
Supplementary material for:
Competitive Caching with Machine Learned Advice

Thodoris Lykouris 1 Sergei Vassilvitskii 2

A. Bad example for trusting the oracle
Recall that in Section 3.1 we showed that simply following
the oracle’s recommendations may lead to very high com-
petitive ratios. The initial example relied on items whose
predicted times have passed, but were predicted to be low
enough that they are never evicted.

It is tempting to “fix” this approach by evicting elements
whose predicted times have passed, but follow the same idea
otherwise. Formally, let h(j, t) denote the last prediction
about zj at or prior to time t. At time t this “fixed” approach
evicts an arbitrary item from the set St = {j : h(j, t) < t}
if St 6= ∅ and argmaxzi∈Cache(t) h(i, t) otherwise. We show
that the competitive ratio of this algorithm is also unbounded
even when the average absolute loss is constant. Assume a
cache of size k = 3 and four elements a, b, c, d. The initial
configuration is a, b, c, when element d arrives. Let the total
length of the sequence be T . The true sequence has element
b at the last time T , element c at times 2r+1 where r is odd,
d at times 2r + 1 where r is even, and a at all other times.
The oracle predicts the next appearance of a and b correctly
but is incorrect on elements c and d and always predicts
their next appearance time at T + 1. The optimal algorithm
evicts b, and has two cache misses (when d arrives for the
first time, and when b arrives at time T). On the other hand,
the described algorithm keeps a, b always in the cache and
incurs a cache miss for each appearance of c, d, for a total
of log(T) misses. This is despite the fact that the average
absolute loss is again a constant: η1/T = 3 as the errors
form a geometric series.

B. Proof of Theorem 1
Theorem 1 restated: For the caching problem, let A be an
α-robust algorithm and B a γ-competitive algorithm. We
can then create a black-box algorithm ALG that is both

*Equal contribution 1Cornell University, Ithaca, NY, USA
2Google Research, New York, NY, USA. Correspondence to:
Thodoris Lykouris <teddlyk@cs.cornell.edu>, Sergei Vassilvit-
skii <sergeiv@google.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

9α-robust and 9γ-competitive.

Proof. We proceed by simulatingA andB in parallel on the
dataset, and maintaining the cache state and the number of
misses incurred by each. Our algorithm switches between
following the strategy of A and the strategy of B. Let ct(A)
and ct(B) denote the cost (number of misses) of A and B
up to time t. Without loss of generality, let ALG begin by
following strategy of A; it will do so until a time t where
ct(A) = 2 ·ct(B). At this point ALG switches to following
the eviction strategy of B, doing so until the simulated cost
of B is double that of A: a time t′ with ct′(B) = 2 · ct′(A).
At this point it switches back to following eviction strategy
of A, and so on. When ALG switches from A to B, the
elements that A has in cache may not be the same as those
thatB has in the cache. In this case, it needs to reconcile the
two. However, this can be done lazily (at the cost of an extra
cache miss for every element that needs to be reconciled).
To prove the bound on the performance of the algorithm, we
need to show that ct(ALG) ≤ 9 ·min(ct(A), ct(B)) for all
t. We decompose the cost incurred by ALG into that due
to following the different algorithms, which we denote by
ft(ALG), and that due to reconciling caches, rt(ALG).

We prove a bound on the following cost ft by induction on
the number of switches. Without loss of generality, suppose
that at time t, ALG switched from A to B, and at time t′

it switches from B back to A. By induction, suppose that
ft(ALG) ≤ 3min(ct(A), ct(B)) = 3ct(B), where the
equality follows since ALG switched from A to B at time
t. In both cases, assume that caches are instantly reconciled.
Then:

ft′(ALG) = ft(ALG) + (ct′(B)− ct(B))

= ft(ALG) + 2ct′(A)− 1/2ct(A)

≤ 3ct(B) + 2(ct′(A)− ct(A)) + 3/2 · ct(A)
= 3ct(A) + 2(ct′(A)− ct(A))
≤ 3ct′(A)

= 3min(ct′(A), ct′(B))

What is left is to bound the following cost for the time since
the last switch. Let s denote the time of the last switch and,
assume without loss of generality that it was done from A

Competitive Caching with Machine Learned Advice

to B. Let s′ denote the last time step. By the previous set of
inequalities (changing the second equation to inequality) and
the fact that the algorithm never switched back toA after s, it
holds that fs′(ALG) ≤ 3cs′(A) ≤ 6min(cs′(A), cs′(B)).

To bound the reconciliation cost, assume the switch at time
t is from A to B. We charge reconciling each element in
B \A to the cache miss when the element was last evicted
by A. Therefore the overall reconciliation cost is bounded
by rt(ALG) ≤ ct(A) + ct(B) ≤ 3min(ct(A), ct(B).

C. Proofs for Marker Algorithm
In this section, we provide the proofs of two crucial lem-
mas in the classical Marker algorithm analysis. The proofs
are due to Fiat et al. (Fiat et al., 1991) and are stated for
completeness.

Lemma 1 restated: Let L be the number of clean elements.
Then the optimal algorithm suffers at least L/2 cache misses.

