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Abstract
In this paper, we propose a two-step method to
compute the Wasserstein distance in Wasserstein
Generative Adversarial Networks (WGANs): 1)
The convex part of our objective can be solved
by linear programming; 2) The non-convex resid-
ual can be approximated by a deep neural net-
work. We theoretically prove that the proposed
formulation is equivalent to the discrete Monge-
Kantorovich dual formulation. Furthermore, we
give the approximation error bound of the Wasser-
stein distance and the error bound of generalizing
the Wasserstein distance from discrete to contin-
uous distributions. Our approach optimizes the
exact Wasserstein distance, obviating the need for
weight clipping previously used in WGANs. Re-
sults on synthetic data show that the our method
computes the Wasserstein distance more accu-
rately. Qualitative and quantitative results on
MNIST, LSUN and CIFAR-10 datasets show that
the proposed method is more efficient than state-
of-the-art WGAN methods, and still produces im-
ages of comparable quality.

1. Introduction
Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) are deep generative models that have been re-
ceiving increased attention. GANs have been widely used in
image inpainting (Yeh et al., 2017), semantic segmentation
(Zhu & Xie, 2016; Nguyen et al., 2017), face editing (Liu &
Tuzel, 2016; Shu et al., 2017), etc. GANs use a generator to
generate synthetic samples from a simple low dimensional
distribution, and then feed the generated samples together
with real samples to a discriminator, or critic, that maxi-
mizes the probability of real samples and minimizes the
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probability of synthetic samples.

GANs are widely used and unfortunately, are known to
be hard to train. GANs (Goodfellow et al., 2014) employ
the Jensen-Shannon (JS) divergence to measure the dis-
tance between the distribution of real data and generated
data. The JS divergence is discontinuous w.r.t. the genera-
tor’s parameters (Arjovsky et al., 2017). Other probability
measures, such as Kullback-Leibler (KL) divergence, Total
Variation (TV) distance, or Pearson χ2 divergence used in
Least Square GANs (Mao et al., 2017), also suffer from this
drawback (Arjovsky et al., 2017). Fedus et al. show that
minimizing a non-saturating objective for the generator can
handle this problem. Roth et al. propose regularization tech-
niques to address this issue. BGANs (Hjelm et al., 2018)
apply the importance weights on generated samples to train
the generator. Popular methods that tackle this problem are
based on i) Mean Maximum Discrepancy (MMD) (Gretton
et al., 2012), and ii) the Wasserstein distance, employing the
Integral Probability Metrics (IPMs) (Müller, 1997; Mroueh
& Sercu, 2017); however they need to restrict the functions
in a constrained set. MMD-based methods like MMD-NET
(Dziugaite et al., 2015) and MMD GANs (Bińkowski et al.,
2018) need to select suitable kernel parameters, but it is very
hard to set kernel parameters for better results. Wasserstein
distance-based methods, such as WGAN (Arjovsky et al.,
2017), McGAN (Mroueh et al., 2017), MMD-GAN (Li
et al., 2017), RWGAN (Guo et al., 2017), etc., need weight
clipping. WGAN-GP (Gulrajani et al., 2017), and Spectral
Normalization (SN) (Miyato et al., 2018) (with Wasser-
stein distance) apply regularizations on the critic trying to
make the critic 1-Lipschitz, but they fail to optimize the true
Wasserstein distance.

The objectives of Wasserstein distance-based GANs are,
in essence, practical implementations of the Monge-
Kantorovich dual formulation (Villani, 2008). The solution
to the Monge-Kantorovich primal formulation is a joint dis-
tribution, represented as a 2D array, and the solution to the
dual formulation is a function. It is easier for a Deep Neural
Network (DNN) to represent a function for the discriminator.
However, solving the Monge-Kantorovich dual formulation
is still an open problem in practice. WGAN, RWGAN, etc.,
use weight clipping to ensure the 1-Lipschitz condition of
the Kantorovich potential, such that the Monge-Kantorovich
dual formulation is simpler and easier to optimize. How-
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ever, weight clipping limits the critic’s functional space
and can cause gradients in the critic to explode or vanish if
the clipping parameters are not carefully chosen (Gulrajani
et al., 2017). There is no guarantee that the weight penalty
based method WGAN-GP optimizes the true Wasserstein
distance. Spectral Normalization with Wasserstein Distance
(SN-WD) sets the upper bound of the Lipschitz constant of
the critic to be 1, but it is not guaranteed that the Lipschitz
constant can reach 1 to compute the Wasserstein distance.

