
Competitive Caching with Machine Learned Advice

Thodoris Lykouris 1 Sergei Vassilvitskii 2

Abstract
We develop a framework for augmenting online al-
gorithms with a machine learned oracle to achieve
competitive ratios that provably improve upon un-
conditional worst case lower bounds when the or-
acle has low error. Our approach treats the oracle
as a complete black box, and is not dependent on
its inner workings, or the exact distribution of its
errors. We apply this framework to the traditional
caching problem creating an eviction strategy for
a cache of size k. We demonstrate that naively
following the oracle’s recommendations may lead
to very poor performance, even when the average
error is quite low. Instead we show how to mod-
ify the Marker algorithm to take into account the
oracle’s predictions, and prove that this combined
approach achieves a competitive ratio that both
(i) decreases as the oracle’s error decreases, and
(ii) is always capped by O(log k), which can be
achieved without any oracle input. We comple-
ment our results with an empirical evaluation of
our algorithm on real world datasets, and show
that it performs well empirically even using sim-
ple off-the-shelf predictions.

1. Introduction
Despite the success and prevalence of machine learned sys-
tems across many application domains, there are still a lot of
hurdles that one needs to overcome to deploy an ML system
in practice (Sculley et al., 2015). As these systems are rarely
100% perfect, a key challenge is dealing with errors that
inevitably arise.

There are many reasons that learned systems may exhibit
errors when deployed. First, most of them are trained to
be good on average, minimizing some expected loss. In

*Equal contribution 1Cornell University, Ithaca, NY, USA
2Google Research, New York, NY, USA. Correspondence to:
Thodoris Lykouris <teddlyk@cs.cornell.edu>, Sergei Vassilvit-
skii <sergeiv@google.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

doing so, the system may invest its efforts on reducing the
error on the majority of inputs, at the expense of increased
error on a handful of outliers. Another problem is that
generalization error guarantees only apply when the train
and test examples are drawn from the same distribution. If
this assumption is violated, either due to distribution drift
or adversarial examples (Szegedy et al., 2014), the machine
learned predictions may be very far from the truth. In all
cases, any system backed by machine learning needs to be
robust enough to handle occasional errors.

While machine learning is in the business of predicting the
unknown, online algorithms provide guidance on how to
act without any knowledge of the future. These powerful
methods show how to hedge decisions so that, regardless of
what the future holds, the online algorithm performs nearly
as well as the optimal offline algorithm. However these
guarantees come at a cost: since they protect against the
worst case, online algorithms may be overly cautious, which
leads to high competitive ratios even for seemingly simple
problems.

In this work, we ask: What if the online algorithm is
equipped with a machine learned oracle? How can one
use this oracle to combine the predictive power of machine
learning with the robustness of online algorithms?

We focus on a prototypical example of this area: the online
paging, or caching problem. In this setting, requests arrive
one at a time to a server equipped with a small amount of
memory. Upon processing a request, the server places the
answer in the memory (in case an identical request comes
in the future). Since the local memory has limited size,
the server must decide which of the current elements to
evict. It is well known that if the local memory or cache
has size k, then any deterministic algorithm has competitive
ratio Ω(k). However, an O(k) bound can be also achieved
by almost any reasonable strategy, thus this metric fails to
distinguish between algorithms that perform well in practice
and those that perform poorly. The competitive ratio of the
best randomized algorithm is Θ(log k) which, despite far
from trivial, is also much higher than observed in practice.

In contrast, we show how to use machine learned pre-
dictions to achieve a competitive ratio of approximately
2 + O(min(

√
η/OPT, log k), when using a hypothesis with

total absolute loss η (see Section 3 for a precise statement of

Competitive Caching with Machine Learned Advice

the results). Thus, when the predictions are accurate (small
η), our approach circumvents the worst case lower bounds.
On the other hand, even when the oracle is inaccurate (large
η), the performance degrades gracefully to almost match the
worst case bound.

1.1. Our Contributions

The conceptual contribution of the paper lies in formalizing
the interplay between machine learning and competitive
analysis by introducing a general framework (Section 2),
and a set of desiderata for online algorithms that use a
machine learned oracle.

We look for approaches that:
• Make minimal assumptions on the machine learned

oracle. Specifically, since most machine learning guar-
antees are on the expected performance, our results are
parametric as a function of the error in the oracle η,
and not the distribution of the error.

• Are robust: a better oracle (one with lower η) should
result in lower competitive ratios.

• Are worst-case competitive: no matter the performance
of the oracle on the particular instance, the algorithm
should behave comparably to the best online algorithm
for the problem.

We instantiate the general framework to the online caching
problem, specifying the prediction made by the oracle, and
presenting an algorithm that uses that prediction effectively
(Section 3). Along the way we show that algorithmic innova-
tion is necessary: simply following the recommendations of
the predictor may lead to poor performance, even when the
average error is small (Section 3.1). Instead, we adapt the
Marker algorithm (Fiat et al., 1991) to carefully incorporate
the feedback of the predictor. The resulting approach, which
we call Predictive Marker has guarantees that capture the
best of both worlds: the algorithm performs better as the
error of the oracle decreases, but performs nearly as well as
the best online algorithm in the worst case.

Our analysis generalizes to multiple potential loss functions
(such as absolute loss and squared loss). This freedom in
the loss function with the black-box access to the oracle
allows our results to be strengthened with future progress in
machine learning and reduces the task of designing better
algorithms to the task of finding better predictors.

