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Abstract
We tackle the problem of optimizing a black-
box objective function defined over a highly-
structured input space. This problem is ubiquitous
in machine learning. Inferring the structure of a
neural network or the Automatic Statistician (AS),
where the kernel combination for a Gaussian pro-
cess is optimized, are two of many possible exam-
ples. We use the AS as a case study to describe
our approach, that can be easily generalized to
other domains. We propose an Structure Gen-
erating Variational Auto-encoder (SG-VAE) to
embed the original space of kernel combinations
into some low-dimensional continuous manifold
where Bayesian optimization (BO) ideas are used.
This is possible when structural knowledge of the
problem is available, which can be given via a sim-
ulator or any other form of generating potentially
good solutions. The right exploration-exploitation
balance is imposed by propagating into the search
the uncertainty of the latent space of the SG-VAE,
that is computed using variational inference. The
key aspect of our approach is that the SG-VAE
can be used to bias the search towards relevant
regions, making it suitable for transfer learning
tasks. Several experiments in various application
domains are used to illustrate the utility and gen-
erality of the approach described in this work.

1. Introduction
In Science and Engineering, optimization problems with
very structured input domains are ubiquitous. In machine
learning we have a few examples. In deep learning, the
architecture of neural networks is defined by a large number
of parameters, like the number of layers, activation func-
tions, etc. These parameters show conditional dependencies,
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which makes the problem specially hard to treat as different
network configurations cannot be represented in an unique
Euclidean space (Jenatton et al., 2017; Swersky et al., 2013).
In kernel-based methods, the Automatic statistician (AS)
is another example. With a Gaussian process (GP) as the
class of models of choice, the goal is to automatically select
the best kernel combination to explain a data set, which is
chosen by enumerating a countably infinite set of arbitrarily
complex kernels composed via additions and multiplication
of simple ones (Duvenaud et al., 2013).

These examples, among others that we will discuss later, can
be formalized as optimization problems in which an expen-
sive black-box objective function, typically assumed ‘well
behaved’, is optimized in a highly structured input space.
By ‘highly structured’ we mean that the solutions cannot
be trivially represented in a Euclidean input space, making
standard optimization approaches impractical. Instead, they
might belong to a tree or to other non-Euclidean input do-
main. In this paper, we are interested on these problems.
More specifically, we study how knowledge about the prob-
lem structure can be leveraged to solve them successfully.
The methods and ideas proposed here are general and can
easily be extended to other domains. As a way of illustrating
them we use the AS as a case-study but the experimental
section of this work contains further experiments in other
domains such is textual images description.

Before we get into further details, we start by formalizing
the AS problem, around which we will provide the details
of our approach.

1.1. Case Study: the Automatic Statistician

In the AS the goal is to solve a supervised learning problem
given a dataset D = {xi, yi}Ni=1 where xi ∈ Rp are the
inputs and yi ∈ R are the outputs. Let M be the class of
models that we will use to explain the data. In particular, we
consider M to be the family of GPS with different kernel
combinations (Rasmussen & Williams, 2005). We denote
by M each model of this set and we denote by PM its
associated parameter space. The models in M represent
different structural assumptions about the data such as trends
or periodicity. The values of β ∈ P , the model hyper-
parameters, differentiate models within the same family.

The goal of the AS is to select one single model from M
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Figure 1. Main elements of SVO: An expensive objective function needs to be optimized in a structured input space. A Variational
auto-encoder is trained to learn a latent space Z using data produced by a context-free grammar. BO is applied over the latent space via a
GP model with uncertain inputs to find the optimal kernel combination. The uncertainty of the latent space, computed using variational
inference techniques, is used in the search to balance exploration and exploitation.

that explains the data D the best. We denote by C : M→ R
some ‘goodness of fit measure’ that quantifies the quality
of the fit. We keep C(M) generic for the moment, and we
just assume that it is expensive enough such that it is only
feasible to evaluate in a few models in M. The problem
reduces to find

Mopt
β := arg max

M∈M
C(M). (1)

Problem (1) is not suitable to be solved directly using
Bayesian optimization (BO) (Shahriari et al., 2016). The
reason is that the input space of Problem (1) is very struc-
tured, highly dimensional, and non-continuous so most BO
methods will fail. The key idea of the approach presented
in this paper is to transform Problem (1) into a problem that
can be handled with standard BO methods.

