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Abstract

We study the hypothesis testing problem of infer-
ring the existence of combinatorial structures in
undirected graphical models. Although there ex-
ist extensive studies on the information-theoretic
limits of this problem, it remains largely unex-
plored whether such limits can be attained by
efficient algorithms. In this paper, we quantify
the minimum computational complexity required
to attain the information-theoretic limits based
on an oracle computational model. We prove
that, for testing common combinatorial structures,
such as clique and nearest neighbor graph against
an empty graph, or large clique against small
clique, the information-theoretic limits are prov-
ably unachievable by tractable algorithms in gen-
eral. More importantly, we define structural quan-
tities called the weak and strong edge densities,
which offer deep insight into the existence of such
computational-statistical tradeoffs. To the best of
our knowledge, our characterization is the first
to identify and explain the fundamental tradeoffs
between statistics and computation for combina-
torial inference problems in undirected graphical
models.

1. Introduction

One of the most important goals of statistical inference is to
identify dependency structures among variables. In specific,
given n realizations {x;}"_; of a random vector X € R¢,
we are interested in inferring the structures of the underlying
graphical model. This problem plays a fundamental role
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in bioinformatics (Friedman, 2004), information retrieval
(Welling et al., 2005), speech recognition (Bilmes & Bar-
tels, 2005) and image processing (Murphy et al., 2004). In
this paper, we focus on a more specific inference problem:
testing whether the underlying graph has a certain com-
binatorial structure. For instance, we consider the graph
associated with the precision matrix © of X, we aim to test,
e.g., whether it is a clique of size s or is an empty graph (see
§2 for more such examples). There exists a vast body of lit-
erature on efficient algorithms and fundamental information-
theoretic limits for combinatorial inference problem. See,
e.g., (Arias-Castro et al., 2008; Addario-Berry et al., 2010;
Chen et al., 2012; Arias-Castro et al., 2012; Verzelen &
Arias-Castro, 2013; Castro et al., 2014; Arias-Castro &
Verzelen, 2014; Arias-Castro et al., 2015a;b; Neykov et al.,
2016) and the references therein. However, under their set-
tings, there is generally a lack of algorithms that are both
computationally efficient and information-theoretically op-
timal. Consequently, it gives rise to the natural question
of whether or not the information-theoretic limits can be
attained by any efficient algorithms, which remains largely
unexplored. Moreover, it is even less clear how the for-
mulations of testing problems, especially the combinatorial
structures of graphical models, affect the achievability of
the information-theoretic limits. Our goal is to understand
these two questions. In particular, we aim to characterize the
fundamental limits for combinatorial inference in graphical
model, particularly from the computational perspective. To
study the minimum computational complexity required to
attain the information-theoretic limits, we use the oracle
computational model developed by (Kearns, 1998; Feldman
etal., 2013; 2015a;b; 2017).

Our Contribution: First, based on the oracle com-
putational model, we establish the unachievability of
information-theoretic limits for several common combinato-
rial structures. As concrete examples, for precision graphs
we consider testing clique and nearest neighbor graph struc-
tures against the empty graph, as well as large clique against
small clique. In these examples, we identify a significant gap
between the information-theoretic limit and the minimum
signal strength that allows for tractable algorithms. This gap
depicts the fundamental tradeoffs between computational
tractability and statistical optimality.
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Second, more importantly, we identify two critical quantities

— the weak and strong edge densities y and p’ (formally de-
fined in §3) — to characterize the computational-statistical
tradeoffs. In particular, we show that, if ;2 and p’ are of dif-
ferent orders, the information-theoretic limit is not achiev-
able by any tractable algorithm. One striking property of
these two quantities is that they only depend on the topology
of the combinatorial structures to be tested. Therefore, they
provide new insight on how the structural properties of a
combinatorial inference problem dictate its computational
complexity.