We complement our theoretical findings with empirical re-
sults (Section 4). We test the performance of our algorithm
on public data using off-the-shelf machine learning mod-
els. We compare the performance to the Least Recently
Used (LRU) algorithm, which serves as the gold standard,
the original Marker algorithm, as well as directly using
the predictor. In all cases, the Predictive Marker algorithm
outperforms known approaches.

Before moving to the main technical content, we provide an
example that highlights the main concepts of this work.

1.2. Example: Faster Binary Search

Consider the classical binary search problem. Given a sorted
array A on n elements and a query element q, the goal is to
either find the index of q in the array, or state that it is not in
the set. The textbook method is binary search: compare the
value of q to that of the middle element of A, and recurse
on the correct half of the array. After O(log n) probes, the
method either finds q or returns.

Instead of using binary search, one can train a classifier, h,
to predict the position of q in the array. (Although this may
appear to be overly complex, Kraska et al. (2017) empiri-
cally demonstrate the advantages of such a method.) How
to use such a classifier? A simple approach is to first probe
the location at h(q); if q is not found there, we immediately
know whether it is smaller or larger. Suppose q is larger than
the element in A[h(q)] and the array is sorted in increasing
order. We probe elements at h(q) + 2, h(q) + 4, h(q) + 8,
and so on, until we find an element smaller than q (or we hit
the end of the array). Then we simply apply binary search
on the interval that’s guaranteed to contain q.

What is the cost of such an approach? Let t(q) be the true po-
sition of q in the array (or the position of the largest element
smaller than q if it is not in the set). The absolute loss of the
classifier on q is then εq = |h(q)− t(q)|. On the other hand,
the cost of running the above algorithm starting at h(q) is at
most 2(log |h(q)− t(q)|) = 2 log εq. If the queries q come
from a distribution, then the expected cost of the algorithm
is: 2Eq

[
log (|h(q)− t(q)|)

]
≤ 2 logEq

[
|h(q)− t(q)|

]
=

2 logEq[εq], where the inequality follows by Jensen’s in-
equality. This gives a trade-off between the performance of
the algorithm and the absolute loss of the predictor. More-
over, since εq is trivially bounded by n, this shows that even
relatively weak classifiers (those with average error of

√
n)

this can lead to an improvement in performance.

1.3. Related work

Our work builds upon the foundational work on competitive
analysis and online algorithms; for a great introduction see
the book by Borodin & El-Yaniv (1998). Specifically we
look at the standard caching problem, see, for example,
(Motwani & Raghavan, 1995). While many variants of
caching have been studied over the years, our main starting
point will be the Marker algorithm by Fiat et al. (1991).

As we mentioned earlier, competitive analysis fails to dis-
tinguish between algorithms that perform well in practice,
and those that perform well only in theory. Several fixes
have been proposed to address these concerns, ranging from
resource augmentation, where the online algorithm has a

Competitive Caching with Machine Learned Advice

larger cache than the offline optimum (Sleator & Tarjan,
1985), to models of real-world inputs that restrict the inputs
analyzed by the algorithm, for example, insisting on local-
ity of reference (Albers et al., 2002), or the more general
Working Set model (Denning, 1968).

The idea of making assumptions on the input to prove better
bounds is also common. The most popular of these is that
the data arrive in a random order. This is a critical assump-
tion in the secretary problem, and, more generally, in other
streaming algorithms, see for instance the survey by McGre-
gor (2014). While the assumption leads to algorithms that
give good insight into the structure of the problem, it rarely
holds true, and is often very hard to verify.

The prior work that is closest in spirit to ours looks for
algorithms that optimistically assume that the input has a
certain structure, but also have worst case guarantees when
that fails to be the case. One such assumption is that the data
are coming from a stochastic distribution and was studied in
the context of online matching (Mirrokni et al., 2012) and
bandit learning (Bubeck & Slivkins, 2012); both of these
works provide improved guarantees if the input is stochastic
but retain the worst-case guarantees. On a related note,
Ailon et al. (2011) consider “self-improving” algorithms
that effectively learn the input distribution, and adapt to be
nearly optimal in that domain.

A more general approach was suggested by Mahdian et al.
(2012), who assume the existence of an optimistic, highly
competitive algorithm, and then provide a meta algorithm
with a competitive ratio that interpolates between that of
the worst-case algorithm and that of the optimistic one.
Although this sounds similar to our approach, one of our
key challenges lies in developing an algorithm that can use
the predictions effectively. As we show, naively following
the predictions can lead to disastrous results.

In other words, we do not assume anything about the data,
or the availability of good algorithms that work in restricted
settings. Rather, we use the oracle to implicitly classify
instances into “easy” and “hard” depending on their pre-
dictability. The “easy” instances are those on which the
latest machine learning technology, be it perceptrons, deci-
sion trees, SVMs, Deep Neural Networks, GANs, LSTMs,
or whatever may come in the future, has small error. On
these instances our goal is to take advantage of the oracle,
and obtain low competitive ratios. (Importantly, our ap-
proach is completely agnostic to the inner workings of the
predictor and treats it as a black box.) The “hard” instances
are those with poor prediction quality where we have to rely
on classical competitive analysis to obtain good results.

Very recently, two papers explored domains similar to ours.
Medina & Vassilvitskii (2017) showed how to use a machine
learned oracle to optimize revenue in repeated posted price

auctions. Their work has a mix of offline calculations and
online predictions and focuses on the specific problem of
revenue optimization. Kraska et al. (2017) demonstrated
empirically that introducing machine learned components to
classical algorithms (in their case index lookups) can result
in significant speed and storage gains. However, unlike this
work, their results are experimental, and they do not provide
trade-offs on the performance of their approach vis-à-vis
the error of the machine learned oracle.

