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1. DEMO: Differential Evolution for
Multi-Objective Optimization

The DEMO (Differential Evolution for Multi-Objective,
Robič & Filipič (2005)) algorithm is used for the multi-
objective optimization of acquisition functions, we briefly
introduce the algorithm in this section. It should be noted
that other multi-objective optimization algorithms can also
be used for the proposed MACE algorithm.

The DEMO algorithm follows the basic procedure of evo-
lutionary algorithms. Firstly, a set of points are randomly
sampled to form the initial population, at each iteration,
random variations are added to parent population via muta-
tion and crossover to generate the children population, the
parent population and children population are compared to
create the parent population for the next generation. Dur-
ing the evolution, the Pareto front is recorded. The DEMO
algorithm is summarized in Algorithm 1.

Algorithm 1 DEMO
1: Randomly sample the N points in the design space to

form the initial population P 1

2: for t = 1, 2, . . .G do
3: M t = mutation(P t)
4: Ct = crossover(P t, M t)
5: P t+1 = selection(P t, Ct)
6: end for
7: Return the recorded Pareto front

At the i-th iteration, we denote the population as P i ∈
RN×D, where N is the number of population, and D is
the dimension of input variables. The mutated population
M i ∈ RN×D is generated by

M i
j = P i

r1 + F × (P i
r2 − P i

r3), j ∈ {1 . . . NP} (1)

where M i
j means the j-th row of M i, while P i

r1, P i
r2 and

P i
r3 are the r1 -th, r2 -th and r3 -th rows of P i, the r1, r2

and r3 are three integers randomly chosen from [1, N ]. The
scaling factor F ∈ (0, 1) is an algorithm parameter to con-
trol the mutation.

After the mutation, crossover operations are performed to
generated the children population Ci ∈ RN×D. For each
element of Ci, two random numbers rr and ri are generated,
rr is a real-valued number uniformly sampled from (0, 1),

ri is an integer number uniformly sampled from [1, D], the
element of Ci is calculated by

Ci
jk =

{
P i
jk rr < CR and ri 6= k

Ci
jk otherwise. (2)

where the crossover rate CR is an algorithm parameter to
control the crossover.

Now that we have the parent population P i and the children
population Ci, we perform selection to generate the new
population P i+1. Firstly, an empty archive is created, we
perform pair-wise compairsion between parents and chil-
dren, if one parent solution dominates its child solution, the
parent solution is added into the archive; if the child solution
dominates its parent, the child is added into the archive; if
the parent and its child don’t dominate each other, both the
parent and the child are added into the archive. After the
pair-wise compairsion, non-dominated sorting(Deb et al.,
2002) is performed to select G solutions as the parent pop-
ulation of the next generation. The non-dominated sorting
method defines a complete order between a group of solu-
tions, details of the non-dominated sorting can be seen in
(Deb et al., 2002).

As has been mentioned, four algorithm parameters are to
be set for the DEMO algorithm: the population size N ,
the number of generations G, the scaling factor F and the
crossover rate CR. We set N = 100, G = 250, F = 0.5
and CR = 0.3 for all the experiments performed in the
paper.

2. Additional Experiments with Varied Batch
Sizes

We performed additional experiments with varied batch
sizes B = 2, B = 3 and B = 5, the results for the analyti-
cal benchmark functions are shown in Table 1, Table 2 and
Table 3. The optimization results of the operational amplifier
are listed in Table 4, the optimization results of the class-E
power amplifier are given in Table 5. With varied batch
sizes, the proposed MACE method remain competitive com-
pared with the state-of-the-art batch Bayesian optimization
methods.
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Table 1. Statistics of the regrets of the benchmark functions with batch size B = 2

Algorithm MACE BLCB EI-LP QKG QEI

Ackley 1.15 ± 0.646 1.7 ± 0.85 0.507 ± 0.408 4.31 ± 1.81 3.07 ± 0.786
Alpine1 1.38 ± 0.768 3.23 ± 1.03 1.55 ± 0.689 3.17 ± 0.749 2.4 ± 0.904
Branin 5.6e-6 ± 1.03e-5 1.86e-4 ± 2.65e-4 0.0257 ± 0.0395 0.21 ± 0.159 8.27e-4 ± 1.56e-3
Eggholder 116 ± 65.4 132 ± 66.2 82.7 ± 51.6 115 ± 78.3 104 ± 78.4
Hartmann6 0.0479 ± 0.0584 0.0719 ± 0.0587 0.161 ± 0.301 0.257 ± 0.0823 0.178 ± 0.128
Rosenbrock 1.05e-3 ± 0.0011 5.56e-3 ± 9.28e-3 8.37 ± 5.63 9.41 ± 10.7 10.3 ± 8.52
Ackley10D 2.75 ± 0.497 3.13 ± 0.723 18.5 ± 1.02 18.4 ± 0.943 18.8 ± 0.608
Rosenbrock10D 223 ± 104 552 ± 223 1.1e+03 ± 496 957 ± 439 757 ± 405

