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Abstract
In this paper we aim to formally explain the phe-
nomenon of fast convergence of Stochastic Gradi-
ent Descent (SGD) observed in modern machine
learning. The key observation is that most mod-
ern learning architectures are over-parametrized
and are trained to interpolate the data by driving
the empirical loss (classification and regression)
close to zero. While it is still unclear why these
interpolated solutions perform well on test data,
we show that these regimes allow for fast con-
vergence of SGD, comparable in number of iter-
ations to full gradient descent. For convex loss
functions we obtain an exponential convergence
bound for mini-batch SGD parallel to that for full
gradient descent. We show that there is a criti-
cal batch size m∗ such that: (a) SGD iteration
with mini-batch sizem ≤ m∗ is nearly equivalent
to m iterations of mini-batch size 1 (linear scal-
ing regime). (b) SGD iteration with mini-batch
m > m∗ is nearly equivalent to a full gradient
descent iteration (saturation regime). Moreover,
for the quadratic loss, we derive explicit expres-
sions for the optimal mini-batch and step size
and explicitly characterize the two regimes above.
The critical mini-batch size can be viewed as the
limit for effective mini-batch parallelization. It is
also nearly independent of the data size, implying
O(n) acceleration over GD per unit of computa-
tion. We give experimental evidence on real data
which closely follows our theoretical analyses. Fi-
nally, we show how our results fit in the recent
developments in training deep neural networks
and discuss connections to adaptive rates for SGD
and variance reduction.
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1 Introduction

Most machine learning techniques for supervised learn-
ing are based on Empirical Loss Minimization (ERM),
i.e., minimizing the loss L(www) , 1

n

∑n
i=1 `i(www) over

some parametrized space of functions fwww. Here `i(www) =
L(fwww(xxxi), yi), where (xxxi, yi) are the data and L could, for
example, be the square loss L(fwww(xxx), y) = (fwww(xxx)− y)2.

In recent years, Stochastic Gradient Descent (SGD) with a
small mini-batch size has become the backbone of machine
learning, used in nearly all large-scale applications of ma-
chine learning methods, notably in conjunction with deep
neural networks. Mini-batch SGD is a first order method
which, instead of computing the full gradient of L(www), com-
putes the gradient with respect to a certain subset of the data
points, often chosen sequentially. In practice small mini-
batch SGD consistently outperforms full gradient descent
(GD) by a large factor in terms of the computations required
to achieve certain accuracy. However, the theoretical evi-
dence has been mixed. While SGD needs less computations
per iteration, most analyses suggest that it requires adap-
tive step sizes and has the rate of convergence that is far
slower than that of GD, making computational efficiency
comparisons difficult.

In this paper, we explain the reasons for the effectiveness of
SGD by taking a different perspective. We note that most of
modern machine learning, especially deep learning, relies
on classifiers which are trained to achieve near zero classi-
fication and regression losses on the training data. Indeed,
the goal of achieving near-perfect fit on the training set is
stated explicitly by the practitioners as a best practice in
supervised learning1, see, e.g., the tutorial (Salakhutdinov,
2017). The ability to achieve near-zero loss is provided by
over-parametrization. The number of parameters for most
deep architectures is very large and often exceeds by far the
size of the datasets used for training (see, e.g., (Canziani
et al., 2016) for a summary of different architectures). There
is significant theoretical and empirical evidence that in such
over-parametrized systems most or all local minima are also
global and hence correspond to the regime where the output
of the learning algorithm matches the training labels exactly,

1Potentially using regularization at a later stage.
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e.g., (Gupta et al., 2015; Chaudhari et al., 2016; Zhang et al.,
2016; Huang et al., 2016; Sagun et al., 2017; Bartlett et al.,
2017). Since continuous loss functions are typically used
for training, the resulting function interpolates the data2,
i.e., fwww∗(xxxi) ≈ yi.

While we do not yet understand why these interpolated
classifiers generalize so well to unseen data, there is am-
ple empirical evidence for their excellent generalization
performance in deep neural networks (Gupta et al., 2015;
Chaudhari et al., 2016; Zhang et al., 2016; Huang et al.,
2016; Sagun et al., 2017), kernel machines (Belkin et al.,
2018) and boosting (Schapire et al., 1998). In this paper
we look at the significant computational implications of this
startling phenomenon for stochastic gradient descent.

