
Spectrally Approximating Large Graphs with Smaller Graphs

Andreas Loukas 1 Pierre Vandergheynst 1

Abstract
How does coarsening affect the spectrum of a
general graph? We provide conditions such that
the principal eigenvalues and eigenspaces of a
coarsened and original graph Laplacian matrices
are close. The achieved approximation is shown
to depend on standard graph-theoretic properties,
such as the degree and eigenvalue distributions,
as well as on the ratio between the coarsened
and actual graph sizes. Our results carry impli-
cations for learning methods that utilize coars-
ening. For the particular case of spectral clus-
tering, they imply that coarse eigenvectors can
be used to derive good quality assignments even
without refinement—this phenomenon was pre-
viously observed, but lacked formal justification.

1. Introduction
One of the most wide-spread techniques for sketching
graph-structured data is coarsening. As with most sketch-
ing methods, instead of solving a large graph problem in its
native domain, coarsening involves solving an akin prob-
lem of reduced size at a lower cost; the solution can then
be inexpensively lifted and refined in the native domain.

The benefits of coarsening are well known both in the algo-
rithmic and machine learning communities. There exists a
long list of algorithms that utilize it for partitioning (Hen-
drickson & Leland, 1995; Karypis & Kumar, 1998a; Kush-
nir et al., 2006; Dhillon et al., 2007; Wang et al., 2014)
and visualizing (Koren, 2002; Walshaw, 2006) large graphs
in a computationally efficient manner. In addition, it has
been frequently used to create multi-scale representations
of graph-structured data, such as coarse-grained diffusion
maps (Lafon & Lee, 2006), multi-scale wavelets (Gavish
et al., 2010) and pyramids (Shuman et al., 2016).

More recently, coarsening is employed as a component of
graph convolutional networks analogous to pooling (Bruna
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et al., 2014; Defferrard et al., 2016; Bronstein et al., 2017;
Simonovsky & Komodakis, 2017). Combining the values
of adjacent vertices reduces the spatial size of each layer’s
output, prevents overfitting, and encourages a hierarchical
scaling of representations.

Yet, much remains to be understood about the properties
and limitations of graph coarsening.

The majority of theoretical work has so far focused on
constructing fast linear solvers using multigrid techniques.
These methods are especially relevant for approximating
the solution of differential equations on grids and finite-
element meshes. Multigrids were also adapted to arbi-
trary graphs by Koutis et al. (2011) and later on by Livne
and Brandt (2012). Based on an optimized version of
the Galerkin coarsening, the authors demonstrate an alge-
braic multi-level approximation scheme that is numerically
shown to solve symmetric diagonally dominant linear sys-
tems in almost linear time. Similar techniques have also
been applied for approximating the Fiedler vector (Urschel
et al., 2014; Gandhi, 2016) and solving least-squares prob-
lems (Hirani et al., 2015; Colley et al., 2017).

Despite this progress, with the exception of certain inter-
lacing results (Chung, 1997; Chen et al., 2004), it is cur-
rently an open question how coarsening affects the spec-
trum of a general graph. As a consequence, there is no rig-
orous way of determining to what extend one may coarsen
a graph without significantly affecting the performance of
spectral methods for graph partitioning and visualization.
The absence of a fundamental understanding of what and
how much information is lost also hinders our ability to de-
sign efficient learning algorithms for graph-structured data:
e.g., coarsening is the least studied (and less optimized)
component of graph convolutional networks.

This paper sheds light into some of these questions. Specif-
ically, we consider a one-shot coarsening operation and ask
how much it affects the eigenvalues and eigenvectors of the
graph Laplacian. Key to our argument is the introduced
restricted spectral similarity (RSS) property, asserting that
the Laplacian of the coarsened and actual graphs behave
similarly (up to some constants) with respect to an appro-
priate set of vectors. The RSS property is shown to hold
for coarsenings constructed by contracting the edges con-
tained in a randomized matching. Moreover, the attained
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constants depend on the degree distribution and can be con-
trolled by the ratio of the coarsened and actual graph sizes,
i.e., the extend of dimensionality reduction.

We utilize the RSS property to provide spectrum approxi-
mation guarantees. It is proven that the principal eigenval-
ues and eigenspaces of the coarsened and actual Laplacian
matrices are close when the RSS constants are not too large.
Our results carry implications for non-linear methods for
data clustering (Von Luxburg, 2007) and dimensionality
reduction (Belkin & Niyogi, 2003). A case in point is
spectral clustering: we show that lifted eigenvectors can
be used to produce clustering assignments of good quality
even without refinement. This phenomenon has been ob-
served experimentally (Karypis & Kumar, 1998a; Dhillon
et al., 2007), but up to now lacked formal justification.