Related Work: Our work is in the same nature as a recent
line of work on computational-statistical tradeoffs (Berthet
& Rigollet, 2013a;b; Ma & Wu, 2014; Zhang et al., 2014;
Hajek et al., 2014; Chen & Xu, 2014; Wang et al., 2014;
Chen, 2015; Cai et al., 2015; Krauthgamer et al., 2015;
Wang et al., 2015; Yi et al., 2016; Kannan & Vempala, 2016;
Fan et al., 2018). In comparison, we focus on the combina-
torial inference problem in undirected graphical models, for
which most existing work studies the information-theoretic
limits and the computational-statistical tradeoffs remain
much less well understood. See, e.g., (Addario-Berry et al.,
2010; Arias-Castro et al., 2012; 2015a;b; Cai et al., 2015)
and the references therein. Furthremore, from an aspect not
studied in previous work, we illustrate how the achievability
of the information-theoretic lower bounds for tractable algo-
rithms are governed by the underlying combinatorial struc-
tures, especially the weak edge density and the constrained
vertex cut number, which are formally defined in §3.

To characterize the computational complexity, in this pa-
per, we adopt the oracle computational model proposed
by (Kearns, 1998), which is further generalized by (Feld-
man et al., 2013; 2015a;b; Wang et al., 2015; Fan et al.,
2018). This model is able to capture the computational
aspect of a broad range of statistical algorithms, includ-
ing stochastic convex optimization methods, local search,
Markov chain Monte Carlo, moments-based methods, and
most other learning algorithms. Correspondingly, compared
with existing work, our theory does not rely on any un-
proven computational hardness conjectures, like the planted
clique hypothesis. Meanwhile, under the same computa-
tional model as in this paper, (Bresler et al., 2014) studies
the computational complexity of learning antiferromagnetic
Ising models. In comparison with their results, we mainly fo-
cus on continuous random variables and Gaussian graphical
models, which have fundamentally different computational-
statistical phase transitions and theoretical difficulties.

Notation: For a matrix A, we denote by A;. and A_; the
7' row and column of A, respectively. Let ||A,.||o be the
number of non-zero entries in the j“‘ row of A. For a set D,
we denote |D| as its cardinality. For any positive integer n,

we use [n] as an abbreviation of {1,2,...,n}. For a graph

G, we denote V(G) and E(G) as the vertex set and edge
set of G respectively. For an edge set E, we denote V(E)
as the vertex set of E. For two functions f and g, we say
f(z) = O(g(x)) if and only if there exists a positive number
M and a real number xg such that | f(z)| < M|g(z)| for all
x > xo. Wesay f(z) < g(x)ifand only if f(z) = O(g(x))
and g(z) = O (@)

Organization: In §2 we introduce the combinatorial infer-
ence problems studied in this paper. Then we define the
oracle computational model. Our main result is presented
in §3, where we establish a general computational lower
bound, the corresponding hypothesis tests which match the
lower bounds, as well as their applications to concrete exam-
ples. Furthermore, we establish and discuss the intrinsic link
between structural properties and computational tractability.

2. Background

We first introduce the combinatorial inference problem on
the Gaussian graphical model. Then we introduce the frame-
work of oracle computational model, which is used to for-
mally study the performance of statistical algorithms under
computational budgets.

2.1. Combinatorial Inference Problems

The Gaussian graphical model assumes that a d-dimensional
random vector X = (Xi,...,Xy)" € R? follows a
multivariate normal distribution Ny4(0,07!). Here © =
(05%),ke[q) is known as the precision matrix, which encodes
the pairwise conditional independence among X1, ..., X .
More specifically, for any j, k € [d], j # k, X, and X, are
independent conditioning on all the remaining variables if
and only if 6;, = 0. In addition, we consider an undirected
graph G(©) = (V, E), where the vertex set V = [d] corre-
sponds to the d entries of X, and E = {(j, k) : 0, # 0}
is the edge set. By definition, to infer the conditional de-
pendency of X, it suffices to learn the structural properties
of G(©). In the sequel, we denote G(O) by G when no
ambiguity arises.

Given n independent realizations x1, . . ., z,, of X, the goal
of combinatorial inference is to test whether the underlying
graph G possesses certain structural properties. In specific,
let G be the set of all possible graphs over the vertex set V.
For two disjoint sets of graphs Gy C G and G; C G, we are
interested in the hypothesis testing problem

Hy:Ge Gy versus H;:G e G. (1)

Here the graphs in G; share the combinatorial structure of
interest. To illustrate the notion of combinatorial inference,
we consider the following three concrete instances.