Our first key observation is that in the interpolated regime
SGD with fixed step size converges exponentially fast for
convex loss functions. The results showing exponential
convergence of SGD when the optimal solution minimizes
the loss function at each point go back to the Kaczmarz
method (Kaczmarz, 1937) for quadratic functions, more
recently analyzed in (Strohmer & Vershynin, 2009). For
the general convex case, it was first proved in (Moulines &
Bach, 2011). The rate was later improved in (Needell et al.,
2014). However, to the best of our knowledge, exponen-
tial convergence in that regime has not been connected to
over-parametrization and interpolation in modern machine
learning. Still, exponential convergence by itself does not
allow us to make any comparisons between the computa-
tional efficiency of SGD with different mini-batch sizes and
full gradient descent, as the existing results do not depend
on the mini-batch size m. This dependence is crucial for
understanding SGD, as small mini-batch SGD seems to
dramatically outperform full gradient descent in nearly all
applications. Motivated by this, in this paper we provide an
explanation for the empirically observed efficiency of small
mini-batch SGD. We provide a detailed analysis for the rates
of convergence and computational efficiency for different
mini-batch sizes and a discussion of its implications in the
context of modern machine learning.

We first analyze convergence of mini-batch SGD for convex
loss functions as a function of the batch size m. We show
that there is a critical mini-batch size m∗ that is nearly
independent on n, such that the following holds:
(a) (linear scaling) One SGD iteration with mini-batch of
size m ≤ m∗ is equivalent to m iterations of mini-batch of
size one up to a multiplicative constant close to 1.
(b) (saturation) One SGD iterations with a mini-batch of
size m > m∗ is nearly (up to a small constant) as effective

2Most of these architectures should be able to achieve perfect
interpolation, fwww∗(xxxi) = yi. In practice, of course, it is not
possible even for linear systems due to the computational and
numerical limitations.

as one iteration of full gradient descent.

We see that the critical mini-batch size m∗ can be viewed
as the limit for the effective parallelization of mini-batch
computations. If an iteration with mini-batch of size m ≤
m∗ can be computed in parallel, it is nearly equivalent to
m sequential steps with mini-batch of size 1. For m > m∗

parallel computation has limited added value.

Figure 1: Number of itera-
tions with batch size 1 (the y
axis) equivalent to one itera-
tion with batch size m.

Next, for the quadratic loss
function, we obtain a sharp
characterization of these
regimes based on an explicit
derivation of optimal step
size as a function of m. In
particular, in this case we
show that the critical mini-
batch size is given by m∗ =
maxni=1{‖xxxi‖

2}
λ1(H) , where H is

the Hessian at the minimizer and λ1 is its spectral norm.

Our result shows that m∗ is nearly independent of the data
size n (depending only on the properties of the Hessian).
Thus SGD with mini-batch size m∗ (typically a small con-
stant) gives essentially the same convergence per iteration
as full gradient descent, implying acceleration by a factor
of O(n) over GD per unit of computation.

We also show that a mini-batch of size one is optimal in
terms of computations required to achieve a given error.
Our theoretical results are based on upper bounds which we
show to be tight in the quadratic case and nearly tight in the
general convex case.

There have been work on understanding the interplay be-
tween the mini-batch size and computational efficiency, in-
cluding (Takác et al., 2013; Li et al., 2014; Yin et al., 2018)
in the standard non-interpolated regime. However, in that
setting the issue of bridging the exponential convergence
of full GD and the much slower convergence rates of mini-
batch SGD is harder to resolve, requiring extra components,
such as tail averaging (Jain et al., 2016) (for quadratic loss).

We provide experimental evidence corroborating this on real
data. In particular, we demonstrate the regimes of linear
scaling and saturation and also show that on real data m∗

is in line with our estimate. It is typically several orders of
magnitude smaller than the data size n implying a compu-
tational advantage of at least 103 factor over full gradient
descent in realistic scenarios in the over-parametrized (or
fully parametrized) setting. We believe this sheds light on
the impressive effectiveness of SGD observed in many real-
world situation and is the reason why full gradient descent
is rarely, if ever, used. In particular, the “linear scaling rule”
recently used in deep convolutional networks (Krizhevsky,
2014; Goyal et al., 2017; You et al., 2017; Smith et al., 2017)
is consistent with our theoretical analyses.
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The rest of the paper is organized as follows: In Section 3,
we analyze the fast convergence of mini-batch SGD and
discuss some implications for the variance reduction tech-
niques. It turns out that in the interpolated regime, simple
SGD with constant step size is equally or more effective
than the more complex variance reduction methods. Sec-
tion 4 contains the analysis of the special case of quadratic
losses, where we obtain optimal convergence rates of mini-
batch SGD, and derive the optimal step size as a function
of the mini-batch size. We also analyze the computational
efficiency as a function of the mini-batch size. In Section 5
we provide experimental evidence using several datasets.
We show that the experimental results correspond closely
to the behavior predicted by our bounds. We also briefly
discuss the connection to the linear scaling rule in neural
networks.

