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Abstract

In this paper we study a family of variance re-
duction methods with randomized batch size—at
each step, the algorithm first randomly chooses
the batch size and then selects a batch of sam-
ples to conduct a variance-reduced stochastic up-
date. We give the linear convergence rate for this
framework for composite functions, and show
that the optimal strategy to achieve the optimal
convergence rate per data access is to always
choose batch size of 1, which is equivalent to the
SAGA algorithm. However, due to the presence
of cache/disk IO effect in computer architecture,
the number of data access cannot reflect the run-
ning time because of 1) random memory access
is much slower than sequential access, 2) when
data is too big to fit into memory, disk seeking
takes even longer time. After taking these into
account, choosing batch size of 1 is no longer
optimal, so we propose a new algorithm called
SAGA++ and show how to calculate the optimal
average batch size theoretically. Our algorithm
outperforms SAGA and other existing batched
and stochastic solvers on real datasets. In addi-
tion, we also conduct a precise analysis to com-
pare different update rules for variance reduction
methods, showing that SAGA++ converges faster
than SVRG in theory.

1. Introduction

In this paper, we consider the following finite-sum compos-
ite optimization problem:

n
w* = arg min {F(w) 2l Z fi(w) + g(w)} (1)
weRP n i—1
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Here we assume each f;(w) is a p-strongly convex, L-
smooth function, the regularization term g(w) is convex
but not necessarily differentiable. In machine learning ap-
plications, n is the number of training samples, each f;
is the loss function such as logistic loss or /5 loss, and
g(w) is the regularization term which can be non-smooth
(e.g., £1 regularization). For large data, SGD is preferred
over gradient descent and has been widely used in large-
scale applications. However, since the variance of stochas-
tic gradient will not go to zero even when w = w* (the
optimal solution), SGD has to gradually shrink the step
size to guarantee convergence, at the cost of suboptimal
rate. To speed up the convergence, there is a recent line
of research on developing new algorithms with linear con-
vergence rate using variance reduction techniques, the rep-
resentative work includes SAG (Hofmann et al., 2015),
SVRG (Johnson & Zhang, 2013), SAGA (Defazio et al.,
2014), S2GD (Konecny & Richtarik, 2013) etc. Further,
one can accelerate this framework via concepts similar to
the Nesterov’s momentum method (Lin et al., 2015; Allen-
Zhu, 2017).

The motivation of this paper is to study the effect of batch
size in variance reduction methods. The effect of batch
size in SGD (without variance reduction) has been stud-
ied in the literature such as (Li et al., 2014; Bengio, 2012;
Keskar et al., 2016). Assuming a subset of b samples
is chosen for SGD at each step, the theoretical analysis
in (Dekel et al., 2012) suggests that the error is at the or-
der of O(1/v/bT + 1/T) after T iterations, and this bound
is later improved to O(1/v/bT) in (Li et al., 2014). When
constraining on SVM-hinge loss, (Takac et al., 2013) also
shows an order of O(7 + % : i) iterations to get an e-
suboptimal solution. Since each iteration will take the time
proportional to b, these bounds suggest that the accelera-
tion of convergence exactly covers the overhead of each
iteration. It is thus interesting to see whether the same con-
clusion also applies for variance reduction methods.

To answer this question, we study a family of variance re-
duction methods with randomized batch sizes. At each it-
eration, the algorithm first randomly selects the batch size
and then chooses a batch of samples to conduct a variance
reduced stochastic update. Our main findings and contribu-
tions can be listed as follows:

e We prove linear convergence rate for this family of
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stochastic batched variance reduction algorithms. Our
result covers composite minimization problems with
non-smooth regularizations, and any distribution of
batch sizes.

o Interestingly, with this unified analysis, we theoret-
ically show that the convergence rate can be maxi-
mized if the algorithm always chooses batch size of
1. Therefore, increasing batch size does not help in
terms of the number of data access.

e However, the number of data access does not pre-
cisely reflect the actual running time due to the mem-
ory hierarchy and cache/disk 10 effect in computer
architectures—accessing a continuous block of mem-
ory is faster than accessing disjoint ones, and disk
seeking costs even more. After taking these into ac-
count, we propose the SAGA++ algorithm, and show
how to calculate the optimal average batch size in prac-
tice. Our algorithm outperforms existing algorithms in
terms of running time.

e In addition, we also develop a more precise analysis
for comparing the convergence rates of variance re-
duction methods, and develop an algorithm to univer-
sally accelerate the stochastic methods for solving ¢; -
regularized problems by lazy updates. Which redis-
covers (Konec¢ny et al., 2016) independently.

