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Abstract
Bayesian optimization methods are promising for
the optimization of black-box functions that are
expensive to evaluate. In this paper, a novel batch
Bayesian optimization approach is proposed. The
parallelization is realized via a multi-objective
ensemble of multiple acquisition functions. In
each iteration, the multi-objective optimization of
the multiple acquisition functions is performed
to search for the Pareto front of the acquisition
functions. The batch of inputs are then selected
from the Pareto front. The Pareto front represents
the best trade-off between the multiple acquisition
functions. Such a policy for batch Bayesian opti-
mization can significantly improve the efficiency
of optimization. The proposed method is com-
pared with several state-of-the-art batch Bayesian
optimization algorithms using analytical bench-
mark functions and real-world analog integrated
circuits. The experimental results show that the
proposed method is competitive compared with
the state-of-the-art algorithms.

1. Introduction
The advancement of modern society is driven by the de-
velopment of Integrated Circuits (IC). Unlike the digital
circuits where the design flow is already highly automated,
the automation of analog circuit design is still a challenging
problem.

Traditionally, the design parameters of analog circuits like
widths and lengths of transistors are manually calculated
by designers with their experience and the understanding
of the design specifications. However, due to the progress
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of IC manufacture technology forecasted by Moore’s law,
the circuit devices become more and more complicated, and
the parasitic effect of the circuits can no longer be ignored.
On the other hand, the demands for high-performance, low-
power analog circuits are increasing. It is much more dif-
ficult to meet the performance and time-to-market require-
ments with manual circuit design. Automated analog circuit
design has thus attracted much research interest in the past
decade (Rutenbar et al., 2007).

The analog circuit design automation problems can be for-
mulated as optimization problems. The aim is to find the
optimal design parameters that provide the best circuit per-
formance, which can be represented by a figure of merit
(FOM) real-valued function. Prior works about analog cir-
cuit optimization include offline model-based approaches
(Colleran et al., 2003; Daems et al., 2003; Wang et al., 2014)
and simulation-based approaches. The offline model-based
methods try to build global models of the FOM via man-
ual calculation or regression with simulated data and then
optimize the cheap-to-evaluate models. The problem with
this approach is that the accurate models are usually hard to
get. For example, in Wang et al. (2014), 100,000 randomly
simulated points are used to train a sparse polynomial model
for an amplifier circuit with ten design parameters.

Simulation-based methods, instead, treat the performances
of the circuits as black-box functions. The performances
are obtained from circuit simulations. Global optimization
algorithms are directly applied to the black-box functions.
For simulation-based circuit optimization methods, meta-
heuristic algorithms (Phelps et al., 2000; Liu et al., 2009)
are widely used. Although these algorithms can explore the
whole design space, they have relatively low convergence
rate. When the circuit simulation takes a long time, both
model-based and simulation-based approaches can be very
time-consuming.

In recent years, the Gaussian process (GP) (Rasmussen,
2006) model has been introduced for the automated design
of analog circuits to reduce the required number of circuit
simulations. In Liu et al. (2014), GP is combined with differ-
ential evolution algorithm. Recently, Bayesian optimization
(BO) (Shahriari et al., 2016) algorithm has also been ap-
plied for analog circuit optimization. In Lyu et al. (2017),
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Bayesian optimization algorithm is firstly introduced for the
single- and multi-objective optimization of general analog
circuits and has shown to be much more efficient compared
with other simulation-based approaches. In Wang et al.
(2017), Bayesian optimization algorithm is combined with
adaptive Monte-Carlo sampling to optimize the yield of
analog circuits and static random-access memory (SRAM).

Bayesian optimization algorithm is a well-studied algorithm
and has demonstrated to be promising for the automated
design of analog circuits. However, the standard Bayesian
optimization algorithm is sequential. It chooses only one
point at each iteration by optimizing the acquisition func-
tion. It is often desirable to select a batch of points at each
iteration. The sequential property of Bayesian optimiza-
tion limits its further applications in multi-core computer
systems.

Bayesian optimization algorithm has been extended to en-
able batch selection. Some prior works, like the qEI (Cheva-
lier & Ginsbourger, 2013), qKG (Wu & Frazier, 2016) and
parallel predictive entropy search (PPES) (Shah & Ghahra-
mani, 2015) approaches, consider to search for the optimal
batch selection for a specific acquisition function. These
methods usually involve some approximations or Monte-
Carlo sampling, and thus scale poorly as the batch size
increases. Other works, including the simulation matching
(SM) (Azimi et al., 2010) method, the batch-UCB (BUCB,
BLCB for minimization problems) (Desautels et al., 2014)
method, the parallel UCB with pure exploration (GP-UCB-
PE) (Contal et al., 2013) method, and the local penalization
(LP) (González et al., 2016) method, adopted the greedy
strategies that select individual points until the batch is filled.