Clique Detection. Let Go = {(V,0)} and G; = {G, :
|| = sand J C V}. In each G, vertices ¢ and j are
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(a) A clique of size 5 (b) A nearest neighbor graph

Figure 1. We plot a clique of size 5 and a nearest neighbor graph
with s = 8 in (a) and (b), respectively.

connected if and only if 7,7 € J. In other words, J is a
clique of G ;. For this problem, our goal is to test if the
graph contains a clique of size s. For illustration, we plot a
clique of size 5 in Figure 1-(a).

Test of Nearest Neighbor Graph. Let Gy = {(V,0)} and
G, = {G] I = {il,ig,...,is} CVandiy < ik,g < k}
For each node subset I of size s, the corresponding nearest
neighbor graph G is defined as follows. We first define
a path Ly with edge set {(4;,%;41)|j € [s — 1]} U (is, 1),
then j and k are connected in G if and only if j, k € I and
the distance between j and k is less or equal to s/4'. Here
the distance is defined with respect to the geodesic distance
in the path L;. In the sequel, we call such a graph as s-
nearest neighbor graph. We plot a nearest neighbor graph
with s = 8 in Figure 1-(b), where each node is connected to
4 of its neighbors.

Small Clique vs Large Clique. It is also interesting to
distinguish graphs with small cliques from those with large
cliques. In this case, we let Gy be the set of all cliques
with size s’ and Gy be the set of all cliques with size s,
where s’ is a constant number and s > s’ may grow with
d. Without loss of generality, we focus on the case where
s’ = 3 hereafter.

It is worth mentioning that the null hypothesis in previous
work is always a simple hypothesis, i.e., Gy contains only
one element. Whereas we propose a more general frame-
work where both the null and alternative hypotheses are
allowed to be composite, as in the last example given above.

Based on the correspondence between G(©) and O, we
reformulate the hypothesis testing problem in (1) as

Hy:© €y versus H;:0 €y, 2)

were Cy and C; are the sets of precision matrices corre-
sponding to G(©) in Gy and G, respectively. In addition,

"Without loss of generality we assume s/4 is an integer.

we constrain Cy and C; into a subspace M defined as
m={ocr™:0=0",
;5 = 1for j € [d], min 0 >0
jj = Lfor j € [d], min 05 > 0,

where 6 is the signal strength. We define the minimax testing
risk R, (Co,Cy) as

R, (Co,C1)
=inf | sup Pe(v» =1) + sup Po(¢p = 0)} 3)
¥ Leec,

0cC,

where the infimum is taken over all test functions 1) based on
{%i}ic[n). Here we reject the null hypothesis Hy if ¢ takes
value one, and we accept if ¢ takes value zero. Besides,
in (3) we use PPg to represent the distribution Ny4(0,071).
Note that any test is asymptotically powerless if

n—oo

In this case, the problem defined in (2) is unsolvable.

2.2. Oracle Computational Model

When solving statistical problems, any algorithm can be
seen as a sequence of interactions with data. Intuitively, the
computational complexity of an algorithm can be qualita-
tively measured by the number of interactions with the data.
The framework of oracle computational model (Kearns,
1998) captures such a fact by assuming that any algorithm
for a statistical problem interacts with an oracle r. More
specifically, in each round, the algorithm sends a query
g € Q to r and obtain a random response Z; € R, where
Q, named the query space, is the set of all possible queries.
Upon receiving a realization of Z,, the algorithm determine
its next query based on all the past responses. We formally
define algorithms under the oracle computational model as
follows.

Definition 1. Under an oracle computational model M, an
algorithm < defined as a tuple M (Q, T, Ginit, {0t }re[r)),
where Q is the query space, T is the maximum number of
rounds the algorithm is allowed to query the oracle, qini; €
Q is the initial query, and 6; : (QxR)®* — QU{HALT} is
the transition function after the t'* round. Here &; decides
the (t + 1) query based on all the previous t queries
and their returns. In addition, if 0; returns HALT, then the
algorithm terminates.

By this definition, we can see that the oracle computational
model covers a broad range of algorithms, such as convex
optimization algorithms, local search, Markov chain Monte
Carlo, moments-based methods, and most other learning
algorithms. See (Feldman et al., 2013; 2015a;b) for more
discussions. Under such a computational model, the number
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of rounds that the algorithm interacts with the oracle 7 serves
as the the computational complexity, which is rigorously
defined as follows.