1.2. Related work

The idea of using BO in high dimensional and structured
spaces has already been explored in the literature. Random
projections (Wang et al., 2016), other generative models like
deep Gaussian processes (Dai et al., 2016) and combina-
tions of optimization and sampling strategies (Abbati et al.,
2017) have been developed. Bayesian optimization methods
able to deal with hierarchical dependencies have also been
proposed (Jenatton et al., 2017; Swersky et al., 2013). Some
interesting applications are the design of genes (Gonzalez
et al., 2014) and molecules (Kusner et al., 2017). Although
both works carry out optimization in the latent space pro-
duced by a VAE, the goal and approach of our work are
different, where we use a likelihood that directly encodes
the knowledge of the grammar in the decoder to map any
point in the latent space into a valid structure representation.
The works also differ in the application domains and the
propagation of the uncertainty in the latent space into the
search.

Regarding the AS, a few approaches have followed the orig-
inal compositional approach (Grosse et al., 2012; Duvenaud
et al., 2013). Kim & Teh (2016) scales this method to big
data scenarios by using sparse GPS. Hwang & Choi (2015)
developed relational kernel learning methods. Malkomes
et al. (2016) proposed, to the best of our knowledge, the first
approach that uses BO in this context. A parametric mea-
sure of kernels similarity, the Hellinger distance is used to
guide the search over a selected sets of kernel combinations.

1.3. Contributions and organization

We use the idea that kernel combinations can be expressed
as operations of a context-free grammar (Hopcroft et al.,
2006). This is used to simulate combinations with certain
properties or structure, similarly to the work of (Kusner
et al., 2017) where a grammar is used to generate molecules.
Gómez-Bombarelli et al. (2018) also used a context-free
grammar to optimize molecules. They used a RNN that
allows it to learn the structure of the problem directly from
data.

The idea we follow here is (i) to use a mechanism to gener-
ate data that represent well the set of feasible solutions of the
problem and (ii) use it to learn a low-dimensional manifold
in which the search for the optimal solution takes place. To
this end, we learn a latent variable model. We used a Varia-
tional auto-encoder (VAE) (Kingma & Welling, 2013) for
practicality, although any other continuous latent variable
model could be considered. With the problem mapped into
a low-dimensional space BO can be used to find the best
combination, circumventing the issues described in Section
1.1. Because there is uncertainty associated to the learned la-
tent space, we use variational inference to incorporate it into
the search. This has a positive effect, balancing exploration
and exploitation. See Figure 1 for a graphical description of
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Algorithm 1 Context-free grammar for kernel expressions
generation.

Input: Nmax, pB, B, pO, O, S = ∅.
for k < Nmax do
S ← S +B, select kernel with probability pB.
S ← S +O: select operation with probability pO.

end for O is Stop or k = Nmax.

the main elements of the approach described in this work.
The main contributions are:

• A new Variational auto-encoder, called ‘Structure Gen-
erating Variational auto-encoder’ (SG-VAE). We de-
scribe and used it in the context of mapping kernel
combinations produced by a context-free grammar into
a continuous and low-dimensional latent space. Al-
though here we use it in the AS context, it is broadly
applicable. The main novelty of this approach is that
all information about the problem is directly encoded
in the likelihood of the model, in contrast to previous
approaches in which is learned from the data (Gómez-
Bombarelli et al., 2018).

• A variational approximation of the distribution of the
latent space of the SG-VAE. This distribution is used
to propagate the uncertainty of the SG-VAE into the
BO search. A GP with uncertain inputs is used to
make this step practical.