All the batch Bayesian optimization algorithms mentioned
above choose to use single acquisition function. And
except for the SM method (Azimi et al., 2010) and LP
method (González et al., 2016) which can use arbitrary ac-
quisition function, other parallelization methods rely on a
specific acquisition function. The UCB acquisition function
must be used for BUCB and GP-UCB-PE, and the knowl-
edge gradient (KG) acquisition function must be used for
the qKG algorithm. As is stated in Hoffman et al. (2011),
no single acquisition function can always outperform other
acquisition functions. Relying on one acquisition function
may result in poor performance.

In this paper, we propose to parallelize Bayesian optimiza-
tion algorithm via the Multi-objective ACquisition Ensem-
ble (MACE). The proposed MACE method exploits the dis-
agreement between different acquisition functions to enable
batch selection. At each iteration, after the GP model is up-
dated, multiple acquisition functions are selected. We then
perform multi-objective optimization to find the Pareto front
(PF) of the acquisition functions. The PF represents the best
trade-off between these acquisition functions. When batch

evaluations are possible, we can sample multiple points on
the PF to accelerate the optimization.

The MACE algorithm is tested using several analytical
benchmark functions and two real-world analog circuits,
including an operational amplifier with ten design param-
eters and a class-E power amplifier with twelve design pa-
rameters. The BLCB method (Desautels et al., 2014), local
penalization method with expected improvement acquisition
function (EI-LP) (González et al., 2016), qEI (Chevalier &
Ginsbourger, 2013) and qKG (Wu & Frazier, 2016) methods
are compared with MACE. The proposed MACE method
achieved competitive performance when compared with the
state-of-the-art algorithms listed in the paper.

2. Background
In this section, we will present the problem formulation of
analog circuit optimization, and review the background of
Gaussian process regression and Bayesian optimization.

2.1. Problem Formulation

When designing integrated circuits, the designers have to de-
cide what circuit topology to use and then set the corrspond-
ing design parameters. In this work, we handle the scenarios
where the topology of the analog circuit is fixed. This is
practical as there are usually a lot of classical topologies
for a given design task, so unlike digital circuits, choosing
appropriate topology is relatively easy.

Once the circuit topology is fixed, the designer has to choose
the appropriate design parameters according to the specifi-
cations and the circuit device model. What we want to do is
automatically searching for the optimal design parameters.
This problem can then be formulated as a bound-constrained
black-box optimization problem:

minimize FOM(x), (1)

where x ∈ D is the vector of design variables, FOM(x) is
the objective constructed from the design specifications, the
FOM(x) can be deterministric or noisy depending on the
design specifications. Given the design parameters x, the
FOM value can be obtained by commercial circuit simula-
tors like HSPICE or Spectre.

2.2. Gaussian Process Regression

The objective function FOM(x) in (1) can be approximated
by Gaussian process (GP) model (Rasmussen, 2006). The
GP model is the most commonly used model for Bayesian
optimization. The advantage of GP is that it provides a
well-calibrated uncertainty of prediction. GP is character-
ized by a mean function m(x) and a covariance function
k(x,x′). In this work, we use squared-exponential ARD
kernel (Rasmussen, 2006), and a constant mean function
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m(x) = µ0 for all our experiments. By default, we assume
the objective function evaluations are influenced by i.i.d.
noise εt ∼ N(0, σ2

n) and set the noise level σ2
n as a hyper-

parameter. The introduction of the i.i.d noise also helps to
improve the numerical stability.

Denote the training set as {X,y} where X =
{x1, . . . ,xN} and y = {y1, . . . , yN}, given a new data
point x, the prediction of f(x) is not a scalar value, but a
predictive distribution

f(x) ∼ N(µ(x), σ2(x)), (2)

where µ(x) and σ2(x) can be expressed as

µ(x) = µ0 + k(x, X)[K + σ2
nI]−1(y − µ0)

σ2(x) = k(x,x)− k(x, X)[K + σ2
nI]−1k(X,x),

(3)
where k(x, X) = (k(x,x1), . . . , k(x,xN ))T and
k(X,x) = k(x, X)T . The µ(x) can be viewed as the pre-
diction of the function value, while the σ2(x) is a measure
of uncertainty of the prediction.