In summary, this paper has four main contributions:

- We propose a new formulation to compute the Wasser-
stein distance. The proposed formulation can be solved
in a Two-Step fashion, i.e., 1) apply linear programming
to solve the convex part of the formulation to get an exact
computation of the Wasserstein distance and 2) adopt a deep
neural network to solve the remaining non-convex part to
get an approximate solution. We theoretically prove that
the new proposed formulation is equivalent to the Monge-
Kantorovich dual formulation, and thus, we are optimizing
the exact Wasserstein distance. We name our method TS.

- We compute the approximation error bound of the Wasser-
stein distance using the proposed TS method. In addition,
we also compute the error bound of generalizing the Wasser-
stein distance from the discrete to the continuous case.

- We apply the TS method for computing the Wasserstein
distance in WGAN. We name our GAN method WGAN-
TS. Instead of minimizing the Wasserstein distance with
weight clipping or a weight penalty, which requires hyper-
parameters that are hard to tune, the critic in WGAN-TS
does not need any hyper-parameters to enforce weight con-
straints.

- Results on the eight-Gaussian synthetic dataset show that
the our method computes a more accurate Wasserstein dis-
tance than WGAN, WGAN-GP and SN-WD. Results on the
MNIST, LSUN and CIFAR-10 datasets show that WGAN-
TS is comparable to WGAN-GP and SN-WD. Furthermore,
the proposed WGAN-TS is faster than other WGAN meth-
ods under the commonly used batch size of 64, improving
the performance of the previous fastest WGAN method by
more than 30%.

2. Optimal Mass Transport
The goal of Optimal Mass Transport (OMT) is to transform
one distribution into another and minimize the total transport
cost. This minimized cost is the Wasserstein distance.

Since solving the original OMT problem is hard, Kan-
torovich relaxed the original transport mapping problem
into a transport plan problem. The transport map is a spe-
cial case of the transport plan and for each of them we
can define the Wasserstein distance. The solution to the

Monge-Kantorovich formulation for computing Wasserstein
distances is a transport plan table which is discontinuous
w.r.t. the generator’s parameters and cannot be used as
the discriminator in GANs. In contrast, the solution to the
Monge-Kantorovich dual formulation is a continuous func-
tion and thus better for machine learning.

2.1. The Monge-Kantorovich Dual Formulation

The Monge-Kantorovich dual problem (Villani, 2008) is:
Problem 1. Suppose X and Y are two bounded domains in
Rn. Given two probability measures µ ∈ P(X), ν ∈ P(Y ),
and a cost function c : X × Y 7→ [0,+∞]. Find functions
φ and ψ such that

C(µ, ν) = sup
φ−ψ≤c

{∫
φ(y)dν(y)−

∫
ψ(x)dµ(x)

}
(1)

where C(µ,ν) is the Wasserstein distance between µ and ν
for transport plan problem.

The Kantorovich duality Theorem (Villani, 2008) further
transforms the above problem into the following problem:
Problem 2. Find a function ψ such that

C(µ, ν) = sup
ψ

{∫
ψc(y)dν(y)−

∫
ψ(x)dµ(x)

}
(2)

where C(µ,ν) is the Wasserstein distance between µ and ν
and ψc is the c-transform of ψ defined below:

∀y ∈ Y ψc(y) = inf
x∈X

(
ψ(x) + c(x, y)

)
(3)

When training GANs, we have empirical distributions. So,
we are interested in the discrete case of Problem 2. Assume
X̂ = {xj}j∈J sampled from µ and Ŷ = {yi}i∈I sampled
from ν, where I and J are disjoint index sets. Let m = |I|
and n = |J | be the numbers of elements in the two sets.
Problem 3. (Discrete Case of Problem 2) Let

d̂(ψ) =
1

m

∑
i∈I

ψc(yi)−
1

n

∑
j∈J

ψ(xj) (4)

Find a function ψ such that Ĉ(µ, ν) = supψ d̂(ψ) where
Ĉ(µ, ν) is the Wasserstein distance between µ and ν and
ψc is the c-transform of ψ defined below:

∀yi ∈ Ŷ ψc(yi) = inf
x∈X̂

(
ψ(x) + c(x, yi)

)
(5)

In order to make ψc = ψ to simplify this problem, the
WGAN restricts function ψ to be 1-Lipschitz (Arjovsky
et al., 2017). We claim that we do not need to explicitly
restrict ψ to be 1-Lipschitz during optimization. In the
next section, we propose a new formulation of the Monge-
Kantorovich duality that optimizes the exact Wasserstein
distance.
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3. A New Formulation of the
Monge-Kantorovich Duality

3.1. An Equivalent Monge-Kantorovich Dual
Formulation

Problem 4 is a new formulation of the Monge-Kantorovich
formulation. Solving Problem 4 is equivalent to solving
Problem 3 under a mild assumption that the cost function
c(·, ·) satisfies the triangle inequality in Lemma 3.1.

Problem 4. Solve the following problem:

max
f

ĥ(f) =

 1

m

∑
i∈I

f(yi)−
1

n

∑
j∈J

f(xj)


s.t. f(yi)− f(xj) ≤ c(xj , yi), ∀j ∈ J , ∀i ∈ I

In order to prove that Problem 3 and Problem 4 are equiva-
lent, we introduce Lemma 3.1 and Lemma 3.2.

Lemma 3.1. If the cost function c(·, ·) satisfies the triangle
inequality, i.e., c(x, y) + c(y, z) ≥ c(x, z),∀x, y, z, then
∀xj ∈ X̂, ∀yi ∈ Ŷ , if xj = yi, and ψ∗ is the optimizer to

Problem 3, then (ψc)∗(yi) = ψ∗(xj), where (ψc)∗(yi) =
infx∈X̂

(
ψ∗(x) + c(x, yi)

)
.

The proof is in the supplemental materials.

Lemma 3.2. Suppose f∗ is an optimizer to Problem 4, then
i) f∗(y) = infx∈X̂{f∗(x) + c(x, y)}, ∀y ∈ Ŷ , and ii)
f∗(x) = supy∈Ŷ {f∗(y)− c(x, y)}, ∀x ∈ X̂

The proof is in the supplemental materials.

Next we state that Problem 3 and Problem 4 are equivalent.

Theorem 3.3. If the cost function c(·, ·) satisfies the triangle
inequality, then solving Problem 4 is equivalent to solving
Problem 3, i.e., the optimal objectives of Problem 3 and 4
are equal and f∗(xj) = ψ∗(xj) and f∗(yi) = (ψc)∗(yi).

Proof. First, we prove that any optimal solution to Problem
4 is a feasible solution to Problem 3. Suppose f∗ is the
optimal solution to Problem 4, from Lemma 3.2 we know
that f∗(y) = infx∈X̂{f∗(x) + c(x, y)}, ∀y ∈ Ŷ , and from
the definition of c-transform in Eq. (5) we have (f∗)c(y) =
infx∈X̂{f∗(x) + c(x, y)}, ∀y ∈ Ŷ . Hence, f∗ is a feasible
solution to Problem 3. Therefore, d̂(ψ∗) ≥ ĥ(f∗).

Then, we prove that any optimal solution to Problem 3 is a
feasible solution to Problem 4. Suppose ψ∗ is an optimizer
to Problem 3. According to Lemma 3.1, for any xj = yi,
we have (ψc)∗(yi) = ψ∗(xj) given that the cost function
c(·, ·) satisfies the triangle inequality. Therefore, we can
find a function φ(xj) = ψ∗(xj) and φ(yi) = (ψc)∗(yi).

So, d̂(ψ∗) in Eq. (4) can be rewritten as

d̂(ψ∗) =
1

m

∑
i∈I

φ(yi)−
1

n

∑
j∈J

φ(xj)

(6)

From the definition of (ψc)∗(yi), we have φ(yi)− φ(xj) ≤
c(xj , yi). Therefore, φ is a feasible solution to Problem
4, and hence d̂(ψ∗) ≤ ĥ(f∗). So, we have d̂(ψ∗) =

ĥ(f∗). Therefore, φ is also an optimal solution to Prob-
lem 4. So φ = f∗, and hence f∗(xj) = ψ∗(xj) and
f∗(yi) = (ψc)∗(yi).