• A series of experiments that illustrate the utility of this
work in model selection and in a problem where the
goal is to find the best textual description of a Minecraft
image.

• An implementation of the proposed approach
that can be found at the GPyOpt library
https://github.com/SheffieldML/GPyOpt
together with the scripts to reproduce the results of
this work.

Section 2 describes the SG-VAE model and in Section 2.4
we detail how the SG-VAE can be used in optimization
problems. In Section 3, we illustrate its performance with a
series of experimental results. In Section 4 we include some
conclusions and further lines of research derived from this
work.

2. Variational Auto-encoders for structured
spaces representation

In this section we present a new VAE to map structured
input spaces into low-dimensional latent manifold. We de-
scribe it in the the context of the AS, so the goal is to use

it to find good representations of kernel combinations pro-
duced by a context-free grammar. We describe the encoder,
decoder and a variational approximation of the distribution
of the latent variables.

2.1. Grammar-based Kernel Representation

It is possible to generate a countably infinite kernel space
through closure of kernels via a context-free grammar.
Given a set of base kernels B we can generate an expression
(kernel combination) S by subsequently adding kernels and
operations O (additions, multiplications, replacements or
Stop) (Duvenaud et al., 2013; Grosse et al., 2012). Both
the kernels and the operations are chosen according to pre-
specified probabilities pB and pO. See Algorithm 1.

We use 1-hot encoding vectors for both, kernels and op-
erations, to represent each expression S. Suppose that
B = {K1,K2,K3,K4} is the set of four base kernels and
O = {+,×, Stop} is the set of operations. Any expres-
sion S is transformed into a binary vector by recurrently
attaching the 1-hot vectors of each kernel and operation.
When the operation is Stop the vector is completed with
zeros. For instance, in the following example, four kernels
are combined using a number of Nmax operations. Before
termination we have:

K2︸︷︷︸
0100

+︸︷︷︸
100

K1︸︷︷︸
1000

∗︸︷︷︸
010

K3︸︷︷︸
0010

∗︸︷︷︸
010

K1︸︷︷︸
1000

Stop︸︷︷︸
001

...︸︷︷︸
Add 000

This grammar-based representation, that we denote by xg,
captures the complexity of the combination 1.

The grammar-based representation accounts for kernel com-
plexity but it does not take into account the differences in the
combinations due to the dataset D. For this, a data-based
representation is proposed in the next section.

2.2. Data-based Kernel Representation

We use the vector of distances between the kernel matri-
ces of the base kernels evaluated in the data and the kernel
matrices of the combinations. Details about how to deal
with the hyper-parameters of the kernels are in the exper-
imental section. As a measure of distance, the Hellinger
distance could be used (Malkomes et al., 2016). However
itsO(n4) complexity makes it prohibitively slow. We found
that the Frobenius distance works well and it is also very
quick to compute. We denote this data-based representation
by xd which we normalise before the VAE. The global rep-
resentation for each combination is therefore x = [xg,xd],
which has dimension (Nmax + 1)|B|+ (Nmax − 1)|O| for
Nmax the maximum number of allowed operations (added
kernels).

1Note that x here and in the definition of D represent different
vectors.
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Figure 2. Recovery of a various kernel combinations after encoding and later decoding them with a SG-VAE for (see experimental section
for further details). Black dots represent ones and white dots zeros. Left: original one-hot encoding vectors (one per row) representing
kernel combinations. Centre: vectors produced by the SG-VAE after encoding and decoding (using the mode). Left: difference between
the original and the mapped vectors.

Algorithm 2 Precomputation of the SG-VAE.

Input: Dataset D, Context-free grammar (B, pB, O, pO),
Nmax.
1. Generate a dataset with Algorithm 1.
2. Computer the representations x = [xg,xd].
3. Optimize the ELBO of the SG-VAE.
Returns: Pre-computed SG-VAE.