2.3. Bayesian Optimization

Bayesian optimization (Shahriari et al., 2016) was proposed
for the optimization of expensive black-box functions. It
consists of two essential ingredients, i.e., the probabilistic
surrogate models and the acquisition functions. The proba-
bilistic surrogate models provide predictions with uncertain-
ties. The acquisition functions make use of the predictive
distribution to explore the state space. The procedure of
Bayesian optimization is summarized in Algorithm 1.

Algorithm 1 Bayesian Optimization
Require: Number of initial sampling points Ninit, number

of iterations Niter

1: Randomly sample Ninit points in the design space
2: Construct initial GP model
3: for t = 1, 2, . . . , Niter do
4: Construct the acquisition function
5: Find xt that optimizes the acquisition function
6: Sample yt = f(xt)
7: Update probabilistic surrogate model
8: end for
9: Return best f(x) recorded during iterations

In Bayesian optimization described in Algorithm 1, the ac-
quisition function is used to balance the exploration and
exploitation during the optimization. The acquisition func-
tion considers both the predictive value and the uncertainty.
There are a lot of existing acquisition functions. Examples
include the lower confidence bound (LCB), the probability
of improvement (PI), and the expected improvement (EI).

The LCB function is defined as follows:

LCB(x) = µ(x)− κσ(x), (4)

where the µ(x) and the σ(x) are the predictive value and un-
certainty of GP defined in (3), κ is a parameter that balances
the exploitation and exploration.

Following the suggestion of (Srinivas et al., 2010; Brochu
et al., 2010), the κ in (4) is defined as:

κ =
√
ντt

τt = 2 log(td/2+2π2/3δ),
(5)

where t is the number of current iteration, ν and δ are two
user-defined parameters. We fix ν = 0.5 and δ = 0.05
in this paper for the proposed MACE algorithm and our
implementation of the BLCB algorithm.

The PI and EI functions are defined as

PI(x) = Φ(λ)
EI(x) = σ(x)(λΦ(λ) + φ(λ))

λ =
τ − ξ − µ(x)

σ(x)
,

(6)

where τ is the current best value objective value, and ξ is
a small positive jitter to improvement the ability of explo-
ration. The Φ(.) and φ(.) functions are the CDF and PDF
functions of normal distribution. In our implementation of
the MACE algorithm, we fix ξ = 1e-3.

There are also other acquisition functions, like the knowl-
edge gradient (Scott et al., 2011) function, predictive entropy
search (Hernández-Lobato et al., 2014), and the max-value
entropy search(Wang & Jegelka, 2017). A portfolio of sev-
eral acquisition functions is also possible (Hoffman et al.,
2011).

3. Proposed Batch Bayesian Optimization
Algorithm

We will present the proposed batch Bayesian optimization
algorithm in this section.

3.1. Multi-objective Optimization

Unlike single-objective optimization, there are multiple ob-
jectives to optimize in multi-objective optimization prob-
lems(Marler & Arora, 2004). The multi-objective optimiza-
tion problem is formulated as

minimize f1(x), . . . , fm(x). (7)

The multiple objectives to be optimized can be conflicting
so that it is usually impossible to find a single solution that
is the optimum of all objectives. The goal of multi-objective
optimization algorithms is to approximate the Pareto front of
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Figure 1. Illustration of the multi-objective optimization of acquisition functions

the objectives. A solution x1 is said to dominate x2 if ∀i ∈
{1 . . .m}, fi(x1) ≤ fi(x2) and ∃j ∈ {1 . . .m}, fj(x1) <
fj(x2). A design is Pareto-optimal if it is not dominated
by any other point in the design space and dominates at
least one point. The whole set of the Pareto-optimal points
in the design space is called the Pareto set, and the set of
Pareto-optimal points in the objective space is called the
Pareto front. It is often unlikely to get the whole Pareto
front as there might be infinite points on the Paret front,
multi-objective optimization algorithms try to find a set of
evenly distributed solutions that approximate the true Pareto
front.

