt+1)− v∗
∥∥2 ≤

∥∥G>(wt)− v∗
∥∥2 + η2γ2σ2

maxβ
2
(〈
vt, γ(vt − v∗), yt

〉) ∥∥vt − v∗∥∥2
−2ηβ

(〈
vt, γ(vt − v∗)

〉
, yt
)
γ
(
σmin

∥∥vt − v∗∥∥2)
≤

(
1 + η2γ2σ2

maxβ
2
(〈
vt, γ(vt − v∗), yt

〉)
− 2ηβ

(〈
vt, γ(vt − v∗)

〉
, yt
)
γσmin

) ∥∥G>(wt)− v∗
∥∥2 .

Denote ν (γ) = minx̂∈X ,ŷ∈Y γβ (〈vt, γ(vt − v∗)〉 , yt) > 0, and µ (γ) = maxx̂∈X ,ŷ∈Y γβ (〈vt, γ(vt − v∗)〉 , yt) <
2σmin

ησ2
max

, we have the recursion ∥∥G>(wt+1)− v∗
∥∥2 ≤ r (η, γ)

∥∥G>(wt)− v∗
∥∥2 ,

where r (η, γ) = max
{

1 + η2σ2
maxµ (γ)− 2ησminµ (γ) , 1 + η2σ2

maxν (γ)− 2ησminν (γ)
}

and 0 ≤ r (η, γ) ≤ 1. There-
fore, the algorithm converges exponentially,∥∥G>(wt)− v∗

∥∥ ≤ r (η, γ)
t/2 ∥∥G>(w0)− v∗

∥∥ .
In other words, the students needs 2

(
log 1

r(η,γ)

)−1
log
‖G>(w0)−v∗‖

ε samples for updating. Consider that at each

iteration, if the teacher first uses m samples for estimating G>(w), then the total number of samples is no larger than

(m+ 1) 2
(

log 1
r(η,γ)

)−1
log
‖G>(w0)−v∗‖

ε .

Lemma 3 If F (·) is bijective, then we can exactly recover G>(w)∈Rd with d samples.

Proof We prove the theorem by construction. Denote d independent samples as Z = {zi}di=1 ∈ Rd. We can exactly recover
arbitrary v with these samples by solving the linear system,

〈v, Z〉 = b, (6)

where b = F−1 (F (〈w,G(x)〉)) are provided by the student. F−1 exists because F is bijective. Since rank(Z) = d, the
linear system (6) has a unique solution.

Lemma 4 If F (·) = max (0, ·), then we can exactly recover G>(w) ∈ Rd with 2d samples.

Proof We prove the lemma by construction. Notice that ∀a ∈ R, either max (0, a) = a and max (0,−a) = 0,
or max (0, a) = 0 and max (0,−a) = −a. Then, we can first construct d independent samples as {zi}di=1 ∈ Rd,
and then, extend the set with {−zi}di=1. We construct the linear system by picking one of the linear equations from
〈v, zi〉 = max (0, 〈w,G(zi)〉) or 〈v,−zi〉 = max (0,−〈w,G(zi)〉) which does not equal to zero. Denote the linear system
〈v, Z ′〉 = b, since we select either zi or −zi to form Z, then, rank(Z ′) = d, therefore, the linear system has a unique
solution.

In both regression and classification scenarios, if the student answers the questions in the query phase with F (·) = I(·),
F (·) = S(·), or F (·) = max (0, ·), where I denotes the identity mapping and S denotes some sigmoid function, e.g.,
logistic function, hyperbolic tangent, error function and so on, we can exactly recover v = G>(w) ∈ Rd with arbitrary O(d)
independent data, omitting the numerical error and consider the solution as exact recovery. Recall we can reuse these O(d)
independent data in each iteration, we have

Corollary 5 Suppose the student answers questions in query phase via F (·) = I(·), F (·) = S(·), or F (·) = max (0, ·),
then (`,G) is ET with O

(
log 1

ε

)
teaching samples and O(d) query samples via exact recovery.