2. Online Algorithms with ML Advice
In this section, we introduce a general formulation to com-
bine online algorithms with machine learning predictions,
which we term Online with Machine Learned Advice model
(OMLA). Before introducing the model, we review some
basic notions from machine learning and online algorithms.

Machine learning basics. We are given a feature space X ,
describing the salient characteristics of each item and a set
of labels Y . An example is a pair (x, y), where x ∈ X de-
scribes the specific features of the example, and y ∈ Y gives
the corresponding label. In the binary search application, x
can be thought as the query element q searched and y as its
true position t(x).

A hypothesis is a mapping h : X → Y and can be probabilis-
tic in which case the output on x ∈ X is some probabilisti-
cally chosen y ∈ Y . In binary search, h(x) corresponds to
the predicted position of the query.

To measure the performance of a hypothesis, we first define
a loss function ` : Y × Y → R≥0. When the labels lie
in a metric space, we define absolute loss `1(y, ŷ) = |y −
ŷ|, squared loss `2(y, ŷ) = (y − ŷ)2, and classification
loss `c(y, ŷ) = 1y 6=ŷ. Given a sequence of labels, σ =
y1, y2, . . . , yn and a set of predictions σ̂ = ŷ1, . . . , ŷn, we
will abuse notation and define `(σ, σ̂) as the total loss on
the sequence, `(σ, σ̂) =

∑n
i=1 `(yi, ŷi).

Competitive analysis. To obtain worst-case guarantees
for an online algorithm (that must make decisions when
elements arrive), we compare its performance to that of an
offline optimum (with the benefit of hindsight). Let σ be the
input sequence of elements for a particular online decision
making problem, costA(σ) be the cost incurred by an offline
algorithm A on this input, and cost?(σ) be the cost incurred
by the optimal offline algorithm. Then algorithm A is called
α-competitive if costA(σ) ≤ α · cost?(σ).

Caching. The caching (or online paging) problem considers
a system with two levels of memory: a slow memory of
size m, and a fast memory of size k. A caching algorithm
is faced with a sequence of requests for elements. If the
requested element is in the fast memory, a cache hit occurs
and the algorithm satisfies the request at no cost. If the

Competitive Caching with Machine Learned Advice

requested item is not in the fast memory, a cache miss occurs,
the algorithm fetches the item from the slow memory, and
places it in the fast memory before satisfying the request.
If the fast memory is full, then one of the items must be
evicted. The eviction strategy forms the core of the caching
online algorithmic problem. The goal is to find an eviction
policy that results in the fewest number of cache misses.

OMLA Definition. We first specify the input and the pre-
dictions made by the machine learned oracle. The online
input consists of a set of elements Z . For a specific input
σ, its elements are denoted by z1, z2, . . . and its length by
|σ|. Formalizing the machine learning task, we assume a
feature space X and a label space Y . The i-th element zi
has features xi ∈ X and a label yi ∈ Y . In defining the
framework we are not concerned with the semantics of the
labels, i.e. what is the quantity that h is predicting or how it
was trained—we are only interested in its performance. We
define the respective total loss functions:

• Total Classification Loss: ηc =
∑
i `c(yi, h(xi)),

• Total Absolute Loss: η1 =
∑
i `1(yi, h(xi)), and

• Total Squared Loss: η2 =
∑
i `2(yi, h(xi)).

Definition 1. In the Online with Machine Learned Advice
(OMLA) model, we are given:
• An input σ = {z1, z2, . . . , z|σ|}; each zi ∈ Z has

features xi ∈ X and labels yi ∈ Y .
• A hypothesis function h : X → Y that predicts a label

for each x ∈ X .
• For a specific input σ and hypothesis h, we define ηc,
η1, and η2 as described above.

Our goal is to create online algorithms that use the advice h
to achieve a good competitive ratio. Note that, in each prob-
lem instance, the algorithms depend both on the semantics
of the prediction (i.e. what is being predicted) and the qual-
ity of the predictor h as measured by η. Importantly, we do
not alter the definition of the competitive ratio—we expect
our algorithms to work well on any sequence σ; however,
the competitive ratio may depend on the total loss η.

Suppose that an algorithm A uses a predictor h with loss η
to achieve a competitive ratio c(η).

Definition 2. A is α-robust for some function α(η), if c(η)
is non-decreasing and c(η) = O(α(η)). In addition, we
call A β-consistent if c(0) = β.

We note that the above definition is with respect to the
observed quality η of the predictor. If the instances come
from a specific distribution D, then one can also define the
generalization error, η̄ = ED[η]. As long as α(η) is concave,
(e.g. α(η) = log η), η can be substituted with η̄ by applying
Jensen’s inequality. (See Section 1.2 for an example.)

Definition 3. Let c? denote the offline optimum. A is γ-
competitive if c(η) ≤ γc? for all values of η.
The holy grail is to find 1-consistent, robust, and most com-

petitive algorithms: they are never worse than the algorithms
that do not use the ML oracle, and perform as well as the
offline optimum when the oracle is perfect.

Caching with ML Advice. To instantiate the framework
for the caching problem, we define the oracle, the label
space of the predictions, and their semantics. The element
space Z corresponds to the universe of elements that may
be requested. The input sequence σ = z1, z2, · · · , zn is the
actual sequence of elements requested (fixed in advance and
oblivious to the choices of the algorithm but unknown to it).

Each element zi ∈ Z has corresponding feature xi. This
feature can encapsulate everything that is known about zi at
the time i, for example, the times that zi arrived in the past.
The exact choice of X is orthogonal to our setting, though
of course richer features typically lead to smaller errors.

