1. Appendix
1.1. Proof of Lemma 1

It is straight forward to see:
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The second line of equality comes from the rule of total expectation, where the inner expectation is taken over the index
set B, and the outer expectation is taken over the set cardinality |5|.

1.2. Proof of Lemma 2

The proof technique is similar to SAGA, as well as a useful inequality (Lemma 4 in (?)):
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First of all, by the update rule (2):
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= [lw' = w*|* = 2y(w" - w*, G(w") = f'(w")) + 7| G(w) — f'(w)||*.

The inequality follows from non-expansiveness of proximal operator, notice that our stochastic gradient G (w") is unbiased,
take the expectation to the second term and apply (A1) to each f; and the average over all ¢ will goes to:
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Next we bound the last term in (A2):
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In equation = we use the property that E[X?] = E[X — E[X]]?> + E[X]?, now use the inequality | X + Y|?> < (1 +
AIX%+ (14 B~H]Y]% B > 0 to the first term:
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Next we bound the first and second terms again by variance decomposition, for simplicity we only take the first term as
example:
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(1) ()
< is by RMS-AM inequality, and in < we drop the negative term. Similarly,
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Plug (A6) into (AS) we get:
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Combining (A2),(A3),(A7) becomes (5) immediately:
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1.3. Proof of Theorem 3
It follows directly from Lemma 1 and 2:
Li—ELyp1 = c(Hy — EHpr) + (lw’ — w”||? = Elw™" — w*|?)
E|B|  2(1+ B8 1)L\ - . 2v(L—p) c-E|B
Zc( Bl _ XA ) )Ht+w|\wt—wll2+(2u572+ ( ) l |)f‘s( )]
n c L
y *
+ (3 = L+ B EIf () = f (w)|? (A8)
? Bl 2(1+ B8 Y921\ - .
2 (Bl 2020 Y fy ot —
n c
2 th7
- ?
where p = min(-* 18] w, 1), the last inequality > comes with following condition:
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furthermore, to keep our algorithm moving forward, i.e. ||w® — w*||? decreasing, we should also make sure such condition
hold:
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1.4. Proof of Proposition 1

By plugging 8 =2, ¢ = 5 Llﬁl Bl into (A9) it is easy to verify both inequalities hold.

1.5. Proof of Proposition 2

In this case we choose = 1. From Theorem 3 we know that with a suitable step size y and ¢, we have:
Ellwt — w* > EL, < (1 - p)'Lo = (1— p) [l — w*|[> + cHo).

For the optimal convergence rate, we try to maximize the geometric factor p = mln(
E|B] 4%L
n

2
EIB| 476 L ). Denote 7 as the

solution of:

= ~ou. Notice that p(y) = ~yu is increasing with v when v < vy = —( 1+ LO=EIBL 1)

8K cnp



and p(vy) = ElB‘ 4’7 is decreasing when v > ~y. So the optimal step size should be v = ~y. However we should also

verify that thlS step s1ze indeed satisfies the condition in (A9). First of all:
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two inequalities together ensure the upper bound part of (A9). As to the lower bound, we have v/1+z — 1 > \/x — 1, so:

where 7 < 1 is a small constant. These
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So if we choose 7 properly, both sides of (A9) can be satisfied.

1.6. Proof of Corollary 1, 2
Following (7) we take a derivative to E|B|:
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where o = f so there is no optimal batch size, and since we always want to access one data point, i.e. |B| > 1 and
SAGA style update is optimal.

For Corollary 2, it is easy to see for our algorithm, which choose |B| = n with probability p < 1 and |B| = 1 with
probability 1 — p, has average batch size E|B| = np + 1 — p = np + 1. For each update, it takes on average time 7 =

nntp + (1 — p)7 = (14 npn)7. If we want to get a e-suboptimal solution, the total iteration will be N = M x 1/p,
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So the running time will be:
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For simplicity we denote B = E|B|. By taking the partial derivative and set it to zero 97'/9B = 0 can solve the best batch
size:
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By showing the second order derivative 92T/0B? > 0 it’s easy to verify that this solution is actually a global minimum.