Paper organization. After introducing the RSS property
in Section 2, we demonstrate in Section 3 how to gener-
ate coarsenings featuring small RSS constants. Sections 4
and 5 then link our results to spectrum preservation and
spectral clustering, respectively. The paper concludes by
briefly discussing the limitations of our analysis. The
proofs can be found in a supplementary document.

2. Graph coarsening
Consider a weighted graph G = (V, E ,W ) of N = |V|
vertices and M = |E| edges, with the edge eij between
vertices vi and vj weighed bywij ≤ 1. As usual, we denote
by L the combinatorial Laplacian of G defined as

L(i, j) =


di if i = j

−wij if eij ∈ E
0 otherwise

(1)

and di the weighted degree of vi. Moreover, let λk be the
k-th eigenvalue of L and uk the associated eigenvector.

2.1. How to coarsen a graph?

At the heart of a coarsening lies a surjective (and there-
fore dimension reducing) mapping ϕ : V → Vc between
the original vertex set V = {v1, . . . , vN} and the smaller
vertex set Vc = {v′1, . . . , v′n}. In other words, the coarse
graph Gc = (Vc, Ec) has m = |Ec| and contains every edge
(i, j) ∈ E for which ϕ(vi) 6= ϕ(vj). We define the coars-
ened Laplacian as

Lc = CLC>, (2)

where the fat n × N coarsening matrix C describes how
different v ∈ V are mapped onto the vertex set Vc. Simi-
larly, we may downsample a vector x ∈ RN supported on
V by the linear transformation

xc = Cx, (3)

where now xc ∈ Rn. We here focus on coarsenings
where each vertex vi is mapped into a single v′j . This is
equivalent to only considering coarsening matrices with
block-diagonal form C = blkdiag

(
c>1 , . . . , c

>
n

)
, where

each c>j = [cj(1), . . . , cj(nj)] is the length nj coarsen-
ing weight vector associated with the j-th vertex v′j of Vc.
In addition, we restrict our attention to constant coarsening
weight vectors of unit norm ‖cj‖2 = 1 with entries equal
to n−

1/2
j .

Though Lc is not a proper combinatorial Laplacian matrix
(e.g., Lc1 6= 0 for 1 being the all ones vector), it can take
the proper form using the simple re-normalization QLcQ,
where Q = diag(C1). This might seem inconvenient at
a first glance. We argue that it is not: it should not be
the action of Lc in itself that matters, but its effect when
combined with downsampling. When acting on xc, the
desired nullspace property is regained since LcC1 = 0.
Alternatively, one could define Lc′ = QCLC>Q and
xc′ = Q−1Cx, where now Lc′ has the proper combi-
natorial Laplacian form. This construction however is
equivalent to the one we consider here since x>c Lcxc =
x>C>Q−1QCLC>QQ−1Cx = x>c′Lc′xc′ .

We will also utilize the notion of a coarsening frame:

Definition 1 (Coarsening frame). The coarsening frame
GF = (VF , EF ,WF ) is the subgraph of G induced by set
VF = {vi | ∃vj with ϕ(vi) = ϕ(vj)}.

Informally, GF is the subgraph of G that is coarsened
(see Figure 1c). We say that the coarsening corresponds
to an edge contraction if no two edges of the coarsening
frame are themselves adjacent—in other words, EF forms
a matching on G.

Lifting. We write x̃ = C>xc to do an approximate in-
verse mapping from Vc to V , effectively lifting the dimen-
sion from Rn back to RN . To motivate this choice notice
that, even though Π = C>C is not an identity matrix, it is
block diagonal Π = blkdiag

(
c1c
>
1 , . . . , cnc

>
n

)
. Moreover,

Π is an identity mapping for all vectors in its range.

Property 1. Π = C>C is a rank n projection matrix.

Proof. For each block Πj in the diagonal of Π, we have
Π2
j = ΠjΠj = cjc

>
j cjc

>
j = cjc

>
j ‖cj‖2 = Πj . The rank of

Π is n because each diagonal block Πj is of rank one.

Therefore, if x is a vector in RN and xc = Cx is its coars-
ened counterpart, then x̃ = C>Cx = Πx is a locality-
preserving approximation of x w.r.t. graph G.

A toy example. Consider the example graph shown in
Figure 1a and suppose that we want to coarsen the n1 = 3
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(a) G. (b) Gc. (c) GF .