The machine learning task is to predict the next time a
particular element will appear. The label space Y is thus a
set of positions in the sequence, Y = N+. Given a sequence
z1, z2, . . . , zn, yi = minτ>i{τ : zτ = zi}. If the element
is never seen again, we set yi = n + 1. Note that yi is
completely determined by the sequence σ. We use h(xi) to
denote the outcome of the prediction on an element with
feature xi; to simplify notation, we denote it by hi.

3. Algorithms
We now delve deeper into the caching problem, and present
competitive algorithms that use the ML oracle. We first
show that simply trusting the oracle and following its pre-
dictions can lead to poor results even when the oracle is rela-
tively good. This motivates the need to combine the oracle’s
predictions with classic tools from competitive analysis, we
show how to combine the two and develop a consistent and
robust algorithm.

3.1. Black-box approaches

An immediate way to use the oracle is to treat its output
as the truth. This corresponds to a strategy that evicts the
element that is predicted by h to appear furthest in the future.
This approach, however, can lead to bad competitive ratios,
even when the oracle is quite accurate on average. Consider
the case when k = 2 and there are three elements a, b, c.
The initial configuration of the cache has a, b, at which point
c comes. The actual sequence has length T and, after the
first element, consists of bcbcbcbc.... In contrast, for these
elements, the oracle predicts acbcbcbc..., i.e. it predicts that
a will reappear instantly, but is correct about all future pre-
dictions. The optimal approach in this example has one
cache miss while the algorithm incurs T cache misses, be-
cause it never evicts a. Thus the algorithm has a cache miss
almost every time, leading to an unbounded competitive ra-
tio, even though the average absolute loss is η1/T = 1. It is

Competitive Caching with Machine Learned Advice

tempting to “fix” this approach by evicting elements whose
predicted times have passed; however, one can construct
similar examples there as well (see supplementary material).

The problem is that there is an element that should be re-
moved but the algorithm is tricked into keeping it in the
cache. To deal with this in practice, most popular heuristics
such as LRU (Least Recently Used) and FIFO (First In First
Out) avoid evicting recent elements when some elements
have been dormant for a long time. However, this imposes
a strict eviction policy, and incorporating the information
provided by the oracle is not straightforward.

The above examples highlight the difficulty in finding robust
algorithms, i.e. those that lead to low error when the oracle
error is small. We remark that turning a robust algorithm
into a competitive one can be done in a black box manner,
albeit suboptimally. This is shown by the following theorem
whose proof is deferred to the supplementary material.
Theorem 1. For the caching problem, let A be an α-robust
algorithm and B a γ-competitive algorithm. We can then
create a black-box algorithm ALG that is both 9α-robust
and 9γ-competitive.

While the above approach gives a black-box manner to trans-
form consistent algorithms into consistent and competitive
ones, it is far from efficient or practical. In the next section
we show how to carefully modify a proposed consistent
algorithm to make it more competitive.

3.2. Predictive Marker Algorithm

We now present our main technical contribution, an oracle-
based adaptation of the Marker algorithm (Fiat et al.,
1991) that achieves a competitive ratio of 2 · min(2 +
2
√
η1/OPT , 2Hk) where OPT is the offline optimum on

the particular instance and Hk = 1+ 1/2+ · · ·+ 1/k denotes
the k-th Harmonic number.

Classic Marker algorithm We begin by recalling the
Marker algorithm and the analysis of its performance. The
algorithm runs in phases. At the beginning of each phase,
all elements are unmarked. When an element arrives and is
already in the cache, the element is marked. If it is not in
the cache, a random unmarked element is evicted, the newly
arrived element is placed in the cache and is marked. Once
all elements are marked and a new cache miss occurs, the
phase ends and we unmark all of the elements.

For the purposes of analysis, an element is called clean for
phase r if it appears during phase r, but does not appear
during phase r − 1. In contrast, elements that also appeared
in the previous phase are called stale. The marker algo-
rithm has competitive ratio of 2Hk − 1 and the analysis is
tight (Achlioptas et al., 2000). We use a slightly simpler
analysis that achieves competitive ratio of 2Hk below. The
crux of the upper bound lies in two lemmas. The first relates

the performance of the optimal offline algorithm to the num-
ber of clean elements L by proving that OPT ≥ 2L (Lemma
1). The second comes from bounding the performance of
the algorithm as a function of the number of clean elements
by proving that it is at most L ·Hk in expectation (Lemma
2). For completeness, we provide the proofs of the lemmas
in the supplementary material.
Lemma 1 ((Fiat et al., 1991)). Let L be the number of clean
elements. Then the optimal algorithm suffers at least L/2
cache misses.
Lemma 2 ((Fiat et al., 1991)). Let L be the number of clean
elements. Then the expected number of cache misses of
the Marker algorithm is L ·Hk when randomly tie-breaking
across unmarked elements.

Predictive Marker. Delving into the analysis of the Marker
algorithm, observe that it never evicts marked elements
when there are unmarked elements present. This gives an
upper bound of O(k) on the competitive ratio for any tie-
breaking rule that selects an unmarked element for eviction.

It is natural then to use the predictions made by the oracle
for tie-breaking, specifically by evicting the element whose
predicted next appearance time is furthest in the future.
When the oracle is perfect (and has zero error), then stale
elements never result in cache misses, and therefore, by
Lemma 1, the algorithm has a competitive ratio of 2. On the
other hand, by using the Marker algorithm and not blindly
trusting the oracle, guarantees a worst-case ratio of O(k).