Definition 2 (Computational Complexity). For an algo-
rithm of = M(Q,T, qinit, 9), let Q. be the set of all
queries that </ queries the the oracle. We define |Q |
as the computational complexity of < .

In this work, we base upon this framework to study the
computational hardness in combinatorial inference. In this
case, the query is a function of X € R4, the random vector
of interest. Throughout this paper, we consider queries that
are almost surely bounded, i.e.,

Q={q:R?* = R,q(X) € [-B, B] almost surely} (5)

for some B > 0. By Definitions 1 and 2, the computational
complexity of an algorithm &7 = M (Q, T, Ginit, 0) is upper
bounded by T'. We say &7 is an polynomial-time algorithm
if it can be written as &/ = M (Q, T, ginit, 0) with T' = d"
for some constant 7, i.e., the number of queries made by <7
is bounded by a polynomial of d.

Furthermore, the performance of statistical methods rely
on the error of estimating population quantities based on n
samples. We capture this fact by defining a statistical query
oracle as follows, which, for any query g € Q, returns a
noisy estimate of E[q(X)].

Definition 3 (Statistical Query Oracle). Let Q. be the set
of queries that an algorithm makes. A statistical query
oracle r interacts with a query q € Q. at each round, and
returns an output Z, € R. Moreover, for a fixed £ € (0,1),
we assume that {Zg}qc o, satisfy

(N {iz-sexl<n})z1-2% ©

q€Qu

where 7, is defined as
Ty = max { [N(Qu) +log(1/€)] - B/n,

\/ 2[n(Qer) +log(1/€)] - {B? — Ez[q(X)]}/n}. %

Here we define n(Qy) = log(|Q.|) when Qg is count-
able, and let n(Q ) be other capacity measures such as the
Vapnik-Chervonenkis dimension and metric entropy when
Qs is uncountable.

The intuition of Definition 3 is that, (6) and (7) characterizes
the concentration effect of the empirical measure. Specifi-
cally, if we define Z as the average of {q(w;)}}_,, where
{z;}_, are n i.i.d. realizations of X, Bernstein’s inequality
yields that

P{|z; —E[a(X)]| >t}

< 2exp{ -t } ()
- 2-Var[q(X)] +2B/3-t)

Moreover, since ¢(X) is bounded in [— B, B], we have
Var[¢(X)] = E[¢*(X)] — E*[¢(X)] < M? — E*[q(X)].

Thus, in (7) we replace the unknown Var[g(X )] by its upper
bound. Moreover, we obtain uniform concentration over
Qs by bounding the suprema of empirical processes based
on (8), which implies that

P( sup {|Z; ~E[s(X)]| < er}) 2 1-2¢
qE€EQ

for an absolute constant ¢, where 1(Q,/) in 7, measures
the capacity of Q. in the logarithmic scale. Therefore, the
oracle that returns Z; for any ¢ € Q satisfies Definition
(3), which implies that the deviation behavior of Z; under
the statistical query oracle is achievable. Furthermore, in
most algorithmic analysis of statistical problems, like prin-
cipal component analysis (Yuan & Zhang, 2013) and latent
variable model estimation (Balakrishnan et al., 2017), the
deviation behavior in (7) is optimal in terms of order.

Compared with the minimax risk defined in (3), we define a
new minimax risk of testing Cy against C; under the oracle
computational model with a statistical query oracle r as

R’I’L(CO7 Cla bQ{) T) (9)
sl 5 Pov =1+ sup Po(v = 0)

Here n is the sample size and H (7, r) is the space of all
possible tests based on an algorithm <7 and the oracle r, as
specified in Definitions 1 and 3, respectively. Following the
same idea as in (4), if there exists an oracle r such that

liminf R, (Cy,Cy, 7, r) =1,
n—oo

then any hypothesis test computed by an algorithm based
on at most 7" queries under the oracle computational model
is asymptotically powerless.