A.3. Approximate Recovery of G>(w)

Theorem 6 Suppose the loss function ` is L-Lipschitz smooth in a compact domain Ωv⊂Rd of v containing v∗ and sample
candidates (x, y) are from bounded X ×Y , where X =

{
x∈Rd, ‖x‖≤R

}
. Further suppose at t-th iteration, the teacher
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estimates the student εest :=
∥∥G>(wt)−vt

∥∥=O (ε) with probability at least 1 − δ using m (εest, δ) samples. If for any
v ∈ Ωv , there exists γ 6=0 and ŷ such that for x̂=γ (v−v∗), we have

0 < γ∇〈vt,x̂〉`
(〈
vt, x̂

〉
, ŷ
)
<

2 (1− λ)σmin

ησ2
max

,

with 0 < λ < min
(κ (G>G)
√

2
, 1
)
,

then the student can achieve ε-approximation of v∗ with O
(

log 1
ε

(
1 +m

(
λε, δ

log 1
ε

)))
samples with probability at least

1− δ. If m (εest, δ) = O(log 1
ε ), then (`,G) is ET.

Proof Assume that in each iteration, the teacher will estimate the wt at least satisfying εest :=
∥∥G>(wt)− vt

∥∥ ≤
λ σmin

σmax
‖vt − v∗‖. Plugging into the error decomposition (5), we obtain

∥∥G>(wt+1)− v∗
∥∥2 ≤ ∥∥G>(wt)− v∗

∥∥2 + η2γ2σ2
maxβ

2
(〈
vt, γ(vt − v∗), yt

〉) ∥∥vt − v∗∥∥2
− 2ηβ

(〈
vt, γt(v

t − v∗)
〉
, yt
)
γσmin (1− λ)

∥∥vt − v∗∥∥2
+ η2LRεestσ

2
maxγ

2
∥∥(vt − v∗)

∥∥2 (2β (〈vt, xt〉 , yt)+ LRεest
)

+ 2ηLRεest

(
γσmax

∥∥vt − v∗∥∥2 + γσmax

∥∥G>(wt)− vt
∥∥∥∥vt − v∗∥∥)

≤
∥∥G>(wt)− v∗

∥∥2 + η2γ2σ2
maxβ

2
(〈
vt, γ(vt − v∗), yt

〉) ∥∥vt − v∗∥∥2
− 2ηβ

(〈
vt, γt(v

t − v∗)
〉
, yt
)
γσmin (1− λ)

∥∥vt − v∗∥∥2
+ η2LR3εestσ

2
max

(
2β
(〈
vt, xt

〉
, yt
)

+ LRεest
)

+ 2ηLR2εest
(
σmax

∥∥vt − v∗∥∥+ σmax

∥∥G>(wt)− vt
∥∥)

The last inequality due to the fact that xt = γ (vt − v∗) ∈ X , implying γ ‖vt − v∗‖ ≤ R. On the other hand, we have

∥∥vt − v∗∥∥2 =
∥∥vt − G>(wt) + G>(wt)− v∗

∥∥2 ≤ 2
∥∥G>(wt)− vt

∥∥2 + 2
∥∥G>(wt)− v∗

∥∥2
≤ 2λ2

σ2
min

σ2
max

∥∥vt − v∗∥∥2 + 2
∥∥G>(wt)− v∗

∥∥2
⇒
∥∥vt − v∗∥∥2 ≤ 2

1− 2λ2
σ2
min

σ2
max

∥∥G>(wt)− v∗
∥∥2 .