Related Work We will discuss the related variance reduc-
tion methods in next section. Here we describe some other
related work on stochastic optimization.

Stochastic optimization has become popular due to their
vast and far reaching applications in large-scale machine
learning, and this is also one of our main focus in this paper.
Among them, stochastic gradient descent has been widely
used, and its variants (Duchi et al., 2011; Kingma & Ba,
2014) are popular for training deep neural networks. There
are also other examples, such as stochastic coordinate de-
scent (Nesterov, 2012) and stochastic dual coordinate de-
scent (Shalev-Shwartz & Zhang, 2013). At each iteration,
SGD selects one sample to conduct the update, but its gra-
dient often contains huge noise. To reduce the noise or vari-
ance, mini-batch SGD has been intensively studied in the
literature, including (Li et al., 2014), and the recent work on
big-batch SGD (De et al., 2016). Some theoretical results
have been discussed in our introduction (Li et al., 2014;
Dekel et al., 2012).

Although some recent works have discussed about mini-
batch variance reduction algorithms (Hofmann et al., 2015;
Harikandeh et al., 2015), there is no clear conclusion
on whether increasing the batch size helps the convergen
speed. Ideally the convergence rate 1 — p should linearly de-
pend on the batch size: p o b; if that is the case, simply by
calculating the batched gradient in parallel we will see lin-
ear speed up. (Hofmann et al., 2015) suggests p =~ b/n in

big data regime and p is independent of b in ill-conditioned
case, this can be regarded as an asymptotic situation of our
result, which claims that p is a increasing function of b, but
a larger batch size is less useful when the Hessian is ill con-
ditioned. However, with a more precise bound in terms of
b, we are able to show that b = 1 is always optimal in terms
of number of data access.

As to the sampling techniques, the random sampling of
batch size is seen in (Richtarik & Takac, 2016) where the
authors considered about the partially separable functions
and apply block coordinate descent by randomly generate
a set of blocks with arbitrary size. Similar idea is later
exploited in (Qu et al., 2015; Csiba & Richtérik, 2015).
Our idea differs from these previous works in that we put
computer architecture effects into account when deciding
whether we should choose full gradient or stochastic gradi-
ent to update parameters.

2. Framework: Variance Reduction with
Stochastic Batch Size

Our proposed framework is shown in Algorithm 1: at each
iteration, the algorithm first randomly chooses the batch
size, ranging from 1 to n, and then samples a batch accord-
ingly. We use B as a random set to denote the mini-batch
chosen at each step, and its batch size, denoted as |B|, is
a random variable. Denote f/(¢4!) as the previous gradient
evaluated on sample z; and w’ is the iterate at time t. The
update rule is given by:

wit! = Prox.,q(. (wt - ’yG(wt)), 2)
where 1 is the step size and G (w') is the unbiased gradient
estimator:

|3|Zf \B%;f (0}) + 3)
control variate
where u = L3 | f/(¢l) is stored and maintained in

memory. Similar to SAGA, in general the algorithm needs
to store all the vectors f/(¢}) in memory, but for many com-
monly used cases it only needs to store a scalar for each
sample index i. For example, in GLM problems where
fi(w) = £;(x]w), since f/(w) = x;;(x]w) we only need
to store a scalar ¢;(z] ¢t) foreachi € {1,2,...,n}.