Figure 1: A toy coarsening example.

gray vertices VF = {v1, v2, v3} of G into vertex v′1, as
shown in Figure 1b. Matrices C and Lc take the form:

C =

1/
√

3 1/
√

3 1/
√

3 0 0
0 0 0 1 0
0 0 0 0 1

 =

[
c>1 0
0 I2

]

Lc = CLC> =

 2/3 −1/
√

3 −1/
√

3

−1/
√

3 1 0

−1/
√

3 0 1


Above, the 2 × 2 identity matrix I2 preserves the neigh-
borhood of all vertices not in VF . The coarsening frame is
shown in Figure 1c.

2.2. Restricted spectral similarity

The objective of coarsening is dual. First, we aim to attain
computational acceleration by reducing the dimensional-
ity of our problem. On the other hand, we must ensure
that we do not loose too much valuable information, in the
sense that the structure of the reduced and original prob-
lems should be as close as possible.

Spectral similarity. One way to define how close a ma-
trix B approximates the action of matrix A is to establish a
spectral similarity relation of the form:

(1− ε)x>Ax ≤ x>Bx ≤ (1 + ε)x>Ax, (4)

for all ∀x ∈ RN and with ε a positive constant. Stated in
our context, (4) can be rewritten as:

(1− ε)x>Lx ≤ x>c Lcxc ≤ (1 + ε)x>Lx (5)

for all x ∈ RN and with xc = Cx. If the equation holds,
we say that matrix Lc is an ε-spectral approximation of L.
In graph theory, the objective of constructing sparse spec-
trally similar graphs is the main idea of spectral graph spar-
sifiers, a popular method for accelerating the solution of
linear systems involving the Laplacian, initially proposed
by Spielman and co-authors (Spielman & Srivastava, 2011;
Spielman & Teng, 2011).

In contrast to the sparsification literature however, here the
dimension of the space changes and one needs to take into
account both the Laplacian coarsening (L becomes Lc) and
the vector downsampling operation (x becomes xc) in the

similarity relation 1. Yet, from an analysis standpoint, an
alternative interpretation is possible. Defining L̃ = ΠLΠ,
we re-write

x>c Lcxc = x>(C>C)L(C>C)x = x>ΠLΠx = x>L̃x.

Remembering that C> acts as an approximate inverse of
C, we interpret L̃ ∈ RN×N as an approximation of L that
contains the same information as Lc ∈ Rn×n.

Restricted spectral similarity (RSS). Equation (5) thus
states that the rank n− 1 matrix L̃ is an ε-spectral approx-
imation of L, a matrix of rank N − 1. Since the two matri-
ces have different rank, the relation cannot hold for every
x ∈ RN . To carry out a meaningful analysis, we focus on
an appropriate subset of vectors.

More specifically, we restrict our attention to the first K
eigenvectors of L and introduce the following property:

Definition 2 (Restricted spectral similarity). Suppose that
there exists an integer K and positive constants εk, such
that for every k ≤ K,

(1− εk)λk ≤ u>k L̃uk ≤ (1 + εk)λk. (6)

Then Lc is said to satisfy the restricted spectral similarity
(RSS) property with RSS constants {εk}Kk=1.

The relation to spectral similarity is exposed by substituting
u>k Luk = λk.

For every k, inequality (6) should intuitively capture how
close is Cuk to being an eigenvector of Lc: When εk = 0,
vector Cuk is an eigenvector of Lc with eigenvalue λk. On
the hand, for εk > 0, Cuk is not an eigenvector of Lc, but
matrices L and L̃ alter the length of vectors in the span of
uk in a similar manner (up to 1± εk).

This intuition turns out to be valid. In the following we
will demonstrate that the RSS property is a key ingredient
in characterizing the relation between the first K eigenval-
ues and principal eigenspaces of the coarsened and actual
Laplacian matrices. In particular, we will prove that the
spectrum of Lc approximates that of L (up to lifting) when
the constants εk are sufficiently small. This line of thinking
will be developed in Section 4.

Remark 1. A uniform RSS constant ε = maxk≤K εk is
sufficient to guarantee spectrum preservation, however, in-
dividual constants {εk}Kk=1 lead to tighter bounds.