2 Preliminaries

Before we start our technical discussion, we briefly overview
some standard notions in convex analysis. Here, we will
focus on differentiable convex functions, however, the defini-
tions below extend to general functions simply by replacing
the gradient of the function at a given point to by the set of
all sub-gradients at that point. In fact, since in this paper we
only consider smooth functions, differentiability is directly
implied.
• A differentiable function ` : Rd → R is convex on
Rd if, for all www,vvv ∈ Rd, we have `(vvv) ≥ `(www) +
〈∇`(www), vvv −www〉.

• Let β > 0. A differentiable function ` : Rd → R
is β-smooth on Rd if, for all www,vvv ∈ Rd, we have
`(vvv) ≤ `(www) + 〈∇`(www), vvv−www〉+ β

2 ‖vvv −www‖
2
, where

∇`(www) denotes the gradient of ` atwww.
• Let α > 0. A differentiable function ` : Rd → R

is α-strongly convex on Rd if, for all www,vvv ∈ Rd, we
have `(vvv) ≥ `(www) + 〈∇`(www), vvv − www〉 + α

2 ‖vvv −www‖
2.

(Clearly, α-strong convexity implies convexity)
The problem of unconstrained Empirical Risk Minimization
(ERM) can be described as follows: Given a set of n loss
functions `i : Rd → R, i ∈ {1, . . . , n}, the goal is to
minimize the empirical loss function defined as

L(www) ,
1

n

n∑
i=1

`i(www), www ∈ Rd.

In particular, we want to find a minimizer www∗ ,
arg minwww∈Rd L(www). In the context of supervised learning,
given a training set {(xxxi, yi) : 1 ≤ i ≤ n} of n (feature
vector, target) pairs, one can think of `i(www) as the cost
incurred in choosing a parameter vector www to fit the data
point (xxxi, yi). In particular, in this context, minimizing
L over www ∈ Rd is equivalent to minimizing L over a
parameterized space of functions {fwww : www ∈ Rd}, where
each fwww maps a feature vector xxx to a target y. Thus, in

this case, for each i, `i(www) can be written as L(fwww(xxxi), yi)
where L is some cost function that represents how far is
fwww(xxxi) from yi, for example, L(·, ·) could be the squared
loss L(fwww(xxx), y) = (fwww(xxx)− y)

2.

3 Interpolation and Fast SGD: Convex Loss

We consider a standard setting of ERM where for all 1 ≤
i ≤ n, `i is non-negative, β-smooth and convex. Moreover,
L(www) = 1

n

∑n
i=1 `i(www) is λ-smooth and α-strongly convex.

It is easy to see that β ≥ λ. This setting is naturally satisfied
in many problems, e.g., in least-squares linear regression
with full rank sample covariance matrix.

Next, we state our key assumption in this work. This
assumption describes the interpolation setting, which is
aligned with what we usually observe in over-parametrized
settings in modern machine learning.

Assumption 1 (Interpolation). Let www∗ ∈
argminwww∈Rd L(www). Then, for all 1 ≤ i ≤ n, `i(www∗) = 0.

Note that instead of assuming that `i(www∗) = 0, it suffices
to assume thatwww∗ is the minimizer of all `i. By subtracting
from each `i the offset `i(www∗), we get an equivalent mini-
mization problem where the new losses are all non-negative,
and are all zero atwww∗.

Consider the SGD algorithm that starts at an arbitrarywww0 ∈
Rd, and at each iteration t makes an update with a constant
step size η:

wwwt+1 = wwwt − η∇
1

m

m∑
j=1

`
i
(j)
t

(wwwt) (1)

where m is the size of a mini-batch of data points whose
indices {i(1)t , . . . , i

(m)
t } are drawn uniformly with replace-

ment at each iteration t from {1, . . . , n}.

The theorem below shows exponential convergence for mini-
batch SGD in the interpolated regime.