3. Main Results

In this section, we first provide a general computational
lower bound. We will show that the computational lower
bound for testing graph structures can be determined by two
topological features of the graph: the weak edge density and
the vertex cut ratio. Then by comparing the computational
lower bound and the information-theoretic lower bound, we
point out that the edge density is a critical structural property
which determines the computational-statistical tradeoffs.

3.1. A General Computational Lower Bound

Before introducing the main theorem, we first define the
notion of null-alternative separator, which is originally pro-
posed in (Neykov et al., 2016) in order to study information-
theoretical limits of combinatorial inference.
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O

Null Graph Gg

Figure 2. An example of null-alternative separator. Let Go and G,
be the sets of disconnected and connected graphs respectively. For
the null base G shown in the figure, all the red thick edges form a
null-alternative separator.

Definition 4 (Null-Alternative Separator). Let Gy =
(V,Ey) € Gy be some graph under the null hypothesis.
We call a collection of edge sets € a null-alternative sepa-
rator with null base G\ if for all edge sets S € &, we have
SQEO :Q]and(V,EOUS) Ggl.

In Figure 2 we illustrate an example of the null-alternative
separator, whose intuition can be understood as follows.
Given Gy = (V, Ey) € Gp and a null-alternative separator
& with null base G, we consider precision matrices

Og=1+60A¢p and Og =1+ G(AQ +A5),
where Ag and Ag are the adjacency matrices of G and
Ggs = (V,S), respectively. By the definition of £, we have
O € Co and {Og}sece C C;. Thus, the null-alternative
separator contains critical edge sets which may change a
graph G from the the null to the alternative.

In addition, for the minimax risk defined in (9), we have
Rn(cmclaﬂar) ZRn({@O}a{QS}SEEadﬂﬂ)' (10)

In combinatorial inference, since Cy and C; have some
symmetric structures, we expect that R,,(Co,C1, <7, r) and
R, ({60}, {Os}sece, &, r) to have the same order. As a
result, the restricted parameter spaces {Op} and {Og}sce
capture the fundamental hardness of the testing problem in
(2), and thus the computational lower bound only depends
on the structure of £.

Based on the null-alternative separator, now we are ready to
introduce two pivotal notions that determine the computa-
tional lower bound, namely the weak edge density and the
vertex cut ratio.

Definition 5 (Weak Edge Density). For a null-alternative

separator &, we define its weak edge density as

[SNS|

= _ 11
S WSn P an

I

Here we follow the convention that 0/0 = 0.

Intuitively, the weak edge density of £ measures the con-
centration of the critical edges that can change graphs from
Go to Gy. Specifically, since a clique with n vertices has
n(n—1)/2 edges, 1 essentially compares the subgraph with
edges S N S’ against the clique with vertex set V(S N S7).
Thus, when (i is large, it would be easier to find an element
in £, which distinguishes G; from Gy. Hence, i captures
the level of the difference between Gy and G, and is critical
to our computational lower bound.

Similar to p in Definition 5, (Neykov et al., 2016) propose a
similar quantity to characterize the difference between G
and Gq, which is defined as

, S NS

= _ 12
ssiee V(S N8 (12)

I
This notion plays a significant role in the information-
theoretic lower bound for combinatorial inference. In order
to differentiate it from g in (11), we call i the strong edge
density since we always have y < p’ by definition. An
interesting discovery in our paper is that when a polynomial
query constraint is imposed as (7), instead of the strong
edge density, the weak edge density u takes the role to char-
acterize the minimax rate. As a result, 4 and ' together
determine the computational-statistical tradeoffs. Specifi-
cally, when p < 1/, there exists a gap between statistical
optimal rate and the rate applying computationally efficient
algorithm. Whereas when p < p/, there will be no such gap.
For example, when £ contains all possible s-chains, both
wand g/ are O(1). When & contains all possible s-cliques,
uw=O0(1) but i/ < s.