3.2. Solving the Monge-Kantorovich Dual Formulation

Directly solving the Monge-Kantorovich Dual problem
(Problem 4) is difficult. We propose to solve it in two steps;
First, a linear programming problem, and second, a deep
regression problem.

Step 1: Solve the following linear programming problem:

max
T

1

m

∑
i∈I

Ti −
1

n

∑
j∈J

Tj

s.t. Ti − Tj ≤ cij , ∀i ∈ I, ∀j ∈ J
(7)

Optimal solutions to formula (7) are unique up to a scalar.
Suppose T ∗ is the optimizer to formula (7), then T ∗ + C
is also the optimizer to formula (7), where C is a constant
scalar. After we find an optimal solution to (7) we sub-
tract the mean of T ∗ by T ∗t ← T ∗t − (

∑
k∈I∪J T

∗
k )/(m+

n),∀t ∈ I ∪ J .

Step 2: After solving the linear programming problem, we
optimize the following regression problem:

min
f

1

m+ n

∑
i∈I

(f(yi)− T ∗i )
2

+
∑
j∈J

(
f(xj)− T ∗j

)2
(8)

We use a DNN to parameterize the function f . If the DNN
has enough parameters, the deep regression problem can be
exactly solved. We name our Two-Step method to compute
the Wasserstein distance, TS.

Intuitively, Step 1 can compute the Wasserstein distance
exactly, however the result is not differentiable. The DNN
of Step 2 is trained to take the same inputs and regress the
values produced by Step 1, thus providing a differentiable
approximation of the Wasserstein distance.

3.3. Exactness of the Wasserstein Distance

Our algorithm computes the exact Wasserstein distance by
the duality in linear programming. The original Monge-
Kantorovich problem in the continuous case is:
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Problem 5. Find a transport plan to minimize the following
total cost:

C(π∗) = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) (9)

where Π(µ, ν) is the set of transport plans defined as:

Π(µ, ν) = {π ∈ P(X × Y ) : πx = µ, πy = ν} (10)

where πx and πy are marginal distributions of π on X and
Y , respectively.

Next, we introduce the discrete case of the Monge-
Kantorovich problem. Suppose Ŷ is the set of real data
samples, and X̂ is the set of the generated samples. Each yi
has a Dirac measure of 1/m, and each xj of 1/n. In prac-
tice, the data sample distribution and the generated sample
distribution are formulated as:

µ =
1

n

∑
i∈I

δ(x− xj), ν =
1

m

∑
j∈J

δ(y − yi)

The `1 distance between xj and yi is cij = ||xj − yi||1, γij
is the mass transported from xj to yi, namely the joint distri-
bution between µ and ν. The discrete Monge-Kantorovich
problem is formulated as a linear programming problem:

min
γ

∑
ij

cijγij

s.t.
∑
j

γij = 1/m, i ∈ I

∑
i

−γij = −1/n, j ∈ J

γij ≥ 0, i ∈ I, j ∈ J

(11)

According to linear programming theory, a unique global
optimal solution exists (Karmarkar, 1984), giving the exact
Wasserstein distance between two Dirac measures W (µ, ν).
According to the duality in linear programming, the dual
problem of (11) is formulated as:

max
T

1

m

∑
i∈I

Ti −
1

n

∑
j∈J

Tj

s.t. Ti − Tj ≤ cij , i ∈ I, j ∈ J
(12)

where Ti and Tj are the dual variables. (12) is exactly
the same formula as formula (7). Therefore, our linear
programing step computes the exact Wasserstein distance
between the two empirical distributions.

3.4. Approximation Error Bound

Theorem 3.4. If the optimization error of formula (8) is ε,
i.e., ε-suboptimal, and supposing m = n, then the Wasser-
stein distance is bounded by 2

√
ε, i.e. |ĥ(f̂)−ĥ(f∗)| ≤ 2

√
ε

where f∗ is the optimal solution to formula (8) and f̂ is the
approximate solution to formula (8).