2.3. Structure Generating Variational Auto-encoder
(SG-VAE)

This section describes a bespoke VAE, the Structure Gen-
erating Variational Auto-encoder (SG-VAE), for learning
low dimensional representations of the kernel combinations
represented by x = [xg,xd]. The original VAE proposed
by (Kingma & Welling, 2013) interprets points z as ele-
ments in a latent space of probabilistic generative model
with two main components. A decoder given by a likeli-
hood parametrized by θ, pθ(x|z) and a probabilistic encoder
qφ(z|x) ∝ pθ(x|z)p(z) where p(z) is the prior over the la-
tent variables.

The parameters of qφ(z|x) and pθ(x|z) are optimized jointly
by maximizing the the evidence lower bound (ELBO)

L(φ, θ; x) = Eqφ(z|x) [log pθ(x, z)− log qφ(z|x)] ,

which is done by using gradient descent as long as pθ(x|z)
and qφ(z|x) are differentiable. SG-VAE extends VAE by
proposing a type of encoder and decoder that are specialized
in representing the structured search space.

2.3.1. SG-VAE ENCODER

The encoder of the SG-VAE is a Gaussian distribution
where the mean is the output of a Multilayer Perceptron

(MLP) . In particular we define

qφ(z|x) = N (z : µφ, σ2
enI)

µφ = MLP (x;φ)

where MLP represents a feed-forward network with two
hidden layers and tanh activation function parametrized
by weights φ and σ2

en denotes the variance of the encoder
Gaussian distribution.

2.3.2. SG-VAE DECODER

Although the encoder is somehow standard, the decoder is
specific to the model representation problem that we are
addressing. The challenge is to learn a decoder that always
provides a valid kernel representation. To this end, we
encode this feature in the model likelihood pθ(x|z) as we
next detail. First of all, define the output from the neural
network

l = MLP (z; θ)
with the same MLP defined in the encoder and θ the cor-
responding weights that need to be optimized jointly with
φ.

The likelihood factorizes in two independent components

pθ(x|z) = pθ(xd|z)pθ(xg|z)

that corresponds to the grammar and data representations
pθ(xd|z) and pθ(xg|z) respectively. The data representation
is modelled with a Gaussian likelihood

pθ(xd|z) ∼ N (xd : µθ, σ2
deI).

where µθ is the part of the decoder parameters l associated
to the data-based representation. In particular if we partition
l = [lg, ld] we have that ld = µθ.
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Algorithm 3 Structured Variational auto-encoded optimization, the SVO algorithm.

Input: Dataset D, precomputed SG-VAE, model selection criterion C(M) and number of iterations Niter.
1. Select initial point z1. Compute qγ(z1), the mode of the decoder x̃|z1 and C(Mx̃|z1).
2. Update the dataset D̃1 = {(qγ(z1), C(Mx̃|z1))}.
for j = 1 to Niter do

3.1 Fit a GP with uncertain inputs to D̃j .
3.2 Maximize the Expected Improvement to obtain zj+1.
3.3 Evaluate the objective at the mode of the decoder C(Mx̃|zj+1).
3.4 Compute the variational approximation of the latent space qγ(zj+1|x̃).
3.5 Augment data set: D̃j+1 = {D̃j ∪ (qγ(zj+1), C(Mx̃|zj+1))}.

end for
Returns: Report best obtained latent point q(z?) and the associated modelMx|z? .

The part of the likelihood that corresponds to the grammar-
based representation factorizes across all the kernels and
operations, which are modelled via Multinomial distribu-
tions Multi(n,π) where π are some normalised version of
softplus(lg) which is defined as softplus(a) := log(1+ea)
that maps to positive values. In particular, denote by xkj
and xoj the one-hot representation of the j-th added kernel
and operation. We write the grammar-based likelihood of
the decoder as

pθ(xg|z)