3. A randomized edge contraction algorithm
This section proposes an algorithm for coarsening a graph
that provably produces coarsenings with bounded RSS con-

1Coarsening could perhaps be interpreted as combining edge
and vertex sparsification (Moitra, 2011).
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Algorithm 1 Randomized Edge Contraction (REC)

1: input: G = (V, E), T, φ
2: output: Gc = (Vc, Ec)
3: C ← E , Gc ← G
4: Φ←∑

eij∈E φij , t← 0.
5: while |C| > 0 and t < T do
6: t← t+ 1.
7: Select each eij from C with prob. pij = φij/Φ or

continue with prob. 1−∑eij∈C pij .
8: C ← C \ Nij
9: Gc ← contract(Gc, eij) as in (2)

10: end while

stants εk.

The method, which we refer to as REC, is described in
Algorithm 1. REC resembles the common greedy proce-
dure of generating maximal matchings, in that it maintains
a candidate set C containing all edges that can be added to
the matching. At each iteration, a new edge eij is added
and set C is updated by removing from it all edges in the
edge neighborhood set Nij defined as follows:

Nij = {epq | epq ∈ E and p = i or q = j},

which also includes the edge eij .

Yet, REC features two main differences. First, instead of
selecting each new edge added to the matching uniformly
at random, it utilizes a potential function φ defined on the
edge set, i.e., φ : E → R+ with which it controls the prob-
ability pij that every edge is contracted. The second differ-
ence is that, at each iteration, REC does not select a valid
edge with probability 1 −∑eij∈C pij . This choice is not
driven by computational concerns, but facilitates the analy-
sis, as it alleviates the need for updating the total potential
Φ after every iteration.

Remark 2. REC is equivalent to the O(M) complexity
algorithm that samples from C directly in line 7 by updat-
ing Φ at every iteration such that its value is

∑
eij∈C φij .

Though we suggest to use this latter algorithm in practice,
it is easier to express our results using the number of itera-
tions T of Algorithm 1.

REC returns a maximal matching when T is sufficiently
large. As we will see in the following, it is sufficient to
consider T = O(N). The exact number of iterations will
be chosen in order to balance the trade-off between the ex-
pected dimensionality reduction ratio

r
∆
= E

[
N − n
N

]
and the size of the RSS constants.

3.1. Analysis of REC

The following theorem characterizes an individual RSS
constant of an Lc generated by REC. As exemplified in
Corollary 5.1, similar argumenrs can also be used to derive
a uniform bound over all εk for k ≤ K.

Theorem 3.1. Let Lc be the coarsened Laplacian pro-
duced by REC and further suppose that

λk ≤ 0.5 min
eij∈E

{
di + dj

2
+ wij

}
.

For any εk ≥ 0, the relation λk ≤ u>k L̃uk ≤ λk(1 + εk)
holds with probability at least

1− c2
1− e−c1T/N

4 εk
max
eij∈E

χij

 ∑
epq∈Nij

wpq
wij

+ 3− 4λk
wij


where c1 = N maxeij∈E

∑
epq∈Nij

ppq ,

c2 =
c1/N

1− e−c1/N and χij =
φij∑

epq∈Nij

φpq
.

The theorem reveals that the dependency of εk to some ex-
tremal properties implied by the potential function φ and
the graph structure. It is noteworthy that

c1 = O(1) implies lim
N→∞

c2 = 1. (7)

These asymptotics can be taken at face value even for finite
size problems: coarsening typically becomes computation-
ally relevant for large N (typically N > 103), for which c2
has effectively converged to its limit.

The assumption that c1 is independent ofN can be satisfied
either by assuming that G is a bounded degree graph, such
that |Nij | � N for every eij ∈ E , or by choosing potential
functions φij that are inversely proportional to |Nij |.
We can also incorporate the expected reduction ratio r in
the bound, by noting that

rN =
∑
eij∈E

P (eij ∈ EF ) ≥
∑
eij∈E

pij
1− e−TPij

Pij

≥ 1− e−TPmax

Pmax
=

1− e−c1T/N
c1/N

, (8)

(see proof of Theorem 3.1 for definitions of Pij and Pmax)
implying

1− e−c1T/N ≤ rc1, (9)

as well as that T = N
c1

log
(

1
1−rc1

)
iterations suffice to

achieve any r < 1/c1. Nevertheless, this latter estimate is
more pessimistic than the one presented in Theorem 3.1.
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(a) Bunny (point cloud) (b) Swiss roll (manifold) (c) Yeast (protein network) (d) Regular graph

Figure 2: The proposed bounds follow the behavior of the RSS constants εk, especially for regular graphs or graphs with small degree
variance. The two red lines plot the bounds of Theorem 3.1 for a success probability of ps = 0.5 and ps = 0.7.