Table 2. Statistics of the regrets of the benchmark functions with batch size B = 3

Algorithm MACE BLCB EI-LP QKG QEI

Ackley 1.37 ± 1.39 1.71 ± 1.02 0.216 ± 0.148 5.49 ± 1.94 2.34 ± 0.788
Alpine1 1.03 ± 0.746 2.63 ± 1.2 1.1 ± 0.376 3.18 ± 0.225 2.25 ± 0.42
Branin 2.85e-5 ± 3.18e-5 8.14e-5 ± 1.27e-4 0.0344 ± 0.0183 0.247 ± 0.188 5.21e-5 ± 1.35e-4
Eggholder 65.3 ± 62.9 82.6 ± 32.2 65.9 ± 43.3 117 ± 79.2 81.7 ± 63.1
Hartmann6 0.012 ± 0.0359 0.0477 ± 0.0584 0.0489 ± 0.0531 0.335 ± 0.188 0.189 ± 0.108
Rosenbrock 9.46e-4 ± 7.75e-4 0.00148 ± 0.00212 3.78 ± 3.4 4.28 ± 5.5 5.44 ± 4.21
Ackley10D 3.05 ± 0.682 3.05 ± 0.431 17.6 ± 3.53 18.5 ± 0.731 18.6 ± 0.438
Rosenbrock10D 208 ± 92.5 389 ± 187 653 ± 473 695 ± 307 953 ± 410

Table 3. Statistics of the regrets of the benchmark functions with batch size B = 5

Algorithm MACE BLCB EI-LP QKG QEI

Ackley 1.7 ± 1.02 1.38 ± 0.836 0.105 ± 0.0978 5.27 ± 1.38 2.16 ± 1.11
Alpine1 0.654 ± 0.317 1.68 ± 1.26 0.766 ± 0.441 3.21 ± 0.497 2.05 ± 0.341
Branin 1.26e-5 ± 1.81e-5 2.99e-5 ± 3.42e-5 0.0144 ± 0.0154 0.163 ± 0.163 2.02e-5 ± 5.21e-5
Eggholder 74.1 ± 74.3 61.1 ± 33.5 63.5 ± 94.3 71 ± 29.4 49.1 ± 25.8
Hartmann6 0.0477 ± 0.0584 0.0358 ± 0.0546 0.0552 ± 0.0546 0.47 ± 0.221 0.198 ± 0.105
Rosenbrock 5.48e-4 ± 8.12e-4 9.39e-4 ± 6.83e-4 2.72 ± 1.97 3.42 ± 4.8 6.69 ± 5.34
Ackley10D 2.63 ± 0.486 3.05 ± 0.319 15.7 ± 5.69 18.1 ± 0.476 18.1 ± 0.653
Rosenbrock10D 81.9 ± 22.9 348 ± 83.7 645 ± 470 893 ± 393 705 ± 314

Table 4. Optimization Results of the Operational Amplifier with B = 2, B = 3 annd B = 5

Algorithm MACE BLCB EI-LP

B=2 -689 ± 4.37 -649 ± 28.8 -627 ± 48.5
B=3 -690 ± 0.518 -672 ± 20.4 -621 ± 45.2
B=5 -690 ± 0.0251 -684 ± 6.86 -626 ± 49

Table 5. Optimization Results of the class-E Power Amplifier with B = 2, B = 3 annd B = 5

Algorithm MACE BLCB EI-LP

B=2 -4.13 ± 0.207 -4.01 ± 0.208 -3.65 ± 0.312
B=3 -4.45 ± 0.326 -4.17 ± 0.163 -3.87 ± 0.306
B=5 -4.26 ± 0.18 -4.17 ± 0.111 -4.18 ± 0.222
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