This is a promising direction, however an imperfect oracle
may lead to high competitive ratios and perform much worse
than the best offline algorithm. The problem arises when
the errors of the oracle are concentrated in one phase, here
the above algorithm may have a high competitive ratio. We
therefore focus on creating a tie-breaking rule that gives a
2-consistent algorithm: as the oracle error goes to 0, the
competitive ratio goes towards 2 while, at the same time
being (approximately) competitive, i.e. keeping a worst-
case O(Hk) competitive ratio.

To achieve this, we combine the oracle-based tie-breaking
rule with the random tie-breaking rule. Suppose an element
e is evicted during the phase. We construct a blame graph
to understand the reason why e is evicted. There are two
cases: either it was evicted when a clean element c arrived,
in which case we add a directed edge from e to c, or it
was evicted because a stale element s arrived, but s was
previously evicted. In this case, we add a directed edge
from e to s. Note that the graph is always a set of chains
(paths). The total length of the chains represents the total
number of evictions incurred by the algorithm during the
phase, whereas the number of distinct chains represents the
number of clean elements; we call the lead element in a
chain, its representative and denote it by ω(r, c), where r is
the index of the phase and c the index of the chain.

Competitive Caching with Machine Learned Advice

Our modification is simple—when a stale element arrives,
it evicts a new element in an oracle-based manner if the
corresponding clean element has slack (its chain has length
less than Hk). Otherwise it evicts a random unmarked
element. (In expectation this results in at most Hk elements
added to any one chain during the course of the phase by the
analysis of Lemma 2). This guarantees that the competitive
ratio is at most 4Hk in expectation; we make the argument
formal in Theorem 2. The crux to the analysis is the fact that
the chains are disjoint, thus the interactions between eviction
can be decomposed cleanly. We give a formal version of the
algorithm in Algorithm 1.

3.3. Analysis

To analyze the performance of the proposed algorithm, we
begin with a technical definition that captures how slowly a
loss function ` can grow. Lemma 3 instantiates this quantity
for classical losses (for a proof, see supplementary material).

Definition 4. Let AT = a1, a2, . . . , aT , be a sequence of
increasing integers of length T , that is a1 < a2 < . . . < aT ,
and BT = b1, b2, . . . , bT a sequence of non-decreasing
reals of length T , b1 ≤ b2 ≤ . . . ≤ bT . For a fixed loss
function `, we define its spread S` : N+ → R+ as:

S`(m) = min{T : min
AT ,BT

`(AT , BT) ≥ m}

Lemma 3. For absolute loss, `1(A,B) =
∑
i |ai − bi|, the

spread of `1 is S`1(m) ≤
√

4m+ 1.
For squared loss, `2(A,B) =

∑
(ai− bi)2, the spread of `2

is S`2(m) ≤ 3
√

14m.

We now provide the main theorem of the paper.

Theorem 2. Suppose that the oracle has total loss η under a
loss function ` with spread bounded by S`. If S` is concave,
then the competitive ratio is at most

2 ·min
(

1 + 2S`

(η

OPT

)
, 2Hk

)
.

Proof. Fix a phase of the marker algorithm, consider a par-
ticular clean element c that arrives and evicts a stale element
s1. Until s1 arrives again, the effect of this eviction is non-
existent (as no other element is affected). When s1 arrives,
it evicts another element which we call s2, and so on. Con-
sider the clean chain consisting of c, s1, s2, For the
first Hk elements of this chain, the predicted times are in
weakly decreasing order since the reason why we evicted
si instead of sj with i < j was because the predicted time
of the former was no earlier than the one of the latter (as
both of them were unmarked at the time since sj was also
later evicted within the phase). However, the actual arriving
times are in increasing order. Therefore, if the total loss on
these elements in the chain is at most ε, then the number of
stale elements (and the number of misses) is at most S`(ε).

Algorithm 1 Predictive Marker with oracle-based and ran-
dom tie-breaking based on clean chains
Require: Cache C of size k initially empty (C ← ∅).

1: Initialize phase counter r ← 1, unmark all elements
(M← ∅), and set round i← 1.

2: Initialize clean element counter `r ← 0 and clean set
S ← ∅.

3: Element zi arrives, and the oracle gives a prediction hi.
Save prediction p(zi)← hi.

4: if zi results in cache hit (zi ∈ C or |C| < k) then
5: Add to cache C ← C ∪ {zi} and go to step 26
6: end if
7: if the cache is full and all cache elements are marked

(|M| = k) then
8: Increase phase (r ← r + 1), initialize clean counter

(`r ← 0), save current cache (S → C) as the set of
elements that are possibly stale in the new phase, and
unmark elements (M← ∅).

9: end if
10: if zi is a clean element (zi /∈ S) then
11: Increase number of clean elements: `r ← `r + 1.
12: Initialize size of new clean chain: n(r, `r)← 1.
13: Select to evict unmarked element with highest pre-

dicted time: e = arg maxz∈C−M p(z).
14: end if
15: if zi is a stale element (zi ∈ S) then
16: It is the representative of some clean chain. Let c be

this clean chain: zi = ω(r, c).
17: Increase length of clean chain n(r, c)← n(r, c) + 1.
18: if n(r, c) ≤ Hk then
19: Select to evict unmarked element with highest pre-

dicted time: e = arg maxz∈C−M p(z).
20: else
21: Select to evict a random unmarked element e ∈

C −M.
22: end if
23: Update cache by evicting e: C ← C ∪ {zi} − {e}.
24: Set e as representative for the chain: ω(r, c)← e.
25: end if
26: Mark incoming element (M ← M∪ {zi}), increase

round (i← i+ 1), and go to step 3.