The norm ‖Π⊥uk‖22. For all k, one has

P
(
‖Π⊥uk‖22 ≥ ε λk

)
≤ c2

1− e−c1T/N
2 ε

max
eij∈E

χij
wij

,

with constants defined as before (the derivation is not in-
cluded as it resembles the one employed in the proof of
Theorem 3.1). Thus, ‖Π⊥uk‖22 depends on the ratio r
(through (9)) and is smaller for small k (due to λk). This
is reasonable: by definition, eigenvectors corresponding to
small eigenvalues are smooth functions on G; averaging
some of their entries locally on the graph is unlikely to al-
ter their values significantly.

3.2. The heavy-edge potential function

Let us examine how the achieved results behave for a spe-
cific potential function. Setting φij = wij is a simple way
to give preference to heavy frames—indeed, heavy-edge
matchings have been utilized as a heuristic for coarsening
(e.g., in combination with graph partitioning (Karypis &
Kumar, 1998b)). It is perhaps interesting to note this partic-
ular potential function can be derived naturally from Theo-
rem 3.1 if we require that

χij

∑
epq∈Nij

wpq

wij
= 1 for all eij . (10)

It will be useful to denote respectively by %min and %max the
minimum and maximum of (di + dj − wij)/2davg over all
eij , with davg being the average degree. It is straightforward
to calculate that in this case

c1 = 2

(
di + dj − wij

davg

)
= 4%max.

Therefore, c1 = O(1) for all graphs in which Ω(1) =
%min ≤ %max = O(1), and given sufficiently large N and
some manipulation the probability estimate of Theorem 3.1
reduces to

1− 1− e−4%maxT/N

4 εk

(
1 +

1.5− 2λk
davg %min

)
. (11)

In addition, P
(
‖Π⊥uk‖22 > ελk

)
≤ 1−e−4%maxT/N

2 ε %min davg
.

The heavy-edge potential function is therefore more effi-
cient for graphs with small degree variations. Such graphs
are especially common in machine learning, where often
the connecticity of each vertex is explicitly constructed
such that all degrees are close to some target value (e.g., us-
ing a k-nearest neighbor graph construction (Muja & Lowe,
2014)).

As a proof of concept, Figure 2 compares the actual con-
stants εk with the bound of Theorem 3.1 when utilizing
REC with a heavy-edge potential to coarsen the follow-
ing benchmark graphs: (i) a point cloud representing a
bunny obtained by re-sampling the Stanford bunny 3D-
mesh (Turk & Levoy, 1994) and applying a k-nn construc-
tion (N = 1000, r = 0.4, k = 30), (ii) a k-nn similarity
graph capturing the geometry of a 2D manifold usually re-
ferred to as Swiss roll (N = 1000, r = 0.4, k = 10), (iii) A
network describing the interaction of yeast proteins (Rossi
& Ahmed, 2015) (N = 1458, r = 0.25, davg = 2, dmax =
56), and (iv) a d-regular graph (N = 400, r = 0.4, d = 20).
To derive the bounds, we started from Theorem 3.1 and
identified for each k the smallest εk such that the success
probability is at least ps = {0.5, 0.7}. As predicted by
our analysis, εk decrease with k (the decrease is close to
linear in λk) and with the variance of the degree distribu-
tion. The heavy-tailed yeast network and the regular graph
constitute two extreme examples, with the latter featuring
much smaller constants.

3.3. Regular graphs

For regular graphs, (9) becomes asymptotically tight, lead-
ing to the following Corollary:

Corollary 3.1. If G is a regular graph with combinatorial
degree d and equal edge weights wij = w, then for any k
such that λk ≤ (d + 1)/2 and for sufficiently large N , the
relation λk ≤ u>k L̃uk ≤ λk(1 + εk) holds with probability
at least

≥ 1− r 1− (2d)−1

εk

(
1 +

1.5− λk
d− 0.5

)
d�1≈ 1− r

εk
, (12)

inequality
∥∥Π>uk

∥∥2

2
≥ εrλ2 holds for all k with proba-
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bility at most 2/(dε) and T = N
2(2−1/d) log

(
1

1−2(2−1/d)r

)
iterations of REC suffice in expectation to achieve reduc-
tion r.

An other way to read Corollary 3.1 is that, for a suffi-
ciently dense regular graph, there exists2 an edge contrac-
tion for which Lc satisfies the RSS property with constants
bounded by r.