Proof. Since f∗ is the optimal solution to formula (8),
f∗(yi) = T ∗i and f∗(xj) = T ∗j , ∀i ∈ I,∀j ∈ J . Af-
ter the optimization of formula (8), the objective of formula
(8) is ε and m = n means that∑
i∈I

(
f̂(yi)− f∗(yi)

)2

+
∑
j∈J

(
f̂(xj)− f∗(xj)

)2

= 2mε

and

m|ĥ(f̂)− ĥ(f∗)| ≤
∑
i∈I

∣∣∣f̂(yi)− f∗(yi)
∣∣∣+

∑
j∈J

∣∣∣f̂(xj)− f∗(xj)
∣∣∣

≤ 2m
√
ε

Therefore, we have |ĥ(f̂)− ĥ(f∗)| ≤ 2
√
ε

Theorem 3.4 provides the theoretical guarantee of the
Wasserstein distance w.r.t. the optimization error of for-
mula (8).

3.5. Error Bounds of Generalizing the Wasserstein
Distance from the Discrete to Continuous Case

The following problem is the continuous case of Problem 4:

Problem 6. Solve the following problem:

max
f

h(f) = Ey[f(y)]− Ex[f(x)]

s.t. f(y)− f(x) ≤ c(x, y), ∀x ∈ X, ∀y ∈ Y

In Problem 4, we use empirical data X̂ and Ŷ to compute the
Kantorovich potential. X̂ and Ŷ are randomly sampled from
two distributions µ and ν, respectively. We need to analyze
the error bound of generalizing the Wasserstein distance
from the discrete to the continuous case. The error bound
reflects how statistically close the computed Wasserstein
distance is from the discrete to the continuous case.

Theorem 3.5. Suppose f is the optimal solution to formula
(8) with 0 optimization error, i.e., 0-suboptimal. Let θij be
a Bernoulli random variable such that if f(yi)− f(xj) >
c(yi, xj) then θij = 1, otherwise θij = 0. Let e = E[θij ] be
the expectation of the probability that constraints in Problem
4 violate the inequality constraints. The error bound of the
Wasserstein distance from the discrete to the continuous
case is:

P (|ĥ(f)−h(f)| > ε) ≤ 2 exp(−mε2/2)+2 exp(−nε2/2)

The error bound of the constraint violation in Problem 4 is:

P (|e| > ε) ≤ 2 exp(−2mnε2)
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The proof of Theorem 3.5 can be found in the supplemen-
tal materials. Theorem 3.5 shows that the more data we
use to compute the Wasserstein distance, the better the ap-
proximation of the Wasserstein distance in the continuous
case.

4. Wasserstein GAN with TS (WGAN-TS)
In the previous section, we proposed Problem 4 to compute
the Wasserstein distance. We proved in Theorem 3.3 that
instead of using weight clipping (Arjovsky et al., 2017) or
weight penalty methods (Gulrajani et al., 2017) that require
additional hyper-parameters to approximate the Wasserstein
distance, we can use a two-step method to optimize the
exact Wasserstein distance that does not require any hyper-
parameters to enforce weight constraints. LetD be the critic
and G be the generator. Based on this new formulation and
TS optimization method, we propose the WGAN-TS model
as follows:

min
G

max
D

Ĉ(f) =

 1

m

∑
i∈I

D(yi)−
1

n

∑
j∈J

D(G(zj))


s.t. D(yi)−D(G(zj)) ≤ c(yi, G(zj)), ∀i, ∀j

(13)
where c(yi, G(zj)) = ||yi − G(zj)||1 (`1 distance) or
c(yi, G(zj)) = ||yi − G(zj)||2 (`2 distance). When the
generator G is fixed, we let xj = G(zj) and we apply the
proposed TS method to optimize formula (13) to compute
the discriminator. After we optimize the discriminator D,
we fix it and update the generator. We compute the generator
loss as follows:

min
G

− 1

n

∑
j∈J

D(G(zj)) (14)

4.1. Weight Scaling

In optimizing GANs, usually the critic is not completely
optimized in every generator iteration. We found in practice
that satisfying the constraints in formula (13) is more im-
portant than purely maximizing the objective while leaving
the constraints unsatisfied. Therefore, we propose to scale
the discriminator after the discriminator’s update so that the
constraints in formula (13) are satisfied. The scaling factor
β is defined as follows:

β = sup{1, sup{D(yi)−D(G(zj))

||yi −G(zj)||1
, ||yi−G(zj)||1 > 0}}

(15)

After β is calculated, we apply the scaling factor to
the weights of the layers in the discriminator such that
Dw/β(·) = Dw(·)/β. The activation function after the layer
performing the scaling should be a ReLU or a leakyReLU
to allow scaling.