If this is higher than Hk, then the algorithm switched to ran-
dom eviction which by Lemma 2 results in at most another
Hk stale elements in expectation. As a result, the expected
number of stale elements is never more than 2Hk and is less
than S`(ε) when this quantity is less than Hk; it is therefore
upper bounded by min(2 · S`(ε), 2Hk).

Let L be the number of clean elements (and therefore also
chains). Since both S` and the minimum operator are con-
cave functions, the way to maximize the number of stale
elements in each chain is to apportion the total error, η,

Competitive Caching with Machine Learned Advice

equally across all of the chains. Thus there are L chains
with error η/L each. The total number of stale elements is
then: L ·min(2 · S`(η/L), 2Hk). By Lemma 1, L/2 ≤ OPT,
which implies the result since also trivially OPT ≤ L.

We now specialize the results to absolute and squared losses.
Corollary 1. The competitive ratio of Algo-
rithm 1 when the oracle has `1 error η1 is at most
min

(
2 + 2

√
4·η1/OPT + 1, 4Hk

)
.

Corollary 2. The competitive ratio of Algorithm 1
when the oracle has squared loss η2, is at most
min

(
2 + 2 3

√
14·η2/OPT, 4Hk

)
.

3.4. Discussion and Extensions

We have shown how to tie the loss of the machine learned or-
acle h to the performance of the Predictive Marker, and gave
a bound on the interplay of the two. We explore additional
extensions to the algorithm below, giving a general trade-off
between its robustness and competitiveness, as well as a
tighter analysis on its performance. Finally, we show how
to view the LRU algorithm as a variant of Predictive Marker
with a specific, easy to compute objective function.

Robustness vs. Competitiveness. One parameter in Al-
gorithm 1 is the length of the chain when the algorithm
switches from following the oracle to random unmarked
evictions. If the switch occurs at length γHk, this provides
a trade-off between competitiveness and robustness.
Theorem 3. Suppose that, for some γ > 0, the algorithm
uses γHk as switching point, the oracle has total loss η
under a loss function ` with spread bounded by S`. If S` is
concave, then the competitive ratio is at most

2 ·min

(
1 +

1 + γ

γ
S`

(η

OPT

)
, (1 + γ)Hk

)
.

Note that setting γ close to 0 makes the algorithm more
conservative (switching to random evictions earlier), and
thus reduces the competitive ratio when the oracle error is
large. On the other hand, setting γ high has the algorithm
trusting the oracle more, and reduces the competitive ratio
when the oracle error is small.

Tighter Analysis. Standard loss functions like absolute and
squared loss are defined on a per element basis. On the
other hand, we can get a tighter bound on the performance
of Predictive Marker, if we compare the sequence generated
by the oracle with the ground truth.

Let (e, i) be the pair that corresponds to the i-th arrival of
element e. Create the sequence AT by putting these pairs in
increasing order of their true arrival time and BT by putting
them in increasing order of their predicted arrival time. The
edit distance, `ed, between these two sequences precisely
captures the performance of Predictive Marker.

Theorem 4. The competitive ratio of Algorithm 1 when the
oracle has `ed error ηed is at most min

(
3 + 2 ηedOPT

, 4Hk

)
Proof. For any clean chain, the firstm ≤ Hk stale elements
are in inverse order in AT and BT ; else they would not be
evicted. Hence these elements are certainly misplaced in the
edit distance metric and contribute error of m− 1. The rest
of the proof follows the same steps as in Theorem 2.

Unifying Framework for Caching. We remark that one
can express the popular Least Recently Used (LRU) algo-
rithm for caching in the framework above. Suppose for an
element that appears at time i we predict its next appearance
at time −i. Then the element that is predicted to appear
furthest in the future is exactly the one that has appeared
least recently. PredictiveMarker with these predictions ex-
actly simulates LRU when the switching thrshold is k. The
reason is that just like Marker, such an implementation of
LRU never removes a marked element (that appeared more
recently) when an ummarked element (that appeared earlier)
is present. This implies that we can make LRU more robust
by combining it with random eviction in case there are many
errors accumulated in some phase.

Similarly, the Classic Marker algorithm can be written in the
framework with any predictor and switching threshold of 0
(implyihgs that we immediately move to random eviction).

4. Experiments
In this section we evaluate our approach on real world
datasets, empirically demonstrate its dependence on the
errors in the oracle, and compare it to standard baselines,
like LRU and Marker.

Datasets and Metrics. We explore two datasets from differ-
ent domains to show the wide applicability of our approach.
• BK is data extracted from BrightKite, a now defunct

social network. We consider sequences of checkins,
and extract the top 100 users with the longest non-
trivial check in sequences—those where the optimum
policy has at least 50 misses. This dataset is publicly
available at (Cho et al., 2011; Bri). Each user sequence
represents an instance of the caching problem.

• Citi is data extracted from CitiBike, a popular bike
sharing platform operating in New York City. We
consider citi bike trip histories, and extract stations
corresponding to starting points of each trip. We create
12 sequences, one for each month of 2017 for this
dataset. We consider only the first 25,000 events in
each file. The dataset is publicly available at (Cit).

We give additional statistics about each datasets in Table 1.

Our main metric for evaluation will be the competitive ratio
of the algorithm, defined as the number of misses incurred

Competitive Caching with Machine Learned Advice

Dataset Num Sequences Sequence Length Unique Elements
BK 100 2,101 67– 800

Citi 24 25,000 593 – 719

Table 1. Number of sequences; sequence length; min and max
number of elements for each dataset.

divided by the optimum number of misses.