4. The spectrum of the coarsened Laplacian
This section links the RSS property with spectrum preser-
vation. Our results demonstrate that the distance between
the spectrum of a coarsened Laplacian and of the combi-
natorial Laplacian it approximates is directly a function of
RSS constants. This relation also extends to eigenspaces.

4.1. Basic facts about the spectrum

Before delving into our main results, let us first consider the
spectrum of a coarsened Laplacian which does not (neces-
sarily) meet the RSS property.

W.l.o.g., let G be connected and sort its eigenvalues as 0 =

λ1 < λ2 ≤ . . . ≤ λN . Similarly, let λ̃k be the k-th largest
eigenvalue of the coarsened Laplacian Lc and name ũk the
associated eigenvector. As the following theorem shows,
there is a direct relation between the eigenvalues λ̃ and λ.

Theorem 4.1. Inequality λk ≤ λ̃k holds for all k ≤ n.

We remark the similarity of the above to a known result
in spectral graph theory (Chung, 1997) (Lemma 1.15) as-
sering that, if νk is the k-th eigenvalue of the normalized
Laplacian ofG and ν̃k is the k-th eigenvalue of the normal-
ized Laplacian of a graph Gc obtained by edge contraction,
then νk ≤ ν̃k for all k = 1, 2, . . . , n. Despite this similar-
ity however, Theorem 4.1 deals with the eigenvalues of the
combinatorial Laplacian matrix and its coarsened counter-
part Lc = CLC>.

We also notice that, when the weight vectors c are cho-
sen to be constant over each connected component of GF
(as we assume in this work) the nullspace of Lc spans the
downsampled constant vector implying that

C>ũ1 = u1 and 0 = λ̃1 < λ̃2. (13)

The above relations constitute the main reason why we uti-
lize constant coarsening weights in our construction.

4.2. From the RSS property to spectrum preservation

For eigenvalues, the RSS property implies an upper bound:

2The existence is implied by the probabilistic method.

Theorem 4.2. If Lc satisfies the RSS property, then

λk ≤ λ̃k ≤ max

{
λ̃k−1,

(1 + εk)∑
i≥k(ũ>i Cuk)2

λk

}
(14)

for all k ≤ K, where εk is the k-th RSS constant.

The term
∑
i≥k(ũ>i Cuk)2 depends on the orientation of

the eigenvectors of Lc with respect to those of L. We ex-
pect:

λk ≤ λ̃k ≤
(1 + εk)∑

i≥k(ũ>i Cuk)2
λk ≈

(1 + εk)

‖Πuk‖22
λk.

Indeed, for λ2 the above becomes an equality as∑
i≥2

(ũ>i Cu2)2 = ‖Πu2‖ − (ũ>1 Cu2)2 = ‖Πu2‖,

where the last equality follows from (13). In this case, the
above results combined with the analysis presented in Sec-
tion 3.1 imply the following corollary:

Corollary 4.1. Consider a bounded degree graph with
λ2 ≤ 0.5 mineij∈E

{
di+dj

2 + wij

}
and suppose that it is

coarsened by REC using a heavy-edge potential. For any
feasible expected dimensionality reduction ratio r, suffi-
ciently large N and any ε > 0

λ̃2 ≤
1 + rε

1− λ2 rε
λ2,

with probability at least 1 − c3
4 ε

(
1 + 1.5wmax+2(1−λ2)

davg %min

)
where c3 = r (1 − e−4%maxT/N ). For a d-regular graph
this probability is at least 1− 1

ε (1 + 3−λ2

d ).

The statement can be proved by taking a union bound with
respect to the events {‖Π⊥u2‖22 > λ2 rε} and {u>2 L̃u2 >
(1 + rε)λ2}, whose probabilities can be easily obtained
from the results of Section 3.

Eigenspaces. We also analyze the angle between principal
eigenspaces of L and Lc. We follow Li (1994) and split the
(lifted) eigendecompositions of L and Lc as

L = UΛU> = (Uk, Uk⊥)

(
Λk

Λk⊥

)(
U>k
U>k⊥

)
C>LcC = (C>Ũ)Λ̃(Ũ>C)

= (C>Ũk, C
>Ũk⊥)

(
Λ̃k

Λ̃k⊥

)(
Ũ>k C

Ũ>k⊥C

)
,

where Λk = diag(λ1, . . . , λk) and U1 = (u1, . . . , uk)

(analogously for Λ̃k and Ũk). The canonical angles (Davis
& Kahan, 1970; Stewart, 1990) between the eigenspaces
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Figure 3: The extend to how coarsening preserves eigenspace
alignment is a function of eigenvalue distribution.

spanned by Uk and C>Ũk are the singlular values of the
matrix

Θ(Uk, C
>Ũk)

∆
= arccos(U>k C

>ŨkŨ
>
k CUk)−

1/2 (15)

and moreover, the smaller the sinus of the canonical angles
are, the closer the two subspaces lie.