Theorem 1. For the setting described above and under
Assumption 1, for any mini-batch size m ∈ N, the SGD
iteration (1) with constant step size η∗(m) , m

β+λ(m−1)
gives the following guarantee

E
wwwt

[L(wwwt)] ≤
λ

2
(1− η∗(m) · α)t ‖www0 −www∗‖2 (2)

For m = 1, this theorem is a special case of Theorem 2.1
in (Needell et al., 2014), which is a sharper version of Theo-
rem 1 in (Moulines & Bach, 2011).

Speedup factor. Let t(m) be the number of iterations
needed to reach a desired accuracy with batch size m. As-
suming λ� α, the speed up factor t(1)

t(m) , which measures
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the number of iterations saved by using larger batch, is
t(1)

t(m)
=

log(1− η∗(m)α)

log(1− η∗(1)α)
≈ η∗(m)

η∗(1)
=

mβ

β + λ(m− 1)

Critical batch sizem∗ , β
λ+1 . By estimating the speedup

factor for each batch size m, we directly obtain

• Linear scaling regime: one iteration of batch size m ≤
m∗ is nearly equivalent to m iterations of batch size 1.

• Saturation regime: one iteration with batch size m >
m∗ is nearly equivalent to one full gradient iteration.

We give a sharper analysis for the case of quadratic loss in
Section 4.

3.1 Variance reduction methods in the interpolation
regime

For general convex optimization, a set of important stochas-
tic methods (Roux et al., 2012; Johnson & Zhang, 2013;
Defazio et al., 2014; Xiao & Zhang, 2014; Allen-Zhu, 2016)
have been proposed to achieve exponential (linear) conver-
gence rate with constant step size. The effectiveness of these
methods derives from their ability to reduce the stochastic
variance caused by sampling. In a general convex setting,
this variance prevents SGD from both adopting a constant
step size and achieving an exponential convergence rate.

Method Step size #Iterations to
reach a given error

Mini-batch SGD (Theorem 1) m
β+λ(m−1) O(β+λ(m−1)mα )

SGD (Eq. 5, m=1) 1
β O(βα )

SAG (Roux et al., 2012) 1
2n·β O(n·βα )

SVRG (Johnson & Zhang, 2013) 1
10β O(n+ β

α )

SAGA (Defazio et al., 2014) 1
3β O(n+ β

α )

Katyusha (Allen-Zhu, 2016) (momentum) adaptive O(n+
√

n·β
α )

Remarkably, in the interpolated regime, Theorem 1 implies
that SGD obtains the benefits of variance reduction “for free”
without the need for any modification or extra information
(e.g., full gradient computations for variance reduction).
The table on the right compares the convergence of SGD
in the interpolation setting with several popular variance
reduction methods. Overall, SGD has the largest step size
and achieves the fastest convergence rate without the need
for any further assumptions. The only comparable or faster
rate is given by Katyusha, which is an accelerated SGD
method combining momentum and variance reduction for
faster convergence.

4 How Fast is Fast SGD: Analysis of Step,
Mini-batch Sizes and Computational
Efficiency for Quadratic Loss

In this section, we analyze the convergence of mini-batch
SGD for quadratic losses. We will consider the following
key questions:

• What is the optimal convergence rate of mini-batch
SGD and the corresponding step size as a function of
m (size of mini-batch)?

• What is the computational efficiency of different batch
sizes and how do they compare to full GD?

The case of quadratic losses covers over-parametrized linear
or kernel regression with a positive definite kernel. The
quadratic case also captures general smooth convex func-
tions in the neighborhood of a minimum where higher order
terms can be ignored.

Quadratic loss. Consider the problem of minimizing,

L(www) ,
1

n

n∑
i=1

(wwwTxxxi − yi)2

where (xxxi, yi) ∈ H × R, i = 1, . . . , n are labeled data
points sampled from some (unknown) distribution. In
the interpolation setting, there exists www∗ ∈ H such that
L(www∗) = 0. The covariance H , 1

n

∑n
i=1 xxxixxx

T
i can be ex-

pressed in terms of its eigen decomposition as
∑d
i=1 λieeeieee

T
i ,

where d is the dimensionality of the parameter space (and
the feature space) H, λ1 ≥ λ2 ≥ · · · ≥ λd are the eigenval-
ues of H , and {eee1, . . . , eeed} is the eigen-basis induced by H .
In the over-parametrized setting (i.e., when d > n), the rank
of H is at most n. Assume, w.o.l.g., that the eigenvalues are
such that λ1 ≥ λ2 ≥ · · · ≥ λk > 0 = λk+1 = · · · = λd for
some k ≤ n. We further assume that for all feature vectors
xxxi, i = 1, . . . , n, we have ‖xxxi‖2 ≤ β. Note that this implies
that the trace of H is bounded from above by β, that is,
tr(H) ≤ β. Thus, we have β > λ1 ≥ λ2 ≥ · · · ≥ λk > 0.
Hence, in the interpolation setting, we can write the sum of
squares L(www) as