Algorithm 1 is very general and can include most of the ex-
isting variance reduction methods because our algorithm
does not put any restriction on the choice of batch size,
which can be either random or fixed. We discuss the con-
nections between this framework and others:

e When the batch size is n with probability 1, Algo-
rithm 1 will compute the full gradient at each iteration,
which is equivalent to gradient descent.
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Algorithm 1 Variance Reduction Method with Stochastic
Batch Size
Input: training samples {(x;, y;) }7;, initial guess wy
Output: w* = argmin,, F'(w)
w = wWo;
for iter=0to MAX_ITER do
Choose a batch size 1 < b < n randomly based on
some distribution;
Sample a batch B C {1,2,...,n}, |B| =b;
Calculate variance reduced gradient vector by (3);
Apply update according to (2);
Update gradient memory: f/(¢i™!) « fl(w?), Vi €
B;
Update @ < @+ 5 Yo fi(we) = 3 Xie J1(6F)
end for
Return w* = w;

e When the batch size is always 1, the algorithm is
equivalent to SAGA (Defazio et al., 2014). At each
step, SAGA uniformly chooses one sample from
{1,2,...,n} and then update the iterates by the same
variance reduced gradient defined in (3).

e SVRG (Johnson & Zhang, 2013): This method adopts
two layers of iterations. In each outer iteration SVRG
calculates full gradient (also called gradient snapshot),
and in each inner iteration it chooses one sample to
update. SVRG does not update the gradient snapshot
inside the inner iteration, so strictly speaking it can-
not fit into our framework. However our algorithm,
SAGA++, based partly on SVRG adopts a better up-
date rule which will be discussed later.

e S2GD, mS2GD: They are variants of SVRG when the
number of inner iterations m follows a probability dis-
tribution: m ~ (1 —vy)M="/8,m =1,2,....M
where v is the lower bound of strongly convex factor (,
[ is a normalizing factor and -y is step size. (Konecny
et al., 2016) extends S2GD to mini-batched version.

3. Theoretical Analysis and New Algorithms

We discuss our theoretical results and new insights in this
section. First, we prove the linear convergence rate of Algo-
rithm 1 in Section 3.1, and then in Section 3.2 we will take
the cache/disk IO effect into consideration to derive the new
algorithm SAGA++. We show the SAGA-style update used
in this paper is more efficient than SVRG-style update in
Section 3.3 and then discuss a new technique to conduct
lazy update for ¢; regularization in our Algorithm 1. We
left the proof in appendix.

3.1. Convergence rate analysis

We assume the objective function is p-strongly convex and
L-Lipschitz smooth, and x = L/ is the condition number.
We will use the following useful bounds in our analysis:

F@) = f@) + f'(@)y —2) +p/2ly—=l* @)
fly) < f@)+ f@)(y —2) + L/2ly —«|>.  @b)

Hereafter we use || - || to denote ¢> norm unless stated ex-
plicitly. To simplify notation, we define f(w) = f;(w) —
filw?) = flw*)(w — w*) and fO(w) = LY, fH(w)
as the Bregman divergence between w and w*, and define
Hy = L0 | f3(¢!) to represent the averaged Bregman
divergence between w* and the snapshots ¢f.

To show the convergence of Algorithm 1, we first calculate

the expected change of H; after each update:

Lemma 1 For the update rule (2) and H, defined above,
we have EH, 1 = %Ell’ﬁ‘\gt + %f‘s(wt).

Note that unlike (Hofmann et al., 2015) where |B| is deter-
ministic, here we generalize their result to allow random
batch size. Similarly, the progress of ||w® — w*|| can be
bounded by:

Lemma 2 Define iteration progress by the distance to the
optimal solution w*, then:

o — I~ Bt w2 o’ — P )
(1B DB w) — i)
I ) — )P+ 2 oy
—2(1+ B~ Ly*Hy,

where 3 > 0 is an arbitrary constant.

Combining Lemma 1 with 2, we can build a contraction on
Lyapunov function as follows.

Theorem 3 Define Lyapunov function as L; = cH;, +

|lwt — w*||?, ¢ is a predefined constant, then we
—  min(EB

have ]E1£t+21 < (1 — p)Ly where p = min(=~ —

201+8~HL

WWW

if the step size v satisfies the following
conditions:

Upper bound :

cE|B| )

7 < min ( 20+ L) (g

(1+pB)L’
Lower bound

2(L—,u)7_ cE|B] >0.
L n

2uBy* +

Recall ¢, B are predefined constants.
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However, the result above is too complex to interpret. To
get a better understanding of how the averaged batch size
E|B|, step size -y and contraction factor p are related to each
other, we simplify the result along different directions.

Proposition 1 (Adaptive step size) In this case we want the
step size 7y to be independent on strong convexity p. To this

_ __n - L
end, we set f =2, c = STEE] 50 thaty = 5.