The following theorem characterizes ϑk =
‖ sin Θ

(
Uk, C

>Ũk
)
‖2F , a measure of the miss-alignment

of the eigenspaces spanned by Uk and C>Ũk.

Theorem 4.3. If Lc satisfies the RSS property, then

ϑk ≤ min

 ∑
2≤i≤k

εiλi + λk‖Π⊥ui‖22
λ̃k+1 − λk

,

∑
2≤i≤k

(1 + εi)λi − λ2‖Πui‖22
λ̃k+1 − λ2

 ,

for every k ≤ K.

Both bounds have something to offer: The first is appli-
cable to situations where there is a significant eigenvalue
separation between the subspace of interest and neighbor-
ing spaces (this condition also appears in classic perturba-
tion analysis (Davis & Kahan, 1970)) and has the benefit
of vanishing when n = N . The second bound on the other
hand does not depend on the minimum eigengap between
λk and λk+1, but on the gap between every eigenvalue λi
in the subspace of interest and λk+1, which can be signifi-
cantly smaller.

We obtain an end-to-end analysis of coarsening by com-
bining Theorem 4.3 with Theorem 3.1 and taking a union
bound over all k ≤ K. However, the reader is urged to con-
sider the proof of Corollary 5.1 for a more careful analysis
with significantly improved probability estimates.

The importance of the eigenvalue distribution can be seen
in Figure 3, where we examine the alignment of Uk and
C>Ũk for different k when r = 0.4. The figure summa-
rizes the results for 10 stochastic block model graphs, each
consisting of N = 1000 vertices. These graphs were built

by uniformly assigning vertices into K = 10 communi-
ties and connecting any two vertices with probability p or
q depending on whether they belong in the same or dif-
ferent communities, respectively. Such constructions are
well known to produce eigenvalue distributions that feature
a large gap between theK andK+1 eigenvalues and small
gaps everywhere else.

Below K the eigenspaces are poorly aligned and not much
better than chance (dotted line). As soon as the size of
the subspace becomes equal to K however we observe a
significant drop, signifying good alignment. This matches
the prediction offered by our bounds (dashed line). The
phenomenon is replicated for two parametrizations of the
stochastic block model, one featuring a low q (and thus a
large gap) and one with larger q. Due to the smaller gap, in
the latter case the trend is slightly less exaggerated.

5. Implications for spectral clustering
Spectral clustering is a non-linear method for partition-
ing N points z1, z2, . . . , zN ∈ RD into K sets S =
{S1, S2, . . . , SK}. There exist many versions of the al-
gorithm. We consider the “unnormalized spectral cluster-
ing” (Von Luxburg, 2007):

1. Construct a similarity graph with wij = e−‖zi−zj‖
2
2/σ

2

between vertices vi and vj . Let L be the combinatorial
Laplacian of the graph and write Ψ = UK ∈ RN×K to
denote the matrix of its first K eigenvectors.

2. Among all cluster assignments S, search for the assign-
ment S∗ that minimizes the k-means cost:

FK(Ψ, S) =

K∑
k=1

∑
vi,vj∈Sk

‖Ψ(i, :)−Ψ(j, :)‖22
2 |Sk|

Though a naive implementation of the above algorithm
scales with O(N3), the acceleration of spectral cluster-
ing has been an active topic of research. A wide-range of
sketching techniques have been proposed(Boutsidis et al.,
2015a; Tremblay et al., 2016), arguably one of the fastest
known algorithms utilizes coarsening. Roughly, the al-
gorithm involves: (i) hierarchically coarsening the input
graph (using edge contractions) until the latter reaches a
target size; (ii) solving the clustering problem in the small
dimension; (iii) lifting the solution back to the original do-
main; and (iv) performing some fast refinement to attain the
final clustering.

In the following, we provide theoretical guarantees on the
solution quality of the aforementioned scheme for a single
coarsening level. To the extend of our knowledge, this is
the first time that such an analysis has been carried out.

