
Supplementary material for paper:
Constraining the Dynamics of Deep Probabilistic Models

Marco Lorenzi 1 Maurizio Filippone 2

1. Description of the ODE systems considered in this work
Lotka-Volterra (Goel et al., 1971). This ODE describes a two-dimensional process with the following dynamics:

df1
dt

= αf1 − βf1f2;
df2
dt

= −γf2 + δf1f2,

and is identified by the parameters θ = {α, β, γ, δ}. Following (Niu et al., 2016) we generated a ground truth from numerical
integration of the system with parameters θ = {0.2, 0.35, 0.7, 0.4} over the interval [0, 30] and with initial condition [1, 2].
We generated two different configurations, composed by respectively 34 and 51 observations sampled at uniformly spaced
points, and corrupted by zero mean Gaussian noise with standard deviation σ = 0.25 and σ = 0.4 respectively.

FitzHugh-Nagumo (FitzHugh, 1955). This system describes a two-dimensional process governed by 3 parameters,
θ = {a, b, c}:

df1
dt

= c(f1 − b
(f1)

3

3
+ f2);

df2
dt

= −1

c
(f1 − a+ b ∗ f2).

We reproduced the experimental setting proposed in (Macdonald & Husmeier, 2015), by generating a ground truth with
θ = {3, 0.2, 0.2}, and by integrating the system numerically with initial condition [−1, 1]. We created two scenarios; in
the first one, we sampled 401 observations at equally spaced points within the interval [0, 20], while in the second one we
sampled only 20 points. In both cases we corrupted the observations with zero-mean Gaussian noise with σ = 0.5.

Biopathways (Vyshemirsky & Girolami, 2007). These equations describe a five-dimensional process associated with 6
parameters θ = {k1, k2, k3, k4, V,Km} as follows:

df1
dt

= −k1f1 − k2f1f3 + k3f4;

df2
dt

= k1f1;

df3
dt

= −k2f1f3 + k3f4 +
V f5

Km + f5
;

df4
dt

= k2f1f3 − k3f4 − k4f4;

df5
dt

= k4f4 −
V f5

Km + f5
.

We generated data by sampling 15 observations at times t = {0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100} (Macdonald
& Husmeier, 2015). The ODE parameters were set to θ = {k1 = 0.07, k2 = 0.6, k3 = 0.05, k4 = 0.3, V = 0.017,Km =
0.3}, and the initial values were [1, 0, 1, 0, 0]. We generated two different scenarios, by adding Gaussian noise with σ2 = 0.1
and σ2 = 0.05, respectively.
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2. Detailed results of the benchmark on ODE parameter inference
In figures 1 and 2, we report the detailed estimate/posterior distribution obtained by the competing methods on the three
ODE systems considered in this study.
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Figure 1. Box-plot of posteriors over model parameters. The five box-plots for each method indicate five different repetitions of the
instantiation of the noise.
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Figure 2. Box-plot of posteriors over model parameters. The five box-plots for each method indicate five different repetitions of the
instantiation of the noise.
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3. Interpolation results using Matérn covariance in shallow GPs
We report here the result of interpolating FitzHugh-Nagumo ODE with GPs with Matérn covariance. Note that the process is
still stationary, but it allows for the modeling of non-smooth functions when ν is small.

Shallow  Matern GP 
 8 0   t r a i n in g   p o i n t s

1000 training points

ν = 1/2 ν = 1 ν = 3/2 ν = 5/2

.

ν = 1/2 ν = 1 ν =3/2 ν = 5/2

Figure 3. Modeling sampling points from the FitzHugh-Nagumo ODE with GPs with Matérn covariance.
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