= pθ(xk1 |z)
Nmax−1∏
j=1

pθ(xoj |x̄oj , z)pθ(xkj+1 |x̄oj+1 , z)

where x̄oj = {xo1 , ...,xoj−1},

xoj |x̄oj , z ∼
{

Multi(1,πoj ) if none in x̄oj is Stop
1 otherwise,

for j = 1, . . . , Nmax and

xkj |x̄oj , z ∼
{

Multi(1,πkj ) if none in x̄oj is Stop
1 otherwise,

for j = 2, . . . , Nmax. The vector parameters πoj and πkj
of the multinomial are computed as the normalized versions
of the corresponding blocks of softplus(lg). Note that
once the Stop operation has been observed, the remaining
pθ(xkj |z) and pθ(xoj |z) are set to one. In this way, there
exists a conditional dependency of each kernel/operation on
the previous factor, which refers to the appearance of Stop
operation. This procedure is summarized in algorithm 2.

The SG-VAE always learn vectors that directly map to
feasible kernel combinations produced by the grammar (see
Figure 2). Note also that this model is applicable in any
scenario where a context-free grammar is available. The
data-based representation can also be easily dropped if not
needed in other domains.

2.3.3. VARIATIONAL POSTERIOR FOR TEST POINTS

To quantify the uncertainty of the latent variable z? of test
points, we propose a separate mean-field variational infer-
ence, where the posterior distribution is parameterized as

qγ(z?) = N (z? : µγ , σ2
γI).

This estimation of qγ(z?) is done by minimizing the
Kullback-Leibler divergence KL(qγ(z?)‖qφ(z|x)). There
are mainly two reasons why this is necessary to quantify the
uncertainty. First, σ2

en is constant across all the latent space
and one would expect a different level of uncertainty for
different test points. Second, if a test point x? is dissimilar
to any of the training points, there is no guarantee of good
predictions by the encoder.

2.4. SG-VAE based search

Denote byMx the model configuration associated to the
representation x. For simplicity in the notation, in this
section we will drop the dependence of the model on the
parameters β. We denote by x̃|z? the mode of the decoder
pθ at z?. Also, let us denote by Z the latent space learned
by the pre-trained SG-VAE. We reformulate Problem (1)
as finding

zopt = arg max
z?∈Z

C(Mx̃|z?). (2)

The hypothesis is that points z? in the latent space, and
models represented by the corresponding modes x̃|z?, are
well mapped to each other, as it is shown in Figure 2 in
Section 2.3. Therefore it is possible to search for the best
model in Z rather than in the original space.

To find zopt we use Bayesian optimization (Shahriari et al.,
2016). We select a series of locations z1, . . . , zNiter such
that the maximum of C is evaluated as quickly as possible.
Following the standard practice in BO, we use a Gaus-
sian process p(f) = GP(µ; k) with mean function µ and
positive-definite kernel k to model the underlying objective
function, now defined between Z and the domain of the
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Figure 3. Results obtained by the SVO method in the Airline dataset using four base kernels. We search for the optimal combination with
different sample sizes. The vertical red lines of the plots represent the separation between training data (on the left of the line) and test
data (on the right).

Figure 4. Comparison of the SVO algorithm and the compositional kernel search CKS. SVO is able to optimize the model selection
criterion faster in all datasets. Interestingly, SVO does no need to start the seach on the base kernels which allows to consider more
complex combinations faster that the CKS.

model selection criterion. In standard cases, the inputs of
the GP are also the inputs of the objective function (C(M)
in AS). In SVO, the inputs of the GP are the latent rep-
resentations z, which is different from the inputs of the
objective function. This gives rise to a problem: a model
configuration x may correspond to multiple points z in la-
tent space. This uncertainty can be captured by the posterior
distribution p(z|x), which is intractable in SG-VAE. In-
stead, we estimate a mean-field variational approximation
qγ(z|x) of the posterior detailed in Section 2.3.3. To factor
in this uncertainty in the inference of GP, we use Gaussian
process with uncertainty inputs (Damianou et al., 2016), in
which we fit a Gaussian process between considering inputs
following the distribution qγ(z|x).