Combine this into the recursion,

∥∥G>(wt+1)− v∗
∥∥2 ≤ C0

∥∥G>(wt)− v∗
∥∥2 + C1

(
β
(〈
vt, xt

〉
, yt
)

+
∥∥vt − v∗∥∥) εest + C2ε

2
est, (7)

where C0 :=

(
1 + 2

1−2λ2
σ2
min

σ2max

(
η2β2 (〈vt, vt − v∗〉 , yt) γ2σ2

max − 2ηβ (〈vt, vt − v∗〉 , yt) γσmin (1− λ)
))

, C1 :=

η2LR3σ2
max + 2ηLR2σmax, and C2 := 2ηLR2σmax + η2L2R4σ2

max.

Under the ET condition, we are able to pick x̂ and ŷ so that 0 < γ∇〈vt,x̂〉` (〈vt, x̂〉 , ŷ) < 2 (1−λ)σmin

ησ2
max

, we obtain,

C0 = 1 +
2

1− 2λ2
(
η2β2

(〈
vt, vt − v∗

〉
, yt
)
γ2σ2

max − 2ηβ
(〈
vt, vt − v∗

〉
, yt
)
γσmin (1− λ)

)
≤ 1.

With the condition ∀v ∈ Ωv, ‖v‖ ≤ Cv and β (〈v, xt〉 , yt) ≤ Cβ holds, as long as we can obtain εest = O
(

1
t2

)
,∥∥G>(wt+1)− v∗

∥∥2 converges in rate O
(
1
t

)
(Nemirovski et al., 2009). In fact, we can achieve better converges rate, i.e.,
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less sample complexity, with more accurate estimation in each iteration. Specifically, we expand the recursion (7),∥∥G>(wt+1)− v∗
∥∥2 ≤ C0

∥∥G>(wt)− v∗
∥∥2 + C1 (Cβ + 2Cv)︸ ︷︷ ︸

C′1

εest + C2ε
2
est

≤ C2
0

∥∥G>(w)t−1 − v∗
∥∥2 + C0

(
C ′1εest + C2ε

2
est

)
+ C ′1εest + C2ε

2
est

≤ · · ·

≤ Ct+1
0

∥∥G>(w0)− v∗
∥∥2 +

(
t∑
i=1

Ci0

)(
C ′1εest + C2ε

2
est

)
= Ct+1

0

∥∥G>(w0)− v∗
∥∥2 +

C0 (1− Ct0)

1− C0

(
C ′1εest + C2ε

2
est

)
.

To achieve ε-approximation of v∗ for student, we may need the number of teaching samples to be

T =

(
log

1√
C0

)−1
log

2
∥∥G>(w0)− v∗

∥∥
ε

(8)

so that Ct+1
0

∥∥G>(w0)− v∗
∥∥2 ≤ ε

2 , while the number of query samples in each iteration m should satisfy


C0(1−CT0 )

1−C0
C ′1εest ≤ C0

1−C0
C ′1εest ≤ min

(
ε
4 ,

λσmin

σmax
ε
)

εest ≤ C′1
C2

⇒ εest ≤ min

(
1− C0

C0C ′1
min

(
1

4
,
λσmin

σmax

)
ε,
C ′1
C2

)
. (9)

Then, the total number of samples will be

T

(
1 +m

(
εest,

δ

T

))
= O

(
log

1

ε

(
1 +m

(
λε,

δ

log 1
ε

)))
.

Theorem 7 Suppose that Assumption 1 holds. Then with probability at least 1−δ, then we can recover G>(w) ∈ Rd with
Õ
((
d2 + d log 1

δ

)
log 1

ε

)
query samples.

Proof Similarly, we prove this claim by construction. Basically, we first approximate the α̃ = G>(w)
‖G>(w)‖ within Ωα ={

α ∈ Rd, ‖α‖ = 1
}

, and then, rescale it by
∥∥G>(w)

∥∥.