Furthermore, we define the vertex cut ratio as follows, which
builds upon a restricted version of the vertex cut. Recall
that, in graph theory, a vertex set V C V is called a vertex
cut of nonadjacent sets V;, Vo C V if the removal of Vv
from the graph separates V; and V5 into distinct connected
components. For two edge sets S and S’, we define the
constrained vertex cut number of .S and S’ as

Y(S,S") =min {|[V|: VCV(SUS),
V is a vertex cut for V(S)\V and V(S )\V}. (13)

That is, v(S,S’) is the size of the minimum vertex cut
of V(S) and V(5’), when restricting the whole graph to
V(S US’). We remark that this definition is also related
to the concept of vertex buffer proposed in (Neykov et al.,
2016). Figure 3-(a) shows an example of the constrained
vertex cut number.
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(a) Vertex cut

Figure 3. (a) An example of the constrained vertex cut number. In this example, the solid lines, dash lines and dash-dot lines represent
edges in S’, S and Fy respectively. 1% consisting of the square vertices gives the constrained vertex cut number v(S, S") = 3. (b, ¢) Two
examples of the vertex cut ratio calculation. (b) shows an example of S’ such that (.S, S’) = 2, (c) shows an example of .S’ such that
~(S,8") = 1. If we let € be all cliques with size 3, then the vertex cut ratio { = 1/9.

By definition, (S, S”) reflects the connectivity of the graph
restricted to V(S U S’). When S and S’ are more over-
lapping, we expected that the restricted graph is more con-
nected. Thus, we may interpret the constrained vertex cut
number as the “correlation” between S and S’, which is
larger when S and S’ are more similar. Based on the con-
strained vertex cut number, we define the vertex cut ratio as
follows.

Definition 6 (Vertex Cut Ratio). Given a null-alternative
separator &, let k = maxg gce (S, S"). We define the
vertex cut ratio as
C— inf |{S" € £ : maxgee 7(S5,S5") = j}
0<j<k—1|{S" € € : maxgee ¥(S,9") =75+ 1}

Here, maxgeg 7(S5,S") is the maximal value of the con-
strained vertex cut number of S” and the edge set in £. No-
tice that we could partition £ according to the the value of
the maximal constrained vertex cut number. That is, we have
&l = Y50 [{S" € € : maxgees (S, §) = j}|. Thus, the
vertex cut ratio characterizes the growth of sequence

{I{5" € € :max~(8,5") = j}HI} o<

by comparing it with a geometric sequence. Since the con-
strained vertex cut number can be viewed as the correlation
of edge sets, when ( is large, many of the edge sets in £ have
relative small correlation. Under this scenario, more queries
are needed to differentiate various cases, which makes the
testing harder. In Figures 3-(b) and (c) we visualize two
examples of calculating the constrained vertex cut number
and the vertex cut ratio.

After introducing the weak edge density p and the vertex cut
ratio ¢, now we are ready to present the our general result on
the computational lower bound for combinatorial inference.

Theorem 7. Suppose that we have a null-alternative separa-
tor € with the null base G. Under the oracle computational

model defined in §2.2, if we require the number of queries
T < d" for some constant 1 > 0, when liminfg , ¢ > 1
and the signal strength 0 satisfies

rlog ¢ log(1/6) . Vi
~ logd+log( un 8s

w @

where k = maxg grcg ¥(S,S") and k is some sufficiently
small positive constant only depends on n, then for any
algorithm of = M(Q, T, Ginit,0), there exists an oracle r
such that liminf,,_, o R, (Co,C1, 7, r) = 1.

Proof. Recall the inequality (10). We consider the restricted
parameter spaces {Og} and {Og}sce. The main idea of
this proof is quantifying the number of Os,S € &, which
can be distinguished from ©¢ by a query g, denoted as n,.
Then for any algorithm the computational complexity 7'
cannot be less than |£|/sup,c g nq. See Appendix §B for a
detailed proof. O

In practice, the first term in (14) is the leading term determin-
ing the optimal signal strength. The later two terms in (14)
essentially impose two scaling conditions: § = O(s~!) and
6 = O(k™'). When the tail probability £ is a small constant,
efficient algorithms for combinatorial inference requires a
signal strength rate 6 < log (/[(log d + log {)/un], which
shows that if ( is large and p is small, the necessary signal
strength is large. This matches our heuristic discussion on
the meaning of p and ¢ above.

In the following, we apply the above theorems to the three
concrete examples given in §2. We state below a corollary
for clique detection; the results for the other two instances
are stated in §A.

Corollary 8 (Computational Lower Bound for Clique De-
tection). For testing if the graph has a s-clique, we define
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Co = {Id} and

C1={©:3S C [d] and |S| = s,
0 =1(j=k)+0-1(j,k€S,j #k)}.