Algorithm 1 WGAN-TS
1: Input: Real data Y , batch size m, nc = 1, nr = 5,

Adam parameters, α, β1, β2

2: Output: G, D
3: while θ has not converged do
4: for tc = 0 to nc do
5: Sample {yi}i∈I ∼ Pr from real data.
6: Sample {zj}j∈J ∼ Pz random noises.
7: Let xj = G(zj),∀j ∈ J .
8: Solve the Linear Programming problem in Eq. (7)

using cij = ||yi − xj ||1, and obtain T ∗.
9: T ∗t ← T ∗t − (

∑
k∈I∪J T

∗
k )/(m+n),∀t ∈ I ∪J .

10: for tr = 0 to nr do
11: gw ← ∇w 1

m+n (
∑
i∈I (Dw(yi)− T ∗i )

2
+∑

j∈J
(
Dw(xj)− T ∗j

)2
)

12: w← Adam(gw, w, α, β1, β2)
13: end for
14: Perform weight scaling onD according to Eq. (15)
15: end for
16: gθ ←∇θ − 1

n

∑
j∈J D(Gθ(zj))

17: θ← Adam(gθ, θ, α, β1, β2)
18: end while

The weight scaling operation of the discriminator will not
affect the gradient direction of the discriminator. Therefore,
to the generator, weight scaling is equivalent to dynamically
adjusting the learning rate of the generator.

4.2. Algorithm

The algorithm of the proposed WGAN-TS is presented in
Algorithm 1. In our algorithm, we set the number of critic
iterations nc to 1 but set the number of iterations of the deep
regression part nr to 5. We use `1 distance for WGAN-TS.
Similar to WGAN-GP, we use Adam (Kingma & Ba, 2015)
as our optimizer.

5. Experiments
In this section, we will first show on a toy data set that
the computed Wasserstein Distance (WD) of the proposed
method WGAN-TS is more accurate than the WGAN (Ar-
jovsky et al., 2017), WGAN-GP (Gulrajani et al., 2017)
and Spectral Normalization (Miyato et al., 2018) with
Wasserstein Distance (SN-WD). In the second part, we
will show that WGAN-TS produces better images than
WGAN (Arjovsky et al., 2017) and FisherGAN (Mroueh &
Sercu, 2017), and produces images comparable to WGAN-
GP (Gulrajani et al., 2017) and SN-WD (Miyato et al., 2018)
on the MNIST (LeCun et al., 1998), LSUN (Zhang et al.,
2015) and CIFAR-10 (Krizhevsky & Hinton, 2009) datasets.
WGAN-TS is also more efficient than the compared meth-
ods.
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(a)

(b)

Figure 1. Wasserstein Distance (WD) on the 8 Gaussian toy dataset.
(a) Accurate `1 and `2 WD, WD by WGAN-GP. (b) Accurate `1
and `2 WD, WD by WGAN, WD by SN-WD, `1 and `2 WD by
WGAN-TS (Best viewed in color).

5.1. Results on the Eight Gaussian Toy Dataset

Dataset: Similar to (Gulrajani et al., 2017), to simulate the
distribution of real data, we generate 8 Gaussians as the real
data distribution, and one Gaussian as the synthetic data
distribution. Details of this dataset are in the supplemental
materials. Once all the data points of real and synthetic data
are generated, we use the same data for all methods.

First, we compute the WD between the real and synthetic
distributions based on the Monge-Kantorovich primal form,
which is a linear programming problem and has a global
solution. The WD is 10.8687 under `1 distance and 8.7426
under `2 distance. We approximate the WD using different
methods: WGAN, WGAN-GP, SN-WD, WGAN-TS with `1
distance (WGAN-TS-`1) and WGAN-TS with `2 distance
(WGAN-TS-`2). The critics of all compared methods are
the same. It is a (2,512)-ReLU-(512,512)-ReLU-(512,512)-
ReLU-(512,1) network. The parameter settings of all the
methods can be found in the supplemental material. Figure
1 plots the WD of different methods w.r.t. the critic’s iter-
ations. From Figure 1(a) we can see that the WGAN-GP
does not approximate well either the `1 WD or the `2 WD,