The posterior of the GP is used to create an acquisition func-
tion that is used to select the next points to evaluate. In this
work we used the Expected Improvement (Mockus, 1977)
(EI) but other acquisition functions are also possible. Note
that, as we use mean and variance from the GP with uncer-
tain inputs, the distribution qγ(z?) is automatically pushed
into the acquisition. The next evaluation is placed at the
global maximum of the EI function (Shahriari et al., 2016).

See Algorithm 3 for a full description of the algorithm that
we call Structured Variationally auto-encoded optimization
(SVO).

3. Experiments
We show three experiments. The first one explains the
behaviour of the method in a time series. The goal is to in-
terpret how new kernels are selected as soon as we provide
more data to the system so more structure in the kernel can
be inferred. The second experiment compares SVO with
the compositional kernel search (CKS) (Duvenaud et al.,
2013) method. The third one formulates natural scene un-
derstanding as a searching problem in structured space and
apply SVO to infer the content in a natural scene. Inspired
by (Wu et al., 2017), we use “Minecraft" as a nature scene
generation engine and show SVO successfully produces a
good interpretation of an image with a few attempts.

3.1. The Airline dataset

We apply the SVO algorithm to fit the Airline passenger
data (Box & Jenkins, 1990), a time series that consists of
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144 monthly totals of airline passengers from January 1949
to December 1960. We consider 4 base kernels: squared
exponential (SE), linear (LIN), periodic (PER) and rational
quadratic (RQD) and we optimize the mean squared error
(MSE) of the prediction. We use uniform prior probabilities
in both the grammar operations and the base kernels. We
allow a maximum of 5 operations in the grammar generating
process. We train a SG-VAE with 2 hidden layers with
400 hidden units on 20, 000 simulated kernel combinations
(from which 4697 where unique) and 5 dimensions in the
latent space. We apply Algorithm 3 using the first 10%, 37%
and 63% of the data. The rest is used for testing. In Figure
3 we show the fit of the GP models with the combinations
proposed by SVO. Interestingly, with 10% of the data the
seasonal structure is captured. The solution found is K =
SE × PER + RQ + PER. With 37% of the data the
solution found is PER × PER + PER + RQ + LIN ,
which is capturing the linear trend. With 63% of the data the
best solution found PER×SE×RQ×LIN+SE. In this
case, the method is capturing not only the linear trend but
also the interactions with the seasonal components. SVO is
able to extract coherent structure in the data.

3.2. Comparison across different optimization
approaches

We do optimal model selection in GPS in three different
datasets: the Airline dataset described in previous section
and the Barley and Concrete2. The concrete dataset has
dimension 8, while the rest are unidimensional. The exper-
imental set up is the same as we used in section 3.1. We
compare: SVO with different configurations. We learn the
SG-VAE using both the grammar data and the distance
representations described in Section 2.2. To generate the
distances, we take as parameters of the base kernels those
obtained after maximizing the marginal log-likelihood of the
models. The parameters of the kernel combinations are sam-
pled from hyper-priors that were specified as in (Malkomes
et al., 2016). In the search, we include the case in which the
uncertainty of the latent space of the SG-VAE is used using
Section 2.3.3 and the case in which no uncertainty is propa-
gated (just z? is used in the search). We compare different
versions of the SVO (with uncertainty and without uncer-
tainty) with (i) CKS, (ii) a random search carried out in the
original kernel configurations space, (iii) a random search
carried out in the latent space of the SG-VAE learned in
each scenario and (iv) standard BO. A detailed description
of each of the baselines can be found in the supplementary
material.

In all cases we run the optimization for 70 iterations. In

2All datasets are available at the UCI repository:
https://archive.ics.uci.edu/ml/index.php exception the Bar-
ley, which can be found at https://datamarket.com

Figure 4 we show the best current MSE found in each it-
eration, which has been averaged over 5 runs for different
initial points.