Proof. We denote by `r the number of clean elements at
phase r. Let dIr be the number of elements that are in the
cache of the optimal solution but not in the cache of the
algorithm’s solution at the beginning of phase r and let
dFr be the number of elements that are in this set at the
end of the phase. Then, the number of cache misses of
the optimal solution are at least the difference `r − dIr (as
any clean element that was not in the initial complement
would cause one cache miss) and also at least dFr (since
these many elements did not arise during the phase and the
offline algorithm has for sure incurred these many misses).
Hence, for each r, we know that:

#cache misses in opt during phase r ≥ min
(
`r − dIr , dFr

)
≥ `r − dIr + dFr

2
.

Telescoping and using that dI0 = 0 (since both start with the
same cache elements) concludes the lemma.

Lemma 2 restated: Let L be the number of clean elements.
Then the expected number of cache misses of the marker
algorithm is L · Hk when randomly tie-breaking across
unmarked elements.

Proof. We again denote by `r the number of clean elements
at phase r. The worst-case scenario is that all the clean
elements come in the beginning since the algorithm needs to
remove more elements without knowing whether it should.
After all `r elements have arrived, there are k − `r stale ele-
ments that the algorithm unfortunately does not know. The
expected number of misses of the algorithm is the expected
number of stale elements that are not in the cache when
requested. Let’s think of this probability for the i-th such

element. Every clean element removes another element. If
it is stale and before the position k− i− `r, another element
will be removed when its turn comes. So, for the i-th stale
element, each clean element corresponds to the removal of
one element in the last k − i+ 1 slots and this is uniformly
at random. Since there are `r of those, the probability that
i-th element will be the one removed is at most `r

k−i+1 for
the i-th time where i ∈ [1, `r − 1]. Summing over all those
positions, the number of cache misses of Marker in this
phase is at most `rHk.

D. Proof of Lemma 3
In this section, we provide the proof of the lemma connect-
ing spread to absolute and squared loss. Before doing so,
we provide a useful auxiliary lemma.

Lemma 4 For odd T = 2n + 1, one pair (AT , BT) mini-
mizing either absolute or squared loss subject to the con-
straints of the spread definition is A2n+1 = (0 . . . 2n) and
BT = (n . . . n).

Proof. First we show that there exists a BT minimizing
the loss with bi = bj for all i, j. Assume otherwise; then
there exist two subsequent i, j with b′i > b′j . Since ai <
aj+1 by the assumption on spread, minx∈{bi,bj}{`(ai, x)+
`(aj , x)} ≤ `(ai, bi) + `(aj , bj). Applying this recursively,
we conclude that such a BT exists.

Second, we show that there exist an AT that consists of
elements ai+1 = ai + 1. Since the elements of BT are all
equal to b, the sequence

∑2n
i=0 `(ai, b) is minimized for both

absolute and squared loss when ai = b+ i− n.

Last, the exact value of b does not make a difference and
therefore we can set it to be b = n concluding the lemma.

Lemma 3 restated: For absolute loss, `1(A,B) =∑
i |ai − bi|, the spread of `1 is S`1(m) ≤

√
4m+ 1.

For squared loss, `2(A,B) =
∑

(ai− bi)2, the spread of `2
is S`2(m) ≤ 3

√
14m.

Proof. It will be easier to restrict ourselves to odd T =
2n + 1 and also assume that T ≥ 3. This will give an
upper bound on the spread (which is tight up to small
constant factors). By Lemma 4, a pair of sequence min-
imizing absolute/squared loss is AT = (0, . . . , 2n) and
BT = (n, . . . , n). We now provide bounds on the spread
based on this sequence, that is we find a T = 2n + 1 that
satisfies the inequality `(AT , BT) ≤ m.

Competitive Caching with Machine Learned Advice

Absolute loss: The absolute loss of the above sequence is:

`(AT , BT) = 2 ·
n∑
j=1

j = 2 · n(n+ 1)

2
= n(n+ 1) =

=
T − 1

2
· T + 1

2
=
T 2 − 1

4
.

A T that makes `(AT , BT) ≥ m is T =
√
4m+ 1. There-

fore, for absolute loss S`(m) ≤
√
4m+ 1.

Squared loss: The squared loss of the above sequence is:

`(AT , BT) = 2 ·
n∑
j=1

j2 = 2 · n(n+ 1)(2n+ 1)

6

=
(T 2 − 1) · T

12
=
T 3 − T

12
≥ 8T 3

9 · 12
=

2T 3

27

where the inequality holds because T ≥ 3.

A T that makes `(AT , BT) ≥ m is T = 3
√
14m. Therefore,

for squared loss S`(m) ≤ 3
√
14m.

References
Fiat, A., Karp, R. M., Luby, M., McGeoch, L. A., Sleator,

D. D., and Young, N. E. Competitive paging al-
gorithms. J. Algorithms, 12(4):685–699, December
1991. ISSN 0196-6774. doi: 10.1016/0196-6774(91)
90041-V. URL http://dx.doi.org/10.1016/
0196-6774(91)90041-V.

http://dx.doi.org/10.1016/0196-6774(91)90041-V
http://dx.doi.org/10.1016/0196-6774(91)90041-V