This result is the same with the adaptive step size of SAGA,
which trade simplicity with tightness (the step size and con-
vergence rate is independent on E|B| so we can not see the
benefit of larger batch). To develop a more informative re-
sult, we resort to the following proposition:

Proposition 2 (E|B|-dependent step size) If we set step

16xE|B| _ ™n
o 1) and ¢ = TEB]

7 € (0,1) is a constant, our algorithm converges lin-
early with a contraction factor 1 — p, ie. |w'" — w*||* <
(1= p)"[[lw® — w*||* + cHo| and p = ypu.

The selection of step size in Proposition 2 is optimal in
terms of maximizing the convergence rate, as proven in
appendix. Admittedly, after developing these results, the
convergence rate and step size are loose after many inequal-
ities, so these bounds should be regarded as the worst case
situation. Even so, as a quick verification, we can show
that our result matches the bounds of gradient descent and
SAGA in the following extreme cases:

size to vy = ( 1+

e Gradient descent: when setting P(|8| = n) = 1, then

pap = gz (V/16K%/74+1 1) = \2/—5 this gives the

same order as the standard rate of gradient descent
20
(2).

e SAGA: P(|B] = 1) = 1, for the ill conditioned case
where  is comparable to n, p = 1 - constant ~ O(1).
While in the well-conditioned case Kk < n, we have

p=g=(y/1+ 1662 1) ~ O(}). These rates match

Tn?2
the results in the original SAGA paper (Defazio et al.,
2014).

Note that the step size, unlike SGD, is always bounded
away from zero (we do not need to decrease the step
size in each epoch). This can be seen from the fact that

= i(w/H 16+E]5] 1) > 0.

Next we try to find out the optimal averaged batch size E|B|
in order to achieve the optimal convergence rate in terms of
number of data access. Based on Proposition 2, to return an

e-accurate solution we need O( loé?lg Ep)) iterations, which
_loge

o2 (l—7) ]E|B |) epochs if the averaged batch size
We then derive the following corollary to show

implies O~
is E|B|.

that simply increasing the batch size will slow down the
convergence rate per data access:

Corollary 1 (Theoretically optimal batch size) Since the
effective number of data access per iteration is propor-

size should maximize the decrement of function value with
fixed gradient calculation, which can be formulated as fol-
lows:
E|B
E|B|* = argmin ———=——E|B| ~ arg min EIB|
£ 1og(l—p) ElB P
E|B2 )
= arg min .

Bl i+ BEiR

loge

By taking derivative it is easy to see that the function is
monotone increasing with E|B| (we leave it in appendix).
So theoretically E|B| = 1 (which is SAGA method) is opti-
mal.

3.2. SAGA++: Optimal batch sizes when taking
cache/disk 10 effect into consideration

According to Corollary 1, one should always choose |B| =
1 in order to minimize the number of data accesses. How-
ever, small number of data access may not necessarily lead
to short running time in practice—in modern computer
architectures, “sequential accesses” of data stored in the
memory is much faster than “random accesses”, because
accessing the memory wildly can result in frequent cache
miss or disk seeking. Therefore, calculating the full gra-
dient f’(w) will take less time than calculating n random
gradient components f/(w) (see Table 1 for measurement
result). This leads to a new variance reduction method with
non-deterministic batch size selection strategy(SAGA++)
that combines full gradient access and SAGA (|B| =

at each step we choose |B| = n with probability p and
|B] = 1 with probability 1 — p. When |B| = n, SAGA++
accesses the whole dataset and this can be relatively fast
due to the sequential memory access pattern, while when
|B| = 1 it randomly accesses one sample. By changing p
we can smoothly change the average batch size from 1 to
n. Next we show how to take the cache/disk IO effect into
consideration and derive the “optimal” p in theory, while
in the experimental part we show that the optimal average
batch size can be large, depending on the problem and data.

To derive the optimal average batch size that yields minimal
running time, we assume the computer needs T4 time to
sequentially access n samples, and T,,4 to randomly access
the same number of samples. Therefore, when |B| =
each update costs within T},,q4/n time units. We call the
ratio Tyeq/Trand as the cache effect ratio.