To perform the analysis, we suppose that

S∗ = arg min
S∈S

FK(Ψ, S) and S̃∗ = arg min
S∈S

FK(Ψ̃, S)
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Figure 4: The relative k-means error induced by coarsening as a
function of dimensionality reduction r (in percentage) for clus-
tering 5 MNIST digits. The three lines correspond to the lifted
eigenvectors with and without refinement. The errorbars span one
standard deviation. A small horizontal offset has been inserted in
order to diminish overlap.

are the (optimal) clustering assignments obtained by solv-
ing the k-means using as input the original eigenvectors
UK and the lifted eigenvectors Ψ̃ = C>ŨK of Lc, respec-
tively. We then measure the quality of S̃∗ by examining
how far the correct minimizer FK(Ψ, S∗) is to FK(Ψ, S̃∗).
Note that the latter quantity utilizes the correct eigenvec-
tors as points and necessarily FK(Ψ, S∗) ≤ FK(Ψ, S̃∗).
Boutsidis et al. (2015a) noted that, if the two quantities
are close then, despite the assignments themselves possi-
bly being different, they both feature the same quality with
respect to the k-means objective.

We prove the following approximation result:

Corollary 5.1. Consider a bounded degree graph with
λK ≤ 0.5 mineij∈E

{
di+dj

2 + wij

}
and suppose that it is

coarsened by REC using a heavy-edge potential. For suf-
ficiently large N , any feasible ratio r, and ε > 0,

[
FK(Ψ, S̃∗)

1/2 −FK(Ψ, S∗)
1/2
]2
≤

K∑
k=2

8εrλk
δK

with probability at least 1− %max
ε

(
1 + 6+4λK−8 c3

davg%min

)
, where

δK = λK+1 − λK and c3 =
∑K
k=2 λ

2
k/
∑K
k=2 λk.

The corollary therefore provides conditions such that the
clustering assignment produced with the aid of coarsening
has quality that is close to that of the original in terms of
absolute error, even without refinement. Practically, our re-
sult states that S̃∗ is a good candidate for the final solution
as long as the graph has almost constant degree (such that
%min ≈ 1 ≈ %max) and it is K clusterable (i.e., the gap
δK = λK+1 − λK is large).

We are unaware of any technique that provides meaningful
lower bounds on FK(Ψ, S∗) and therefore cannot trans-
form the bound to a relative error statement. However, from
the algebraic formulation of the k-means cost it follows
that, when the number of clusters is κ < K whereas the

feature matrix remains Ψ, then Fκ(Ψ, S∗) ≥ K−κ (this is
because Ψ has exactly K unit singular values, whereas the
k-means clustering cannot do better than a rank κ approx-
imation of Ψ (Ding & He, 2004; Boutsidis et al., 2015b)).
Under the conditions of Corollary 5.1 and with the same
probability:FK(Ψ, S̃∗)

1
2 −FK(Ψ, S∗)

1
2

Fκ(Ψ, S∗)
1/2

2

≤
K∑
k=2

8εrλk
δK (K − κ)

,

which is a relaxed relative error guarantee.

Figure 4 depicts the growth of the actual relative error with
r. The particular experiment corresponds to a clustering
problem involving N = 1000 images, each depicting a
selected digit between 0 and 4 from the MNIST database
(i.e., K = 5). We constructed a 12-nearest neighbor sim-
ilarity graph and repeated the experiment 10 times, each
time using a different image set, selected uniformly at ran-
dom. This setting produces a simple, but non-trivial, clus-
tering problem featuring some overlaps between clusters
(see Figure 5 in the supplementary material).

We observed that most remaining error occurred at coars-
ened vertices lying at cluster boundaries. This can be elim-
inated by only a few iterations of local smoothing. Though
more advanced techniques might be preferable from a com-
putational perspective, such as Chebychev or ARMA graph
filters (Shuman et al., 2011; Isufi et al., 2017), for illustra-
tion purposes, we here additionally perform t = {2, 10}
steps of a simple power iteration scheme, yielding an
O(tM(K − 1)) overhead. The experiment confirms that
most errors are removed after few iterations.

6. Discussion
The main message of our work is the following: coars-
ening locally perturbs individual eigenvectors; however, if
carefully constructed, it can leave well-separated principal
eigenspaces relatively untouched.

The main limitation of our analysis is that the concentra-
tion estimates given by Theorem 3.1 are conservative. We
are currently considering methods to improve our bounds
by taking into account the dependency structure of the bi-
nomial random variables in the sum. In addition, we are in-
vestigating how to generalize our analysis to the multi-level
setting, where n can be as small as O(logN). Finally, we
are considering the implications of our results to supervised
methods for learning from graph-structured data in general,
and graph convolutional neural networks in particular.
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