(a) WGAN (b) WGAN-GP

(c) WGAN-TS-`1 (d) WGAN-TS-`2

Figure 2. Value surfaces of critics computed by (a) WGAN, (b)
WGAN-GP, (c) WGAN-TS-`1 and (d) WGAN-TS-`2.

and has high variance. This means that WGAN-GP is not
really computing WD and it is not stable. In Figure 1(b),
our method WGAN-TS-`1 approximates the `1 WD very
well and WGAN-TS-`2 approximates the `2 WD very well.
WGAN computes a WD of approximately 4.6, which is
quite far from the true `1 WD. SN-WD also computes a WD
of approximately 4.6, which is quite far from either the `1
WD or `2 WD.

Figure 2 plots the value surfaces of the critics of WGAN,
WGAN-GP, WGAN-TS-`1 and WGAN-TS-`2. From Fig-
ure 2(a) we can see that the critic of the WGAN cannot
provide correct gradients which point from the synthetic
to the real data. Figure 2(b) shows the value surfaces of
WGAN-GP’s critic. Although the critic provides good gra-
dients for its generator to update, the computed values are
significantly further from the true Wasserstein distance.

Experiments on the toy dataset validate that our method
WGAN-TS can approximate the WD much more accurately
than WGAN, WGAN-GP and SN-WD.

5.2. Results on MNIST, LSUN and CIFAR-10 datasets

5.2.1. PARAMETER SETTINGS

For images from the MNIST and CIFAR-10 datasets, we re-
size the image size to 64×64 so that on all the three datasets
we can use the standard DCGAN (Radford et al., 2016) as
the discriminator and generator. On all the three datasets,
all parameters of each method are set the same. The batch
size is set to 64 for all methods in all experiments. The
dimension of the latent vector is set to 100 for all methods.
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Table 1. Inception scores on the MNIST and CIFAR-10 datasets.

METHOD MNIST CIFAR-10

WGAN 1.64 ± 0.09 2.77 ± 0.18
WGAN-GP 2.34 ± 0.19 2.99 ± 0.22
FISHERGAN - 1.00 ± 0.00
SN-WD 2.22 ± 0.23 2.96 ± 0.18
WGAN-TS 2.35 ± 0.20 3.13 ± 0.15

The number of critic iterations nc for all methods is set to 5,
except WGAN-TS where the optimization iteration number
nr is set to 5 instead. We use the publicly available imple-
mentations of these methods and adopt the default parameter
settings. We use RMSProp (Tieleman & Hinton, 2012) as
the optimizer for critic and generator in the WGAN and
FisherGAN, and set the learning rate is to 5e-5. The weight
clipping parameter c in the WGAN is set to 0.01. For the
WGAN-GP and WGAN-TS, we use Adam as the optimizer.
We set the learning rate to 1e-4, β1 = 0.5 and β2 = 0.999.
λ in the WGAN-GP is set to 10. ρ in the FisherGAN is set
to 1e-6 as suggested (Mroueh & Sercu, 2017). We use the
`1 distance for the WGAN-TS.

5.2.2. MNIST DATASET

Figure 3 shows the images generated by different methods.
On the MNIST dataset, the generators of all methods iterate
1260000 times. From the generated images by WGAN we
can find that there are still some digits that do not appear
fully generated. This is mainly because weight clipping lim-
its the critic’s functional space so that the critic is not strong
enough to distinguish between the real and synthetic data.
Digits generated by the WGAN-GP, SN-WD and WGAN-
TS have better image quality. The digits are smoother and
more similar to real handwritten digits. To illustrate our
point, we place red boxes around the generated images for
the number 8. Figure 3 shows that images of the number 8
generated by the WGAN-GP, SN-WD, and WGAN-TS are
more realistic and have fewer defects.

Table 1 compares the Inception Scores (IS) (Salimans et al.,
2016) of different methods. It shows that the proposed
WGAN-TS is much better than the WGAN, and is compara-
ble to the state-of-the-art WGAN methods, WGAN-GP and
SN-WD.