Let 1 be a positive constant. If s = O(d®) for some
a € (0,1/2), and 6 < min{k/\/n, 1/(8s)}, then for any
algorithm that queries at most d" rounds, there exists a
statistical oracle r such that

liminf R, (Cop,Cy, 7, r) = 1.
n—oo

Here k is a small enough constant that only depends on o
and n,

Proof. Let Gy = (V,0). Clearly, C = {E[G(O)] : © €
C1} is a null-alternative separator with base Gg. To apply
Theorem 7, we need to compute the weak edge density u
and the vertex cut ratio ¢. By setting S’ = S in Definition 5,
we have

S| VS (VS) - 1)
FEVERE T 2V )P
1 11
T2 2V(S) T 4

where we use |V (S)| > 2 in the last inequality. Here the
first equality follows from the fact that the subgraph with ver-
tex set V(.S) and edge set S is a clique of size s. Moreover,
since the the weak edge density of any graph is bounded by
1/2, we conclude that y is of constant order.

Furthermore, note that maxg g'cg (5, S’) = s. For j =
0,...,s, we define

. = 4 M / = — 9
mj = [{S" € & maxy(S,5") =k —j}|.

Then by definition, we have m; = (,° ) (d;S). By direct
computation, for all j € {0,...,s — 1}, it can be shown

that mj1/m; > d/s*, which implies that
C 2 d/82 2 Cdl—Qa

for some absolute constant C. Where the last inequality
follow from s = O(d®). Finally, we conclude the proof by
applying Theorem 7. O

This corollary shows that § = O(1/+/n) is the critical
threshold for the existence of an asymptotically power-
ful hypothesis test that runs in polynomial time. More-
over, (Neykov et al., 2016) show that the information-
theoretical bound § = O(1/+/ns) is tight. Thus, we ob-
serve a computational-statistical tradeoff for the detection
of cliques. That is, a statistical price of \/m is paid in
order to achieve computational efficiency.

Furthermore, the computational-statistical tradeoffs appear
widely in combinatorial inference problems, which are de-
termined by the weak and strong edge densities together.
Specifically, when there is no computational constraint, it
is shown in Theorem 4.2 of (Neykov et al., 2016) that un-
der some scaling conditions, if § = O(1/y/u'n), we have
liminf, . R(Co,C1) = 1 for all these three problems,
where 1 is the strong edge density defined in (12). That
is, 1/y/pn is the critical threshold for the existence of
an asymptotically powerful test. In addition, when there
is a polynomial query complexity constraint, Theorem 7
states the minimal signal strength in (14), which is typically
O(1//un). Our result can be summarized as follows. For
some sufficiently small constants x; and k2, we have:

e Information-Theoretic Bound: If § < xi/\/u'n,
any hypothesis test is asymptotically powerless;

e Computationally-Efficient Bound: 6 < ko/,/nn,
any hypothesis test computed by a polynormial-time
algorithm is asymptotically powerless.

Therefore, there will be a gap between information-theoretic
lower bound and computationally efficient lower bound if
w < . For clique detection, we have u/u’ = O(1/s). As
shown in §A, this is also the case for detecting s-nearest
neighbor graphs and 3-cliques against s-cliques. As a result,
statistical-computational tradeoffs appear in all the three ex-
amples given in §2. To our best knowledge, these interesting
tradeoffs are first established in the literature.

3.2. Upper Bounds

In this section, we construct upper bounds to match the
lower bounds in §3.1 under the oracle computational model.
We propose two testings methods: entrywise test and local
summation test which match the computationally-efficient
and information-theoretic lower bounds respectively.

The Entrywise Test. For any j, k € [d] with j # k, we
define g : R? — R by ajr(z) = [(z; +ap)?— x? —22]/2.
We consider a sequence of queries and a test ¢ as following,

k(X)) = qj(X) - inf{|¢j;,(X)| < R -logn} and

v=1 {sup 24y < Al}, (15)
J#k

where R is an absolute constant, A; is the reject level to
be specified for different combinatorial structures, and 2qin
is the response returned by a statistical query for query
¢;%(X). Here we apply truncation to ensure boundedness
of the queries, as required by the statistical query oracle.
We note that such a truncation is unnecessary when using
real data, and we set 1? sufficiently large such that g7 (X)
and ¢;;(X) is close in expectation. By Definition 3, the
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computational complexity of the entrywise test ¢ in (15)
is T = O(d?). This algorithm is to calculate all the off-
diagonal entries in the covariance matrix. The idea of the
entrywise test is to find the strongest signal among {q; } j 2.
each of which quantifying the entrywise difference between
null and alternative.