The CKS needs to compose complex kernels from single
ones, which makes its convergence slow (it always starts
with one kernel and sequentially composes more complex
ones). In SVO, this is not needed as complex combinations
can be selected from the beginning of the optimization. This
is why the SVO convergence curves are flatter, which also
converges faster and to a better optimum that CKS in the
three datasets. Propagating the uncertainty of the SG-VAE
has a positive effect in the search in the Barley dataset.

3.3. Natural Scene Understanding

Understanding natural scene is a challenging task because
of the almost infinite number of possible combinations of
objects and large variation of their appearance on image. On
the other hand, we have sophisticated graphics rendering
engines. We use computer graphics engine to improve scene
understanding by formulating natural scene understanding
as a search problem, i.e., given a natural image, whether we
can find a configuration of a graphics rendering engine to
reproduce the query.

Following the experiment setting of (Wu et al., 2017), we
take “Minecraft” as the rendering engine and use XML as
the description of configuration. We consider 12 Minecraft
objects such as pig, cow, sheep and chicken, etc., and con-
sider two attributes of each object, i.e., the location of an
object on the image parametrized by the distance to the cam-
era and the 1D angle from right to left. Both attributes are
discretized into five different values. The task is to search
for the XML configuration of which the generated image
matches the target image as close as possible. For simplicity,
we use L2 norm to measure the dissimilarity between a gen-
erated image and the target image, but more sophisticated
dissimilarity measure can be used here.

The target images are shown in Figure 5a, 5b, 5c. We ap-
ply SVO to this problem by defining a structure generation
process like the one in Section 2.3. We consider two types
of operations: adding a new object and stop. When adding
a new object, we choose its object type and the values of
two attributes. With this generation process, we generated
20,000 configurations for training the SG-VAE. We use the
grammar-based representation for simplicity. Then, we ap-
ply the search algorithm described in Section 2.4 to look
for the best configuration. After 100 iterations, the image
generated by the best configuration is shown in Figure 5e,
5f, 5g. The generated images closely match with the target
ones with small disparity. Note that our approach is signif-
icantly different from (Wu et al., 2017). Wu et al. (2017)
trained neural networks to directly predict a configuration
given a target image. This requires generation of tens of
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(a) (b) (c) (d)

(e) (f)
t

(g) (h)

Figure 5. Use SVO to search for a XML configuration of the “Minecraft” engine to reproduce three target images (a), (b) and (c). The
best configuration found by SVO are (e), (f) and (g) respectively. Images (d) and (h) were selected randomly to illustrate the complexity
of the problem.

thousands images from the rendering engine for training the
neural networks. The number of required training images
can easily go a few magnitudes higher if more objects or
attributes are considered. SVO is a meta-approach for this
problem, where we do not learn a model to directly analyse
images. Instead, we build a SG-VAE for configurations and
search in the latent space of configurations for a matching
explanation of the target image. Our approach only requires
to generate a few images to guide the search.

4. Conclusions and future work
We have presented a new algorithm, SVO, for performing
optimization in highly structured spaces. The idea of SVO
is to learn a probabilistic low-dimensional latent space in
which the solution of some high dimensional optimization
problem can be easily found and mapped back to the orig-
inal problem. This process is not possible without extra
assumptions, which in our case are imposed by means of
a context-free grammar. The SG-VAE, a new variational
auto-encoder, explicitly uses the structure of the problem to
generate feasible solutions. Bayesian optimization ideas are
used in the latent space learned by the SG-VAE. The uncer-
tainty in the latent space is propagated into the optimization
using variational inference and a Gaussian process with
uncertain inputs. The results obtained in the experimental
section are competitive. However, we believe that there is
still a large room for improvement in this research direction.
For example, we see a limitation in the use of VAE as it is
not well suited to learn the dimension of the latent space
from the data, a GP-LVM could be a possible alternative.
Other limitations of the SG-VAE are related smoothness and
structure of the problem. Even if the dimensionality of the

original space is large the method is expected to work if it
is highly structured. However, in low dimensional spaces
with not mush structure the SG-VAE is not expected to be
beneficial (information cannot be compressed). It is also
interesting to investigate how previous knowledge can be
embedded in the search. In this work we used a context-
free grammar to favour certain solutions of the input space,
similarly to the idea of using transfer learning when similar
problems have been solved before. Further combinations of
this ideas will be explored in the future.