5.2.3. LSUN DATASET

On the LSUN dataset, we let the the generators of all meth-
ods iterate 500000 times. Figure 4 shows images generated
by the WGAN, WGAN-GP, SN-WD and WGAN-TS. From
this figure we can see that images generated by the WGAN
are noisier than images generated by the WGAN-TS. We
place red boxes around the images that we can recognize as

(a) WGAN (b) WGAN-GP

(c) SN-WD (d) WGAN-TS

Figure 3. On the MNIST dataset, digits generated by (a) WGAN,
(b) WGAN-GP, (c) SN-WD, (d) WGAN-TS. WGAN-GP, SN-WD
and WGAN-TS generate more realistic images of digit 8. (Higher
resolution comparisons for the selected images can be found in the
supplemental materials.)

(a) WGAN (b) WGAN-GP

(c) SN-WD (d) WGAN-TS

Figure 4. On the LSUN dataset, images generated by (a) WGAN,
(b) WGAN-GP (c) SN-WD and (d) WGAN-TS. We mark the
images that we can recognize as bedrooms with red boxes.
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Figure 5. Histogram of β.

bedrooms. The WGAN-TS generates more number of im-
ages that are recognizable than the WGAN, and comparable
number of images by the WGAN-GP and SN-WD.

Figure 5 shows the histogram of β in WGAN-TS on the
LSUN dataset. “β = 1” means that the constraints in linear
programming step are satisfied. Approximately 94% of beta
values are 1, meaning that in most cases the constraints are
satisfied.

5.2.4. CIFAR-10 DATASET

On the CIFAR-10 dataset, we let the generator of all the
methods iterate 400000 times, and we use the IS to mea-
sure the quality of the generated images. Table 1 lists the
IS of different methods. Note that as we use the standard
DCGAN as the discriminator and generator, which is rela-
tively shallow compared to ResNet (He et al., 2016), and
the image size of this dataset is resized to 64×64, the incep-
tion scores reported here are lower than the best reported
scores. In Table 1, the FisherGAN gives the lowest IS. The
WGAN-TS, WGAN-GP and SN-WD achieve the highest
ISs. The IS of the WGAN is slightly lower than the top three
ISs. Figure 6 shows the images generated by these methods.
From this figure we can see that images generated by the
WGAN and WGAN-GP are slightly blurrier. We place red
boxes around the objects in these figures that we believe are
the most recognizable. From the selected images that were
generated by the same method, we see that the WGAN-TS,
WGAN-GP and SN-WD produce comparable numbers of
recognizable images while the WGAN produces the least
number of recognizable images.

We also evaluate the time used by the critics for each method.
Since the generator update is the same for all the methods,
the time spent by the critic determines the running time
order per generator update. Table 2 presents the running
time of the critic update per generator update. The proposed
WGAN-TS is the most efficient one. Not surprisingly, the
WGAN-GP is the slowest, because it needs to backpropagate
twice to compute the gradient of the critic. The FisherGAN
and SN-WD are comparable, and both of them are slower
than the WGAN-TS.

(a) WGAN (b) WGAN-GP

(c) SN-WD (d) WGAN-TS

Figure 6. On the CIFAR-10 dataset, images generated by (a)
WGAN, (b) WGAN-GP, (c) SN-WD and (d) WGAN-TS. Images
that are recognizable are boxed in red. ( Higher resolution compar-
ison for the selected images are in the supplemental materials.)

Table 2. Critic time consumption per generator iteration.

METHOD CRITIC TIME (IN SECONDS)

WGAN 0.373 ± 0.171
WGAN-GP 0.881 ± 0.277
FISHERGAN 0.499 ± 0.307
SN-WD 0.435 ± 0.272
WGAN-TS 0.278 ± 0.129

6. Conclusion
We proposed a new formulation of the Monge-Kantorovich
dual formulation to compute the Wasserstein Distance (WD).
We showed that the WD can be solved by a combination
of linear programming and DNN regression. The approx-
imation error bound and the error bound of generalizing
the WD from the discrete to the continuous distributions
were also given. Based on the TS method, we proposed
the WGAN-TS. Compared to other GANs, the WGAN-TS
does not need additional hyper-parameters for weight con-
straints. Results on the 8 Gaussian dataset showed that the
WD computed by the WGAN-TS is more accurate. Re-
sults on MNIST, LSUN, and CIFAR-10 datasets show that
the proposed method is faster than state-of-the-art WGAN
methods, and still produces comparable image quality.
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