Corollary 2 (Optimal batch size with cache/disk 10 ef-
Sfect) If Tooy/Trana = n, m < 1, then the optimal average
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Figure 1. a) solution of (8) when cache/disk 10 effect coefficient = 0.7, the optimal batch size EB™ is the intersection of two lines
(marked as blue and orange), in this plot the condition number ranges from 0.025n to 0.5n. b) To see the relation of EB™* and condition
number x more clearly, we solve (8) numerically, the optimal batch size drop rapidly when s grows. At the same level of condition num-
ber, we should use a larger average batch when the cache/disk IO effect is strong (1 small). c¢,d) Experiment on avazu dataset(cache/disk
10 effect ratio n = 0.46), with respect to both data access(gradient calculation) and running time.

batch size will satisfy the following equations:

1 E—1 4k
EB* |~ (- -1)—, a=—F1,
U] 2-¢ VTn
CKQE|B*‘2 (8)

S aEEB - T EB T

Note that £ is also determined by E5* which makes the
closed form solution intractable. However, if we know con-
dition number x and cache effect ratio 7, the optimal batch
size can be computed numerically. To gain more insights,
we plot % as a function of « - EB* in Figure 1(a), which
shows the connection between the best batch size E5* and
x: in the well-conditioned regime we can select a larger
batch size and in the ill-conditioned case a smaller batch
size is better. Furthermore, Figure 1(b) reveals the opti-
mal average batch size changes with condition number and
cache effect ratio : Conceptually, if 7 is smaller (sequen-
tial accesses are much faster than random accesses), then
we are expected to do the full gradient update more fre-
quently.

Our algorithm looks similar to SVRG—sometimes do
a full gradient update while other times select a sin-
gle instance. However, we use a different book-keeping
strategy—S VRG does not update the gradient snapshot and

control variate (defined in (3)) in between the two outer iter-
ations, while SAGA-++ will keep updating them even when
batch size = 1. Since we always keep the latest informa-
tion, the convergence speed is always better than SVRG,
and we leave the detailed discussion to Section 3.3.

3.3. One step analysis: comparing Algorithm 1 with
SVRG-style update

By far, we have only discussed the convergence speed un-
der SAGA-style framework. In this section, we analyze
why Algorithm 1 has faster convergence rate compared to
the SVRG-style updates. This explains why SAGA++ (a
special case of SVRG) is faster than SVRG, since they
have the same data access pattern and differs in update
rules. Here SVRG-style means we do not update the con-
trol variate in (3) before a new gradient snapshot is calcu-
lated, while in Algorithm 1 we store and update each gra-
dient memorization f/(¢!) as well as its summation once
“fresher” gradient is available. Since the proposed frame-
work in Algorithm 1 includes SAGA and SAGA++ as spe-
cial cases, we call it “SAGA-style” update hereafter.

The main advantage of SVRG-style update is that it needs
less memory, however, since many machine learning prob-
lems can be formulated as generalized linear model (GLM):
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filw) = f(wTz;), so the gradient f/(w) = f'(wTxz;)z; is
purely determined by wTx;, and SAGA-style update need
only to store this scalar instead of the gradient vector for
each sample. Therefore, for GLM problems the memory
overhead of SAGA-style algorithm is simply an O(n) vec-
tor.

In terms of convergence rate, the following theory indicates
that SAGA-style updates can better control the variance of
gradient. First of all, we extend (3) to a more general vari-
ance reduced gradient defined by G(w') = f/(w') — gi,
where g; = o; — %L Z?Zl a; can be any zero-mean control
variate. The update rules for SVRG, SAGA, and SAGA++

can be written as o; = f/(w™), where:

SVRG: 7 = kT
SAGA: 0 < 7 <t 9)
SAGA++: kT < 7 < t,

where f/(w”) = f/(¢!) is stored in memory, T is the
number of inner iterations inside each outer iteration and
suppose the program have just finished the k-th outer itera-
tion. We only consider the |B| = 1 case since we want to
focus on the control variate rather than batch size. For each
i, by regarding 7 as a random variable, we can calculate its
probability distribution as follows:

SVRG SAGA 1, = (- %)t_l
T =kT, T =9 ,
t. p=,
kT, p= (1 _ %)tfkT
_ 11 _ 1\t—kT-1
SAGA+ _ RE+1 p=g(l—3)

3=

t, p=

(10

To see the difference of convergence rate between those up-
date rules, we introduce the following lemmas:
* H 2

Lemma 4 If we use the distance ||w' — w*||? as a metric

to the sub-optimality, then we have:
Eflw' ! —w|?|F] < (1 —yp)w’ —w*|?