In the first stage, we exploit active learning (Balcan et al., 2009). Obvisouly, ‖v‖ = 1, therefore, after t-iteration in
examination phase, we have

‖αt − α̃‖2 = ‖αt‖2 + ‖α̃‖2 − 2 〈αt, α̃〉 = 2 (1− cos (αt, α̃)) = 2

(
1−

√
1− sin2 (αt, α̃)

)
,

therefore,

‖αt − α̃‖2 ≤ 2 sin (αt, α̃) .

which is obtained by applying
√

1− x2 ≥ (1− x) when 0 ≤ x ≤ 1. Recall sin (αt, α̃) = O
(

1
2t
√
d

)
, we have

‖αt − α̃‖2 = O
(

1

2t
√
d

)
,

which is equivalent that we can approximate ‖αt − α̃‖2 ≤ ε with t = O
(
log 1

ε

)
. In each iteration, the active learning make

Õ
(
d2 log d+ d log 1

δ

)
queries, implying the total sample complexity is Õ

((
d2 + d log 1

δ

)
log 1

ε

)
.
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When rescaling, we increase the error by
∥∥G>(w)

∥∥2, then, we can set ε′ = ε
‖G>(w)‖2 . When

∥∥G>(w)
∥∥ is bounded by

some constant C, which is the case, the sample we needed will be Õ
((
d2 + d log 1

δ

)
log C2

ε

)
which does not affect the

asymptotic sample complexity.

Plug Theorem 6 with Theorem 7, we have

Corollary 8 Suppose that Assumption 1 holds. Then then (`,G) is ET with O
(
log 1

ε

)
teaching samples and

Õ
(

log 1
ε log 1

λε

(
d2 + d log

log 1
ε

δ

))
query samples.

A.4. Estimation Error Preservation

Lemma 9 Suppose that G is a unitary operator. If
∥∥G>(w0)− v0

∥∥ ≤ ε, then
∥∥G>(wt+1)− vt+1

∥∥ ≤ ε.
Proof This can be checked by induction, assume in t-th step,

∥∥G>(wt)− vt
∥∥ ≤ ε,∥∥G>(wt+1)− vt+1

∥∥ =
∥∥G(wt)− ηβ〈vt,xt〉G

>G(x)t − vt + ηβ〈vt,xt〉xt
∥∥

=
∥∥G>(wt)− vt

∥∥ ≤ ε.

A.5. Extension to Combination-based and Pool-based Active Teaching

In this section, we mainly discuss the results for synthesis-based active teaching to combination-based and pool-based active
learning.

For combination-based active teaching, where both the training samples and query samples are constructed by linear
combination of k samples D = {xi}ki=1, we have the following results for exact recovery and approximate recovery in the
sense of

〈v1, v2〉D :=

√
v>1 D (D>D)

+D>v2, and ‖v‖D := 〈v, v〉D .

Note that with the introduced metric, for v ∈ Rd, we only consider its component in span (D) and the components in the
null space will be ignored. Therefore, ∀ v1, v2 ∈ span(D) such that ‖v1‖D = ‖v2‖D, we have v>1 x=v>2 x=〈v1, x〉D for
all x ∈ Rd. For notational convenience, we omit the subscript D for the analysis in this section.

Corollary 10 Suppose the student answers questions in query phase via F (·) = I(·) or F (·) = S(·) and G>(w0), v∗ ∈
span (D). Then (`,G) is ET with O

(
log 1

ε

)
teaching samples and rank(D) query samples via exact recovery.

Corollary 11 Suppose Assumption 1 holds, the student answers questions in query phase via F (·) = I(·) or F (·) = S(·)
and G>(w0), v∗ ∈ span (D). Then (`,G) is ET with O

(
log 1

ε

)
teaching samples and Õ

(
log 1

ε log 1
λε

(
d2 + d log

log 1
ε

δ

))
query samples via approximate recovery.

The proof for these two corollaries are straightforward since under the condition that G>(w0), v∗ ∈ span (D), every
teaching sample will be in span (D), so that the G>(wt) and vt are also in span (D). Therefore, we can reduce such setting
to synthesis-based active teaching with essential dimension as rank(D). Then, the conclusions are achieved.