1.7. Proof of Lemma 4

We begin with non-expansiveness of proximal operation:
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where f(w) = 2 37" | fi(w) By taking expectation on each side and notice G(w") is a unbiased estimation of f’(w?):
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and then apply the following bounds for strongly convex function f:
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on the other hand, we can bound E||G(w') — f’(w*)||? as (A5) but we only need to care about one sample in a batch case,
since we are comparing SAGA with SVRG update style:
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Remember we have proved above formula in (A7), for E|| f/(w!) — f!(w*)||? we have:
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Similarly, for || f'(w') — f’(w*)||> we recall f is a y-strongly convex function:
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Add those inequalities together:
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1.8. Proof of Lemma 5

Since we know the distribution of random variable 7, also denote ¢, as the index of the latest gradient snapshot so for
SVRG/SAGA++ ts = kT where k is the number of outer iteration and 7' is the length of inner iteration, for SAGA ¢, = 0
so in either method we have ¢, > 0 then by conditional expectation relationship:
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(:) is taken over the choices of 7, while (:) is taken over the random variable 7 in oy, = f,;(

wT). Because the regularization
function g(w) is convex, and from optimal condition we know: — f/(w*) € dg(
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where v! € dg(w!'). Finally we have E[||a; — f/(w*)||?|Fo] < 2LY,_, pi(F(w') — F(w*)).



1.9. Proof of Proposition 3

Recall the quadratic upper bound of L-Lipschitz function:
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By taking the expectation,

E[f(w' —~Gw"))|F] < f(w') - vllf(wt)||2+L77E[IIG(wt)II2|ft]

12 12 (A27)
< flw') = (v = ) IV )2 + Z-Var[Glu').
On the other hand, for u-strongly convex f, we have:
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so if Var[G(w!)] also converges to zero at the order of f*®(w) = f(w') — f* then v can keep to a small constant rather
than damping like SGD. In fact (?)(Corollary 3) already proved it for SVRG, here we prove a similar result for SAGA style
update:
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here {F; }1>0 is the filtered probability space, t —T' < s < t (recall T is the length of inner iteration) is the latest available
full gradient time stamp, p is the probability distribution of stored gradient discussed in (10). Since ¢ — s is upper bounded
(this is true for SVRG/SAGA++, as to SAGA, the expectation is n logn by “Coupon collection problem™), together with
linear convergence, we know the second term is close to the first term up to a constant.

1.10. Proof of Theorem 6
First of all, we have the following recursive formula:
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Because c can be either positive or negative but 7 is always positive, we consider about following cases:

e (c<—m)Inthiscase 0 > c+n >c—n,if:



1. x > ¢+ n,then P(z,n,¢,n) =z —n(c+n);
2. x < c+n,thensuppose z = q(c—n) +¢€,q €N, e € [c—n,c+n)],if ¢ > nthen P(x,n,¢c,n) =z —n(c—n);
elsep(zvnacvq) =6 P(%%C;QJFU :0’ P(zvnacvn) = *(n*Q*l)(CﬂLn)

e (¢ > n) In this case 0 < ¢ — ) < ¢+ n which is symmetric to previous case, if:

1. x <c—mn,then P(z,n,¢c,n) =z —n(c—n);
2. x> c—n,thensuppose z = q(c+n)+¢€,q €N, e € [c—n,c+n],if ¢ > nthen P(x,n,¢,n) =z —n(c—n);
else P(z,m,¢,q) =€, P(x,n,¢,q+1) =0, P(x,n,¢e,n) = —(n—q—1)(c—n).

o ((n<c<yfinally,c—n <0< c+n,if:
1. © > n(c+mn), then P(x,n,¢,n) =x —n(c+n);
2. © <n(c—mn),then P(x,n,¢c,n) =x+n(c—n);

3. otherwise, | -] < nor || < n then we know it will eventually be zero: P(z,7,c,n) = 0.

Clearly this is a piecewise linear function with tangent either 1 or 0.

1.11. /5 Logistic Regression Experiment

In this supplemental experiment, we conduct the /5 logistic regression experiment, formulated as follows

. L1 A
w' = argmin - 3 log (1 + exp(yizfw)) + 5 wl3. (A31)
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The datasets and settings are the same as ¢; experiment discussed in the main text. The experiment result is exhibited in
Figure 1.
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Figure 1. Running time comparison among different data (A = 1.0 x 10~ for all data).