The entrywise test, as indicated by its name, only takes
supreme over entrywise comparison. If each entry only has
small signal, the entrywise test may fail to reject. Then we
need the following local summation test.

The Local Summation Test. For any S C [d] with |S| = s,
we define g5(2) = (3 cs z;)? /s We consider a sequence
of queries and a test ¢ as following,

qs(X) = ¢s(X) - 1{|gs(X)| < R -logn}, and

w:IL[sup Zgs SAQ], (16)
|S|=s

where z,, is the response of an oracle for query ¢s(X),
Ag is the reject level, and R is an absolute constant to
ensure boundedness. In this the computational complexity
is T = (), which superpolynomial in d. Intuitively, the
local summation test accumulates the signals in all s-by-
s submatrices of covariance matrix. Compared with the
entrywise test, this test amplifies the signal strength and
thus can detect weaker signals but the price to pay is more
computational cost. See Figure 3.2 for a visualization.

The following theorem establish the performances of the
hypothesis tests defined above, which shows that our com-
putational lower bounds are tight up to some logarithmic
factors.

Theorem 9. For the empty graph versus s-clique problem
defined in §2, we consider the following conditions:

(i) For 0 > klogn - y/log(d/€)/n, we consider the entry-

wise test in (15) with Ay =1 — ;0000

(ii) For 0 > klogn - \/log(d/€)/(ns), we consider the

local summation test in (16) with As =1 — %.

Here k is a sufficiently large constant. Under either (i) or
(ii) above, we have

sup Po () = 1) + sup Pg(y = 0) < 2¢.
0t ecC;

Since ¢ > 0 in Definition 3 is arbitrary, the above theorem
implies that both the hypothesis tests in (15) and (16) are
asymptotically powerful. Moreover, when setting £ = 1/d,
we conclude that the signal strengths in conditions (i) and
(i1) match the corresponding lower bounds up to some loga-
rithmic terms.

Moreover, similar upper bounds can be established for the
other two instances. Specifically, for the empty graph versus

(b) The local summation test

(a) The entrywise test

Figure 4. (a) The entrywise test. This test examines the signal
strength between every pair of vertices. (b) The local summation
test. This test examines the sum of signal strength among all s
vertices, where s = 4.

s-nearest neighbor graph problem defined in §2, we have
same result if we choose A1 = 1— % and A, = 1— %.
In addition, for the problem of testing 3-clique versus s-
clique defined in §2, we have the same result if we choose
same A; and A5 as in Theorem 9. However, in this case, we
need to consider a new entrywise test, whose test function

is defined as
=1 inf a )
v ks o ga ks jartka 19124 Biki
< 0(1+6—0s)
STH1_0)0s—0+ 1)

See §B.3 in the appendix for details.

These upper bound tests give us another insight of why
the edge densities play an important role in computational-
statistical tradeoffs. We see that actually the weak edge
density 1 and the strong edge density u' characterize the
global and local density of signals in the null-alternative sep-
arator respectively. If ;1 < 1/, then the signals are “sparsely”
distributed. We can find a polynomial-time algorithm, like
the entrywise test, to match the information-theoretic lower
bound. However, if p < g/, then the signals are locally
concentrated. Only exponential-time algorithms, like the
local-summation test, can amplify the signal strength and
match the information-theoretic lower bound.

4. Conclusion

In this paper, we study the computational-statistical trade-
offs in some common combinatorial inference problems on
the Gaussian graphical model. Based on the oracle computa-
tional model, we build the computational lower bounds and
provide matching upper bounds. Interestingly, our results
characterize the statistical price paid to achieve computa-
tional efficiency, which is shown to be determined by two
intrinsic quantities of the graph, namely, the weak and strong
edge densities.
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