For rescaled pool-based active teaching, where the teacher can only pick samples from a prefixed sample candidates pool,
D = {xi}ki=1, for teaching and query. We will still evaluate using the same metric ‖·‖D defined above (omit subscript D for
convenience). We first discuss the exact recovery case.

Theorem 13 Suppose the student answers questions in the exam phase via F (·)=I(·) or F (·)=S(·) and G>(w0), v∗∈

span (D). If ∀ G>(w) ∈ span(D), there exist (x, y) ∈ D × Y and γ such that for x̂=
γ‖G>(w)−v∗‖D

‖x‖D
x, ŷ=y, we have

0 ≤ γ∇〈vt,x̂〉`
(〈
vt, x̂

〉
, ŷ
)
≤ 2V (X )σmin

ησ2
max

,
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then (`,G) is ET with O
(
log 1

ε

)
teaching samples and rank(D) query samples.

Proof Under the conditions that G>(w0), v∗ ∈ span (D), with the same argument, in each iteration, both G>(wt) and vt

are in span (D). Therefore, as long as we pick rank(D) independent samples from D as query samples, we can recover
any v ∈ span (D) in the sense of the introduced metric. For the training sample, due to the restriction in selecting
samples, we need to recheck the recursion. We follow the proof for rescaled pool-based omniscient teaching in (Liu et al.,
2017a). Specifically, at t-step, as the loss is exponentially synthesis-based teachable with γ, therefore, we have the virtually
constructed sample {xv, yv} where xv = γ

(
G>(wt)− v∗

)
with γ satisfying the condition of exponentially synthesis-based

active teachability, we first rescale the candidate pool X such that

∀x ∈ X , γx ‖x‖ = ‖xv‖ = γ
∥∥G>(wt)− v∗

∥∥ .
We denote the rescaled candidate pool as Xt, under the condition of rescalable pool-based teachability, there is a sample
{x̂, ŷ} ∈ X × Y with scale factor γ̂ such that

min
(x,y)∈Xt×Y

η2‖G>∇wt`
(〈
wt, γ̂G(x)

〉
, y
)
‖2 − 2η

〈
G>(wt)− v∗,G>∇wt`

(〈
wt, γ̂G(x)

〉
, y
)〉

≤ η2
∥∥β(〈wt, γ̂G(x̂)

〉
, ŷ
)
G>G(γ̂x̂)

∥∥2 − 2ηβ
(〈
wt, γ̂G(x̂)

〉
, ŷ
) 〈
γ̂G>Gx̂,G>(wt)− v∗

〉
.

We decompose the γ̂x̂ = axv + xv⊥ with a = 〈γ̂x̂,xv〉
‖xv‖2

. and xv⊥ = γ̂x̂− axv . Then, we have

min
(x,y)∈Xt×Y

η2‖G>∇wt`
(〈
wt,G(x)

〉
, y
)
‖2 − 2η

〈
G>(wt)− v∗,G>∇wt`

(〈
wt,G(x)

〉
, y
)〉

≤ η2β2
(〈
wt, γ̂G(x̂)

〉
, ŷ
) ∥∥γ̂G>G(x̂)

∥∥2 − 2ηβ
(〈
wt, γ̂G(x̂)

〉
, ŷ
) 〈
γ̂G>Gx̂,G>(wt)− v∗

〉
≤ η2β2

(〈
wt, γ̂G(x̂)

〉
, ŷ
)
γ2σ2

max

∥∥G>(wt)− v∗
∥∥2 − 2ηβ

(〈
wt, γ̂G(x̂)

〉
, ŷ
)
σmin

〈
axv + xv⊥,G>(wt)− v∗

〉
= η2β2

(〈
wt, γ̂G(x̂)

〉
, ŷ
)
γ2σ2

max

∥∥G>(wt)− v∗
∥∥2 − 2ηβ

(〈
wt, γ̂G(x̂)

〉
, ŷ
)
σmina

∥∥G>(wt)− v∗
∥∥2

Under the condition

0 ≤ γβ

(〈
wt, γ

∥∥G>(wt)− v∗
∥∥

‖x‖
G(x)