There exist many mature multi-objective optimization al-
gorithms, like the non-dominated sorting based genetic
algorithm (NSGA-II) (Deb et al., 2002), and the multi-
objective evolutionary algorithm based on decomposi-
tion (MOEA/D) (Zhang & Li, 2007). In this paper, the
multi-objective optimization based on differential evolution
(DEMO) (Robič & Filipič, 2005) is used to solve multi-
objective optimization problems, but other multi-objective
optimization algorithms can also be applied.

3.2. Batch Bayesian Optimization via Multi-objective
Acquisition Function Ensemble

Each acquisition function represents a unique selection strat-
egy, different acquisition functions may not agree with each
other about where to sample the next point. For example,
the value of LCB function always decreases as the σ(x) in-
creases. However, for the PI function, when σ(x) increases,
the value of PI would decrease when µ(x) < τ , and in-
crease when µ(x) > τ . For the EI function, if the function
is noiseless, the values of EI function at already sampled
points would always be worse than the EI values at any

unsampled locations, while this property does not hold for
the LCB function.

Algorithm 2 Multi-objective Acquisition Ensemble Algo-
rithm
Require: Number of initial sampling points Ninit, number

of iterations Niter, batch size B.
1: Randomly sample Ninit points in the design space
2: Construct initial GP model
3: for t = 1, 2, . . . , Niter do
4: Construct the LCB, EI and PI functions according to

(4) and (6)
5: Find the Pareto front of LCB, EI, PI functions using

the DEMO algorithm
6: Randomly sample B points x1, . . . ,xB from the

Pareto-optimal points
7: Evaluate x1, . . . ,xB to get y1 = f(x1), . . . , yB =

f(xB)
8: Update the GP model
9: end for

10: Return best f(x) recorded during iterations

With multi-objective optimization, the best trade-off be-
tween acquisition functions can be captured by the Pareto
front of these acquisition functions. We can then sample on
the Pareto front to obtain multiple candidate points for the
objective function evaluations.

The proposed MACE algorithm is described in Algorithm 2.
In the proposed MACE algorithm, the LCB, EI, and PI ac-
quisition functions are selected. Other acquisition functions
like KG and PES can also be incorporated into the MACE
framework. In each iteration, the following multi-objective
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Figure 2. Optimization results of the benchmark functions

optimization problem is constructed:

minimize LCB(x), − EI(x), − PI(x). (8)

Then the DEMO multi-objective optimization algo-
rithm (Robič & Filipič, 2005) is applied to solve the multi-
objective problem in (8). Once the Pareto front of LCB, EI
and PI is obtained, the candidate points are then randomly
sampled from the Pareto front.

In Figure 1, we illustrate the proposed MACE algorithm
using an example of a real-world amplifier circuit. The
optimization objective is to maximize the phase margin
(PM) of the amplifier, so the FOM is defined as FOM(x) =
−PM(x). The width of one of its transistor is the design
variable. We sweep the width of the transistor and perform
HSPICE simulations to get the FOM values. The curve of
FOM values is plotted in Figure 1(a) (the blue line). Several
points are randomly sampled from the FOM curve to train
the GP model. The LCB, EI, PI functions and the Pareto
front of the acquisition functions are plotted in Figure 1(b).
We can see from Figure 1(b) that the optimal locations of
the three acquisition functions are different, while their best
trade-off is captured by the Pareto front. The Pareto set that
represents the best trade-off between the three acquisition
functions is the interval [43, 50.4], as plotted in Figure 1(a).
The candidate points for the next batch of evaluations are
randomly sampled from the Pareto set.

4. Experimental Results
The proposed MACE algorithm1 was tested using eight
benchmark functions and two real-world analog circuits.
Four state-of-the-art parallel Bayesian optimization meth-
ods were compared, including the BLCB algorithm (De-
sautels et al., 2014), the local penalization method with EI
acquisition function (EI-LP) (González et al., 2016), the qEI
and qKG methods (Chevalier & Ginsbourger, 2013; Wu &
Frazier, 2016). 2

For the MACE, BLCB, and EI-LP method, the ARD
squared-exponential kernel is used and the GP models are
fitted by maximum likelihood estimations (MLE); for the
qKG and qEI methods, the ARD Matern52 kernels are used,
and the GP hyperparameters are integrated via MCMC sam-
pling. The Matern52 kernel and MCMC integration are the
default strategies of the qKG and qEI implementations and
it is unclear in the documentation about how to change the
GP settings.