Predictions. We run experiments with both synthetic pre-
dictions to showcase the sensitivity of our methods to learn-
ing errors, and with preditions using an off the shelf classi-
fier, published previously (Anderson et al., 2014).
• Synthetic Predictions. For each element, we first

compute the true next arrival time y(t), setting it to
n+1 if it does not appear in the future. To simulate the
performance of an ML system, we set h(t) = y(t) + ε,
where ε is drawn i.i.d. from a lognormal distribution
with mean parameter 0 and standard deviation σ. We
chose the lognormal distribution of errors to demon-
strate the sensitivity to rare but large failures of the
learning algorithm. Finally, since we only compare the
relative predicted times for each method, adding a bias
term to the predictor would not change the results.

• PLECO Predictions. In their work, Anderson et al.
(2014) developed a simple framework to model repeat
consumption, and published the parameters of their
PLECO (Power Law with Exponential Cut Off) model
for the BrightKite dataset. While their work focused
on predicting the relative probabilities of each element
(re)appearing in the subsequent time step, we modify it
to predict the next time an element will appear. Specif-
ically, we set h(t) = t+ 1/p(t), where p(t) represents
the probability that element that appeared at time t will
re-appear at time t+ 1.

Algorithms. We use multiple algorithms for evaluation.
• LRU is the Least Recently Used policy that is wildly

successful in practice.
• Marker is the classical algorithm of Fiat et al. (1991).
• PredictiveMarker is the algorithm we develop in this

work. We set the switching cost to k, and therefore
never switch to random evictions.

• Blind Oracle is the algorithm of Section 3.1, evicting
the element predicted to appear furthest in the future.

4.1. Results

We set k = 10, and summarize the synthetic results on the
BK dataset in Figure 1. Observe that the performance of Pre-
dictive Marker is consistently better than LRU and standard
Marker, and degrades slowly as the average error increases,
as captured by the theoretical analysis. Second, we empiri-
cally verify that blindly trusting the oracle works well when
the error is very low, but quickly becomes incredibly costly.

Figure 1. Ratio of average number of evictions as compared to
optimum for varying levels of oracle error.

Algorithm BK Citi
Blind Oracle 2.049 2.023

LRU 1.280 1.859
Marker 1.310 1.869

Predictive Marker 1.266 1.810

Table 2. Competitive Ratios using PLECO model on both datasets.

The results using the PLECO predictor are shown in Ta-
ble 2, where we keep k = 10 for BK and set k = 100 for
Citi; the ranking of the methods is not sensitive to cache
size. We can again see that the Predictive Marker algorithm
outperforms all othersn and is 2.5% better than the next
best method, LRU. While the gains appear modest, they
are statistically significant at p < 0.001. Moreover, the
off-the-shelf PLECO model was not tuned or optimized for
predicting the next appearance of each element.

5. Conclusion
In this work, we introduce the study of online algorithms
with the aid of machine learned oracles. This combines
the empirical success of machine learning with the rigorous
guarantees of online algorithms. We model the setting for
the classical caching problem and give an oracle-based algo-
rithm whose competitive ratio is directly tied to the accuracy
of the machine learned oracle.

Our work opens up two avenues for future work. On the
theoretical side, it would be interesting to see similar oracle-
based algorithms for other online settings. On the practical
side, our caching algorithm shows how we can use machine
learning in a safe way, avoiding problems caused by rare
wildly inaccurate predictions. At the same time, our ex-
perimental results show that even with simple predictors,
our algorithm provides improvement compared to LRU. In
essence, we have reduced the worst case performance of the
caching problem to that of finding a good (on average) pre-
dictor. This opens up the door for practical algorithms that
yield provably good performance without being tailored to-
wards the worst-case or specific distributional assumptions.

Competitive Caching with Machine Learned Advice

Acknowledgements
The authors thank Andrés Muñoz-Medina and Éva Tardos
for valuable discussions and an anonymous reviewer for
pointing towards the direction of Theorem 1. The first
author was supported under NSF grant CCF-1563714. Part
of the work was done while the author was interning at
Google.

References
Brightkite data. http://snap.stanford.edu/
data/loc-brightkite.html.

Citibike system data. http://https://www.
citibikenyc.com/system-data.

Achlioptas, D., Chrobak, M., and Noga, J. Competi-
tive analysis of randomized paging algorithms. Theor.
Comput. Sci., 234(1-2):203–218, 2000. doi: 10.1016/
S0304-3975(98)00116-9. URL https://doi.org/
10.1016/S0304-3975(98)00116-9.

Ailon, N., Chazelle, B., Clarkson, K. L., Liu, D., Mulzer,
W., and Seshadhri, C. Self-improving algorithms. SIAM J.
Comput., 40(2):350–375, 2011. doi: 10.1137/090766437.
URL https://doi.org/10.1137/090766437.

Albers, S., Favrholdt, L. M., and Giel, O. On paging with
locality of reference. In Proceedings of the Thiry-fourth
Annual ACM Symposium on Theory of Computing, STOC
’02, pp. 258–267, New York, NY, USA, 2002. ACM.
ISBN 1-58113-495-9. doi: 10.1145/509907.509949.
URL http://doi.acm.org/10.1145/509907.
509949.

Anderson, A., Kumar, R., Tomkins, A., and Vassilvitskii, S.
The dynamics of repeat consumption. In Proceedings of
the 23rd International Conference on World Wide Web,
WWW ’14, pp. 419–430, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2744-2. doi: 10.1145/2566486.
2568018. URL http://doi.acm.org/10.1145/
2566486.2568018.