〉
, y

)
≤ 2V (X )σmin

ησ2
max

,

we have the recursion ∥∥G>(wt+1)− v∗
∥∥2 ≤ r (η, γ,G,V (X ))

∥∥G>(wt)− v∗
∥∥2 ,

where r (η, γ,G,V (X )) = max
{

1 + η2µ (γ)
2
σ2
max − 2ηµ (γ)σminV(X ), 1 + η2ν (γ)

2
σ2
max − 2ην (γ)σminV(X )

}
and 0 ≤ r (η, γ,G,V (X )) < 1, with ν (γ) = minw,x̂∈X ,ŷ∈Y γβ

(〈
wt, γ

‖G>(wt)−v∗‖
‖x‖ G(x)

〉
, y

)
> 0 and µ (γ) =

maxw,x̂∈X ,ŷ∈Y γβ

(〈
wt, γ

‖G>(wt)−v∗‖
‖x‖ G(x)

〉
, y

)
< 2V(X )σmin

ησ2
max

. Therefore, the algorithm converges exponentially

∥∥G>(wt)− v∗
∥∥
2
≤ r (η, γ,G,V (X ))

t/2 ∥∥G>(wt)− v∗
∥∥
2
.

In sum, the student needs 2
(

log 1
r(η,γ,G,V(X ))

)−1
log ‖G

>(w0)−v∗‖
ε teaching samples and rank(D) query samples to

achieve an ε-approximation of v∗.

For approximate recovery case, the active learning is no longer able to achieve the required accuracy for estimating of the
student parameters with the restricted sample pool. Therefore, the algorithm may not achieve exponential teaching. We will
leave this as an open problem.
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B. Experimental Details
For synthetic data, we generate training data (xi, y) where each entry in xi is Gaussian distributed and y = 〈w∗,xi〉+ ε
where ε is a Gaussian distributed noise for the LSR learner. For the LR learner, {X1,+1} and {X2,−1} where xi ∈ X1 is
Gaussian distributed in each entry and +1,−1 are the labels. Specifically, we use the 50-dimension data that is Gaussian
distributed with (0.5, · · · , 0.5) (label +1) and (−0.5, · · · ,−0.5) (label -1) as the mean and identity matrix as the covariance
matrix. We generate 1000 training data points for each class. Learning rate for the same feature space is 0.0001, λ for
regularization term is set as 0.00005. For the operator G that maps between teacher’s and student’s spaces, we mostly
use an orthogonal transformation in experiments. In MNIST dataset, we use full training set of digits 7 and 9 and extract
24-dim projective random features from the raw 32× 32 images. We use the full testing set to evaluate the 7/9 classification
accuracy.

C. More Experiments: LR Learner with F (z) = S(z)
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Figure 5: The convergence performance of random teacher (SGD), omniscient teacher and active teacher in MNIST 7/9 classification. We
evaluate the LR learner with F (z) = S(z) here.

For the LR learner that uses the sigmoid function as feedbacks, one could clearly see that the experimental results match our
theoretical analysis in case of the exact recovery of the ideal virtual learner. The active teacher is able to achieve the same
performance as the omniscient teacher after the “background exam”, and converges much faster than the SGD. In fact, the
active teacher and the omniscient teacher should achieve the same convergence speed without consideration of numerical
errors. Moreover, the empirical results indicate that the teacher tends to pick easy examples first and difficult examples later.
In iterative machine teaching, the difficulty level of an example is essentially the distance between the example and the
decision boundary. Interestingly, deeply learned features also exhibit similar difficulty level in terms of the norm of the
feature (Liu et al., 2018; 2017b), which may be useful for improving the convergence of deep models (e.g., the norm fo
deeply learned features can be used as a form of difficulty indicator in curriculum learning and iterative machine teaching).
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D. Analysis and Experiments of the Learner with Forgetting Behavior
D.1. Modeling the forgetting behavior