1Available at https://github.com/Alaya-in-Matrix/MACE
2We implemented the BLCB algorithm as the avail-

able open source implementations only allow discrete in-
put. For the EI-LP method, the code is downloaded from
https://github.com/SheffieldML/GPyOpt. The code for qEI and
qKG is downloaded from https://github.com/wujian16/Cornell-
MOE.
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4.1. Benchmark Problems

We tested the MACE algorithm and other parallel BO meth-
ods using eight commonly used benchmark functions, as
summarized in Table 1.

Table 1. Summary of the analytical benchmark functions

Function Dimension Search domain

Branin 2 [−5, 10]× [0, 15]
Alpine1 5 [−10, 10]5

Hartmann6 6 [0, 1]6

Eggholder 2 [−512, 512]2

Ackley2 2 [−32, 32]2

Ackley10 10 [−32, 32]10

Rosenbrock2 2 [−5, 10]2

Rosenbrock10 10 [−20, 20]10

For all functions except the two 10D functions, we set the
number of initial random sampling to Ninit = 20 and the
number of iterations toNiter = 45. Batch size is set toB =
4, the total number of function evaluations is Ninit +B ×
Niter. For the 10D Ackley and 10D Rosenbrock functions,
we set Ninit = 100 and Niter = 175. The experiments
were repeated ten times to average the random fluctuations.

We also ran the MACE algorithm in sequential mode and
compared with the EI and LCB acquisition functions. The
sequential EI and LCB based Bayesian optimization are
implemented by setting the batch size B = 1 for EI-LP and
BLCB respectively.

The mean convergence plots of the tested algorithms on the
benchmark functions are given in Figure 2, the statistics
of the final regrets are listed in Table 2. As can be seen in
Figure 2 and Table 2, when running in sequential mode, the
MACE algorithm is competitive with the LCB and EI ac-
quisition functions. The sequential MACE (MACE-1) algo-
rithm gave better performances than the sequential EI (EI-1)
and sequential LCB (LCB-1) algorithms in the Eggholder,
Branin, Hartmann6, Ackley10, and Rosenbrock10 functions.
Also, the parallel MACE (MACE-4) gave the best perfor-
mances among all the tested algorithms for six out of the
eight benchmark functions, and has shown dramatic speedup
compared to the sequential MACE. We also performed ad-
ditional experiments with varied batch sizes, the detail of
those experimental results can be seen in the supplementary
materials. We report the time spent on the ten-dimensional
Rosenbrock function optimization with B = 4 as a measure
of the algorithm overhead, for the ten-dimensional Rosen-
brock function, it took MACE about 11 hours to finish all
the Niter = 175 iterations, the BLCB algorithm took about
five hours, for the EI-LP algorithm, it took only one hour to
finish the optimization. The overheads for qEI and qKG are
much larger, it took more than two days for qKG and qEI to

finish the optimization of the ten-dimensional Rosenbrock
function.

4.2. Operational Amplifier

The operational amplifier (Wang et al., 2014) shown in Fig-
ure 3 is used to test Bayesian optimization algorithms. The
circuit is designed using the 180nm process. It has 10 design
parameters, including the lengths and widths of transistors,
the resistance of the resistors and the capacitance of the
capacitors. The circuit is simulated using the commercial
HSPICE circuit simulator.

VDD

Ibias

M1 M2 M3

M4 M5

M6 M7

M8

R1

CC

CL

VoutVin- Vin+

Figure 3. Schematic of the operational amplifier

We want to maximize the gain, unit gain frequency (UGF)
and the phase margin (PM) for this amplifier. The Figure of
Merit FOM is constructed as

FOM = −1.2× gain − 10×UGF − 1.6× PM .

For this circuit, we compared the MACE algorithm with
the BLCB and EI-LP algorithms. The qKG and qEI are
not compared as the computation of qEI and qKG acqui-
sition functions become very slow for the ten-dimensional
functions.

We run the algorithms in sequential mode and batch mode.
For the batch mode, the batch size is set to B = 4. The
number of initial random sampling is set to Ninit = 100,
and the number of iterations is set to Niter = 100.