References
Abbati, G., Tosi, A., Osborne, M. A., and Flaxman, S. Ada-

geo: Adaptive geometric learning for optimization and
sampling. In NIPS workshop in Approximate inference,
2017.

Box, G. E. P. and Jenkins, G. Time Series Analysis, Fore-
casting and Control. Holden-Day, Incorporated, 1990.
ISBN 0816211043.

Dai, Z., Damianou, A., González, J., and Lawrence, N.
Variational auto-encoded deep Gaussian processes. Inter-
national Conference on Learning Representations (ICLR),
2016.

Damianou, A. C., Titsias, M. K., and Lawrence, N. D. Vari-
ational inference for latent variables and uncertain inputs
in Gaussian processes. Journal of Machine Learning
Research, 17(42):1–62, 2016.

Duvenaud, D., Lloyd, J. R., Grosse, R., Tenenbaum, J. B.,
and Ghahramani, Z. Structure discovery in nonparametric



Structured Variationally Auto-encoded Optimization

regression through compositional kernel search. arXiv
preprint arXiv:1302.4922, 2013.

Gonzalez, J., Longworth, J., James, D. C. J., and Lawrence,
N. D. Bayesian optimization for synthetic gene design.
In NIPS workshop in Bayesian optimization, 2014.

Grosse, R., Salakhutdinov, R. R., Freeman, W. T., and
Tenenbaum, J. B. Exploiting compositionality to ex-
plore a large space of model structures. arXiv preprint
arXiv:1210.4856, 2012.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS Central Science, 4(2):268–276, 2018.
doi: 10.1021/acscentsci.7b00572.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. Introduction
to Automata Theory, Languages, and Computation (3rd
Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006. ISBN 0321455363.

Hwang, Y. and Choi, J. The automatic statistician: A rela-
tional perspective. CoRR, abs/1511.08343, 2015.

Jenatton, R., Archambeau, C., González, J., and Seeger, M.
Bayesian optimization with tree-structured dependencies.
In Precup, D. and Teh, Y. W. (eds.), Proceedings of the
34th International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research,
pp. 1655–1664, International Convention Centre, Sydney,
Australia, 06–11 Aug 2017. PMLR.

Kim, H. and Teh, Y. W. Scalable structure discovery for
regression using gaussian processes. AutoML 2016 Pro-
ceedings, Journal of Machine Learning Research Work-
shop and Conference Proceedings, 2016.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kusner, M. J., Paige, B., and Hernández-Lobato, J. M.
Grammar variational autoencoder. arXiv preprint
arXiv:1703.01925, 2017.

Malkomes, G., Schaff, C., and Garnett, R. Bayesian opti-
mization for automated model selection. In Advances in
Neural Information Processing Systems, pp. 2900–2908,
2016.

Mockus, J. On bayesian methods for seeking the extremum
and their application. In IFIP Congress, pp. 195–200,
1977.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Pro-
cesses for Machine Learning (Adaptive Computation and
Machine Learning). The MIT Press, 2005.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
de Freitas, N. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2016.

Swersky, K., Duvenaud, D., Snoek, J., Hutter, F., and Os-
borne, M. A. Raiders of the lost architecture: Kernels for
Bayesian optimization in conditional parameter spaces.
In NIPS workshop on Bayesian Optimization in theory
and practice (BayesOpt?13), 2013.

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., and De Fre-
itas, N. Bayesian optimization in a billion dimensions via
random embeddings. J. Artif. Int. Res., 55(1):361–387,
January 2016. ISSN 1076-9757.

Wu, J., Tenenbaum, J. B., and Kohli, P. Neural scene de-
rendering. In CVPR, 2017.