Borodin, A. and El-Yaniv, R. Online Computation and
Competitive Analysis. Cambridge University Press, New
York, NY, USA, 1998. ISBN 0-521-56392-5.

Bubeck, S. and Slivkins, A. The best of both worlds:
Stochastic and adversarial bandits. In COLT 2012 -
The 25th Annual Conference on Learning Theory, June
25-27, 2012, Edinburgh, Scotland, pp. 42.1–42.23, 2012.
URL http://www.jmlr.org/proceedings/
papers/v23/bubeck12b/bubeck12b.pdf.

Cho, E., Myers, S. A., and Leskovec, J. Friendship and
mobility: User movement in location-based social net-
works. In Proceedings of the 17th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and

Data Mining, KDD ’11, pp. 1082–1090, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0813-7. doi:
10.1145/2020408.2020579. URL http://doi.acm.
org/10.1145/2020408.2020579.

Denning, P. J. The working set model for program behavior.
Commun. ACM, 11(5):323–333, May 1968. ISSN 0001-
0782. doi: 10.1145/363095.363141. URL http://
doi.acm.org/10.1145/363095.363141.

Fiat, A., Karp, R. M., Luby, M., McGeoch, L. A., Sleator,
D. D., and Young, N. E. Competitive paging al-
gorithms. J. Algorithms, 12(4):685–699, December
1991. ISSN 0196-6774. doi: 10.1016/0196-6774(91)
90041-V. URL http://dx.doi.org/10.1016/
0196-6774(91)90041-V.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Polyzotis,
N. The case for learned index structures. 2017. URL
https://arxiv.org/abs/1712.01208.

Mahdian, M., Nazerzadeh, H., and Saberi, A. Online op-
timization with uncertain information. ACM Trans. Al-
gorithms, 8(1):2:1–2:29, 2012. doi: 10.1145/2071379.
2071381. URL http://doi.acm.org/10.1145/
2071379.2071381.

McGregor, A. Graph stream algorithms: A survey. SIGMOD
Rec., 43(1):9–20, May 2014. ISSN 0163-5808. doi:
10.1145/2627692.2627694. URL http://doi.acm.
org/10.1145/2627692.2627694.

Medina, A. M. and Vassilvitskii, S. Revenue opti-
mization with approximate bid predictions. CoRR,
abs/1706.04732, 2017. URL http://arxiv.org/
abs/1706.04732.

Mirrokni, V. S., Gharan, S. O., and Zadimoghaddam, M.
Simultaneous approximations for adversarial and stochas-
tic online budgeted allocation. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pp. 1690–1701, 2012. URL http://portal.
acm.org/citation.cfm?id=2095250&CFID=
63838676&CFTOKEN=79617016.

Motwani, R. and Raghavan, P. Randomized Algorithms.
Cambridge University Press, New York, NY, USA, 1995.
ISBN 0-521-47465-5, 9780521474658.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips,
T., Ebner, D., Chaudhary, V., Young, M., Crespo, J.-
F., and Dennison, D. Hidden technical debt in machine
learning systems. In Proceedings of the 28th International
Conference on Neural Information Processing Systems,
NIPS’15, pp. 2503–2511, Cambridge, MA, USA, 2015.
MIT Press. URL http://dl.acm.org/citation.
cfm?id=2969442.2969519.

http://snap.stanford.edu/data/loc-brightkite.html
http://snap.stanford.edu/data/loc-brightkite.html
http://https://www.citibikenyc.com/system-data
http://https://www.citibikenyc.com/system-data
https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1137/090766437
http://doi.acm.org/10.1145/509907.509949
http://doi.acm.org/10.1145/509907.509949
http://doi.acm.org/10.1145/2566486.2568018
http://doi.acm.org/10.1145/2566486.2568018
http://www.jmlr.org/proceedings/papers/v23/bubeck12b/bubeck12b.pdf
http://www.jmlr.org/proceedings/papers/v23/bubeck12b/bubeck12b.pdf
http://doi.acm.org/10.1145/2020408.2020579
http://doi.acm.org/10.1145/2020408.2020579
http://doi.acm.org/10.1145/363095.363141
http://doi.acm.org/10.1145/363095.363141
http://dx.doi.org/10.1016/0196-6774(91)90041-V
http://dx.doi.org/10.1016/0196-6774(91)90041-V
https://arxiv.org/abs/1712.01208
http://doi.acm.org/10.1145/2071379.2071381
http://doi.acm.org/10.1145/2071379.2071381
http://doi.acm.org/10.1145/2627692.2627694
http://doi.acm.org/10.1145/2627692.2627694
http://arxiv.org/abs/1706.04732
http://arxiv.org/abs/1706.04732
http://portal.acm.org/citation.cfm?id=2095250&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095250&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095250&CFID=63838676&CFTOKEN=79617016
http://dl.acm.org/citation.cfm?id=2969442.2969519
http://dl.acm.org/citation.cfm?id=2969442.2969519

Competitive Caching with Machine Learned Advice

Sleator, D. D. and Tarjan, R. E. Amortized efficiency
of list update and paging rules. Commun. ACM, 28
(2):202–208, February 1985. ISSN 0001-0782. doi:
10.1145/2786.2793. URL http://doi.acm.org/
10.1145/2786.2793.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Er-
han, D., Goodfellow, I., and Fergus, R. Intriguing
properties of neural networks. In International Confer-
ence on Learning Representations, 2014. URL http:
//arxiv.org/abs/1312.6199.

http://doi.acm.org/10.1145/2786.2793
http://doi.acm.org/10.1145/2786.2793
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199