The mean convergence plot for the sequential and batch runs
are given in Figure 4. The mean and standard deviation of
the final optimized FOM values are listed in Table 3. As
can be seen, on average, the batch MACE algorithm had
the fastest convergence rate compared with the sequential
MACE algorithm and other parallel algorithms. It should
also be noted that the final optimized FOM values given by
MACE-4 have very small deviation (0.105) compared with
other algorithms.
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Table 2. Statistics of the regrets of the benchmark functions

Eggholder Branin Alpine1 Hartmann6

MACE-1 87.65±75.83 1.05e-5±1.31e-5 2.66305±1.05844 0.0646869±0.0621189
LCB-1 153.9±112.8 6.86e-5±1.13e-4 5.66812±1.76973 0.125565±0.122684
EI-1 172.8±132.2 1.62e-2±1.63e-2 2.46061±1.56079 0.110561±0.146809
MACE-4 46.38±40.89 4.62e-6±6.64e-6 0.903805±0.835209 0.0275738±0.052254
BLCB-4 56.86±35.91 4.32e-5±6.33e-5 1.8843±0.938873 0.06447±0.0621176
EI-LP-4 44.68±56.45 2.11e-2±1.84e-2 1.0059±0.456865 0.0540446±0.0558557
qKG-4 106.4±67.64 2.65e-1±2.70e-1 3.01513±1.13414 0.47134±0.18939
qEI-4 72.13±52.08 3.29e-4±1.14e-3 2.7074±1.05145 0.186088±0.116323

Ackley2 Rosenbrock2 Ackley10 Rosenbrock10

MACE-1 1.71474±1.12154 0.026173±0.051189 3.1348±0.447874 499.697±300.899
LCB-1 1.624±0.926437 0.0201124±0.0205367 3.14797±0.519164 517.944±288.955
EI-1 1.0136±0.985858 13.5508±9.52734 18.8006±0.652136 1367.08±637.507
MACE-4 1.07906±0.886466 0.00095416±0.00093729 2.56439±0.535488 158.116±50.0024
BLCB-4 1.40051±1.02849 0.00191986±0.00180895 3.27543±0.735501 406.819±127.351
EI-LP-4 0.284265±0.24634 2.73645±2.05923 18.2682±0.608564 721.351±327.365
qKG-4 5.59394±1.80595 5.03976±3.72014 18.197±0.764103 705.112±412.762
qEI-4 2.87373±1.02405 10.1881±15.0432 18.3686±0.501869 655.208±340.954
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Figure 4. Optimization results of the operational amplifier

Table 3. Optimization results of the operational amplifier

Algorithm Results

MACE-1 -678.174±21.7445
LCB-1 -607.583±51.9786
EI-1 -532.555±66.942
MACE-4 -690.3±0.104963
BLCB-4 -665.442±23.066
EI-LP-4 -636.675±35.7359
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Figure 5. Schematic of the power amplifier

4.3. Class-E Power Amplifier

The class-E power amplifier shown in Figure 5 is used to
test Bayesian optimization algorithms. The circuit is de-
signed using the 180nm process with 12 design parameters,
the circuit is simulated by the commercial HSPICE circuit
simulator to get its performances.

For this power amplifier, we aim to maximize the power
added efficiency (PAE) and the output power (Pout), the
Figure of Merit FOM is constructed as

FOM = −3× PAE − Pout .

The MACE, BLCB, and EI-LP algorithms were tested in
both sequential and batch modes. The number of initial
sampling is Ninit = 100. The number of iterations is
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Niter = 100. The batch size is set to B = 4. The to-
tal number of HSPICE simulations is 500 for each batch run
and 200 for each sequential run.
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Figure 6. Optimization results of the class-E power amplifier

The optimization results of the class-E power amplifier are
given in Figure 6 and Table 4. We can see that the MACE
outperformed the BLCB and EI-LP in both sequential and
batch mode. For the batch runs, the MACE converges fastest
among the three algorithms, while the sequential MACE
(MACE-1) has comparable performance as the batch EI-LP
(EI-LP-4) method.

Table 4. Optimization results of the power amplifier

Algorithm Results

MACE-1 -4.08608±0.296647
LCB-1 -3.78533±0.335532
EI-1 -3.36407±0.307489
MACE-4 -4.31762±0.347026
BLCB-4 -4.20266±0.211102
EI-LP-4 -4.07233±0.244436

5. Conclusion
In this paper, a batch Bayesian optimization algorithm is
proposed for the automation of analog circuit design. The
parallelization is achieved via the multi-objective ensemble
of acquisition functions. In each iteration, the candidate
points are sampled from the Pareto front of multiple acqui-
sition functions. We compared the proposed MACE algo-
rithm using analytical benchmark functions and real-world
circuits, it is shown that the MACE algorithm is competi-
tive compared with the state-of-the-art methods listed in the
paper.
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