+(4Ly? - 2“77 —2uy?) fO(w') (A1)

+292E[||ai — f{ (w")|P|F,
where the expectation is taken over the choices of i (F;
is the o-algebra at time t), f°(w) = f(w) — f(w*) —

f(w*)(w — w*) is the Bregman divergence and we have
0 < fo(w) < F(w) - F(w*).

The first two terms in (11) is related to the distance be-
tween the current and optimal solution, only the last term

involves the control variate «; in different update rules, that
is exactly what we are interested in, which can be further
bounded by:

Lemma 5 For an algorithm with P(t = j) = p;, we can
upper bound the gradient difference term:

t
Ellle; — fi(w*)*|Fo] < 2L Y pi B (w).

j=1

(12)

To see the change of F***(w') = F(w') — F(w*) with ¢,
we claim that those variance reduction methods is expected
to decrease in each step as long as «y is small(but keep to
some constant):

Proposition 3 For strongly convex function f(w), define
the update rule w'™' = w' — yG(w?) (we ignore the
regularization term for simplicity). If we want the func-
tion value to be a super-martingale, i.e. E[f(w!t1)|F;] <
f(w?), then for SGD we require v — 0. But for variance re-
duction methods, since the variance of G(w?) goes to zero
as fast as f(w') — f* (see appendix for details), a constant
step size is enough.

Finally we can compare the update rules listed in (3.3) by
Proposition 3: Since the upper bound of distance improve-
ment in (11) is determined by the variation of control vari-
ate E[||a; — f/(w*)||?|Fo] and it is further upper bounded
by (12), this can be seen as a weighted sum of expected
function suboptimal E[F*"?| F,] and further from Corollary
3 we know F*P is expected to decrease at each iteration,
so we can conclude that more “weight” p; should be put
on smaller E[F*"°| Fy], in another word, a good update rule
should keep all the stochastic gradient active, rather than
stale for too long. Therefore, by (10) we can observe that
the distribution of p; in SAGA++ is strictly better than both
SAGA and SVRG, which indicates that SAGA++ has a
faster convergence rate while keeping the same computa-
tional cost.

3.4. Lazy update for /; regularization

For sparse datasets and f;(w) = f(wT7z;), the stochastic
gradient f](wTx;)z; has the same indices of zero elements
as x;. However, the 4 vector in update rule (3) is a dense
vector, which will lead to updating all the d variables. To
reduce the time complexity back to O(nnz(x;)) per step, a
“lazy update” technique was discussed in (Schmidt et al.)
for /5 regularization. The main idea is that instead of
performing an immediate update to all the variables, we
only update variables associate with nonzero elements in
z;. In the following, we derive the lazy update technique
for ¢; regularization. As an illustration, Figure 2 shows a
simple case where index j has two consecutive zero ele-
ments in data vectors chosen at time ¢t = 1 and ¢t = 2, or
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O prox(w(!) — ¢) O prox(w® — ¢) ‘

~s -
-----

prox(prox(w® — ¢) — ¢)

Figure 2. The illustration of lazy-update technique. We count the
proximal operations that have been delayed (in this figure there
are two) and recover it at once.
x4, [4] = x4,[j] = 0. So the updates of w(?[j] and w(*[j]
are:

w®[j] = prox(wV[j] ~ )
w®[j] = prox(prox(w(l)[j} —c)— c),
where ¢ = 1377 f{(xzqﬁgl))xil [7]. Now it remains to
calculate the nested proximal operations, which can be ef-

fectively calculated by following theorem:

Theorem 6 Let g(z) = nlx

, for all z,c € R we

have:  prox, proxg(-~-proxg(:v e c) — c) =

n operations
P,(z,n,c,n). Where P, is a simple, piecewise linear func-
tion.

Due to the space limit, we left the detailed formulation
of P, in appendix. Upon finishing this paper, we found
lazy update for ¢, regularization has also been discussed re-
cently in (Konec¢ny et al., 2016). However, we still include
our formal proof here for the completeness of this paper.