We model the forgetting behavior of the learner by adding a deviation to the learned parameter in each iteration of updating
the learner. Specifically in each iteration, the learner will update its model in its feature space with

wt+1 = wt +∇w`(〈wt, x〉, y) + εt (10)

where εt is a random deviation vector. The larger the deviation is, the more the learner forgets. εt can be modeled in a
time-variant fashion, or simply using a fixed probability distribution. There will be a number of ways to model the deviation.
For simplicity, we only consider a Gaussian distribution with zero mean and fixed variance here. Throughout this section,
we mainly study the case where the teacher and learner share the same feature space when the learner has the forgetting
behavior. It could help us simplify the problem, but it also more clearly shows the superiority of the active teacher because
the setting is comparable to the omniscient teacher.

D.2. The exponential teachability of the learner with forgetting behavior

Before delving deep into the exponential teachability of the learner with forgetting behavior, we first define a lazy teacher
model. The lazy teacher model works essentially similar to the omniscient teacher, except that the lazy teacher will first
construct a virtual learner before the teaching and will not observe the status of the learner during iteration. Specifically, the
lazy teacher will first construct a virtual learner without forgetting behavior based on the initial status (information) from the
real learner. Then the lazy teacher will pick samples based on the observation from the virtual learner and will feed the
same samples to the real learner. One can notice that if the real learner has no forgetting behavior, the lazy teacher will be
identical to the omniscient teacher. An overview of the lazy teacher is given in Fig. 6.

Lazy Teacher Virtual Learner without 
Forgetting Behavior

Provide full information

Provide samples
for this iteration

Interact iteratively 

Real Learner with 
Forgetting Behavior

Common Knowledge 
Representation Space

Provide full information 
before the teaching

Construct an virtual learner based on the 
real learner who has no forgetting behavior

1. Only interact once before the teaching

2. Keep interacting during teaching

Feed the same 
sample that the 

lazy teacher provides

Figure 6: An illustrative overview of the lazy teacher.

For the learner guided by the active teacher to achieve ET, it requires the sample complexity of the active learning to be
O(log 1

ε ), as shown in Theorem 6. It is obvious that the deviation error εt of a forgetting learner can not converge to a small
enough value. Therefore, the forgetting learner can not achieve ET with the lazy teacher, because the the deviation error can
not be controlled by the lazy teacher. In contrast, the forgetting learner can still achieve ET with our proposed active teacher,
because the deviation error can also be estimated by the active query strategy. In other words, the active teacher is still able
to estimate accurate enough current parameters of the forgetting learner, which also prevents the deviation error to propagate
over iterations.

D.3. Experiments

We perform an experiment on MNIST dataset to show how the forgetting behavior will affect the fast convergence, and also
compare our active teacher with the lazy teacher. We still use the binary classification for digit 7 and 9 for our experiment.
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The experimental setting for the MNIST dataset is similar to Section 7.2 except that we only use one random projection to
extract the features, which means that the teacher and the learner share the same feature space. We could see from Fig. 7
that the forgetting behavior will greatly affect the convergence of the lazy learner, while the lazy learner have the same
convergence speedup with the omniscient teacher if the learner has no forgetting behavior. Most importantly, our active
teacher can well address this forgetting behavior and provide significant convergence speedup. This experiment also partially
validates that it is very reasonable in real-world education to make students take exam. If the teacher model can not well
estimate or have access to the current parameter of the student model, then the entire teaching will very possibly fail (i.e.,
similar to or even worse than the random teacher).

Experimental settings. We perform the experiment on MNIST dataset with digit 7/9 binary classification. The 24-dim
feature is computed by random projection from raw pixels. The learner will provide F (z) = sign(z) as feedbacks. For
fairness, the learning rates for all method are the same.
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Figure 7: The convergence performance of random teacher (SGD), omniscient teacher, lazy teacher and active teacher in MNIST 7/9
binary classification.