3.5. Extension: parallel computing scenario

The fact that doing one step full gradient update is faster
than n-step stochastic gradient update dues not only to
cache/IO read; similar idea can also be applied to a va-
riety of parallel optimization algorithms, in a more im-
plicit way: when doing full gradient descent, it is trivial
to make use of multiprocessing to speedup our program. In
contrast, for mini-batch stochastic gradient upgrade when
batch size is much smaller than the available CPU cores,
many of the computing resources are idle. Although many
first order methods have their asynchronous versions that
alleviate this problem to some degree (Recht et al., 2011;
Leblond et al., 2016; Reddi et al., 2015; Hsieh et al., 2015),
because of the inconsistent paces between workers, these
algorithms are suboptimal. So if we come back to syn-
chronous updates and given that only full gradient calcula-

tion can be significantly accelerated, then the same quantity
Tieq/Trana becomes a deterministic factor that affects how
frequently one should perform full batch update.

4. Experimental Results
We compare SAGA++ with SAGA (Defazio, 2014),
SVRG (Johnson & Zhang, 2013) and LIBLINEAR (Fan
et al., 2008) (proximal Newton method) on solving the ;-
regularized logistic regression:

* : 1 - T
w* = argufmn - glog (1 + exp(yiz]w)) + Al|wl|1,

13)
where (z;,y;) are feature-response pairs. To make a fair
comparison, all the algorithms are implemented based on
the LIBLINEAR code base, and we tried to optimize each
algorithm. For each outer iteration in SVRG/SAGA++ we
choose m = 1.5n inner iterations, this amounts to E|B| =
1.67 and close to the experiments in (Johnson & Zhang,
2013) where m = 2n. The lazy update for /; regularization
is also implemented for all the variance reduced methods.
All the datasets can be downloaded from LIBSVM website.

First, we compare all the algorithms on kddb dataset with
different regularization parameters. The results in Figure 3
shows that SAGA++ outperforms other algorithms for all
the three choices of parameters. Indeed, A\ = 107° (the
middle figure) is the best parameter in terms of prediction
accuracy, so our comparison covers both large and small
AS.

Next, we compare the running time of all the algorithms on
three datasets in Figure 4. The results show that SAGA++
is faster than all the competitors on these three datasets.
We conclude our experimental results by the following ob-
servations: (1) Although SAGA has faster convergence in
terms of “number of data access” (see Figure 1-c), SVRG
often outperforms SAGA due to faster sequential access.
Our algorithm, SAGA++, has a sequential access stage like
SVRG, while uses the most up-to-date gradient information
at the random update stage, thus outperforms both SVRG
and SAGA in all cases. (2) The lazy update (briefly dis-
cussed in Section 3.4) accelerates SAGA/SVRG/SAGA++
a lot; without such technique all the variance reduction
methods will be much slower than LIBLINEAR. However,
with such technique they can outperform the LIBLINEAR
implentation of proximal Newton methods.

5. Conclusions and Discussions

We study the unified framework for variance reduction
methods with stochastic batch size and prove the linear
convergence rate in strongly convex finite sum functions
with continuous regularizer. We show that choosing batch
size always equals to 1 (equivalent to SAGA) leads to the
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Table 1. Dataset statistics. Time for sequential accessing n samples is measured by one computation of full gradient f’(w), while time
for random accesses is measured by computing n random gradient components f; (w).

Time to access whole data(sec)

Dataset’  Size(GB)  #Sample #Feature  nnz ratio

Sequential Random
kddb 5.13 19,264,097 29,890,095  9.84e-7 3.91 11.43
avazu 5.04 25,832,830 999,962 1.50e-5 4.14 9.08
criteo 26.74 45,840,617 999,999 3.90e-5 14.07 30.51

tDownload from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 3. Running time comparison on kddb dataset with different regularization parameters (\). Result shows that our SAGA++ algo-
rithm is faster than competitors under different regularization parameters.
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Figure 4. Running time comparison among different data (A = 1.0 x 10~ for all data). Meta-information can be found in Table 1.

best rate in terms of number of data accesses; however, it is intuitively its more close to gradient descent.
not optimal in terms of running time, so we develop a new
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