L(www) = (www −www∗)TH(www −www∗) (3)

For any vvv ∈H, let Pvvv denote the projection of vvv unto the
subspace spanned by {eee1, . . . , eeek} and Qvvv denote the pro-
jection of vvv unto the subspace spanned by {eeek+1, . . . , eeed}.
That is, vvv = Pvvv + Qvvv is the decomposition of vvv into
two orthogonal components: its projection onto Range(H)
(i.e., the range space of H , which is the subspace spanned
by {eee1, . . . , eeek}) and its projection onto Null(H) (i.e.,
the null space of H , which is the subspace spanned by
{eeek+1, . . . , eeed}). Hence, the above quadratic loss can be
written as

L(www) = PTwww−www∗ H Pwww−www∗ (4)

To minimize the loss in this setting, consider the following
SGD update with mini-batch of size m and step size η:

wwwt+1 = wwwt − ηHm(wwwt −www∗) (5)

where Hm , 1
m

∑m
i=1 x̃xxix̃xx

T
i is a subsample covari-

ance corresponding to a subsample of feature vectors
{x̃xx1, . . . , x̃xxm} ⊂ {xxx1, . . . ,xxxn}.
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Let δδδt , wwwt −www∗. Observe that we can write (5) as

Pδδδt+1
+ Qδδδt+1

= Pδδδt + Qδδδt − ηHm (Pδδδt + Qδδδt) (6)

Now, we make the following simple claim (whose proof is
given in the full version of this paper).

Claim 1. Let uuu ∈H. For any subsample {x̃xx1, . . . , x̃xxm} ⊂
{xxx1, . . . ,xxxn}, let Hm = 1

m

∑m
i=1 x̃xxix̃xx

T
i be the correspond-

ing subsample covariance matrix. Then,

Hmuuu ∈ Range(H) = Span{eee1, . . . , eeek}.
This also implies that for any vvv ∈ Null(H) =
Span{eeek+1, . . . , eeed}, we must have Hmvvv = 0.

By the above claim, the update equation (6) can be decom-
posed into two components:

Pδδδt+1
= Pδδδt − ηHmPδδδt , (7)

Qδδδt+1
= Qδδδt (8)

From (4), it follows that for any iteration t, the target loss
function Lwwwt is not affected at all by Qδδδt , that is, Pδδδt is the
only component that matters. Hence, by (7-8), we only need
to consider the effective SGD update (7), i.e., the update in
the span of {eee1, . . . , eeek}.

4.1 Upper bound on the expected empirical loss

The following theorem (see proof in full paper) provides an
upper bound on the expected empirical loss after t iterations
of mini-batch SGD whose update step is given by (5).

Theorem 2. For any λ ∈ [λk, λ1],m ∈ N, and 0 < η <
2m

β+(m−1)λ1
define

g(λ;m, η) , (1− ηλ)2 +
η2λ

m
(β − λ)

Let g(m, η) , maxλ∈[λk,λ1] g(λ;m, η). In the interpola-
tion setting, for any t ≥ 1, the mini-batch SGD with update
step (5) yields the following guarantee

E[L(wwwt)] ≤ λ1 ·E
[∥∥P2

δδδt

∥∥] ≤ λ1 ·(g (m, η))
t ·E
[
‖Pδδδ0‖

2
]

4.2 Tightness of the bound on expected empirical loss

We now show that our upper bound given above is indeed
tight in the interpolation setting for the class of quadratic
loss functions defined in (3). Namely, we give a specific
instance of (3) where the upper bound in Theorem 2 is tight.

Theorem 3. There is a data set {(xxxi, yi) ∈H × R : 1 ≤
i ≤ n} such that the mini-batch SGD with update step (5)
yields the following lower bound on the expected empirical
quadratic loss L(www)

E[L(wwwt)] = λ1 · E
[
‖δδδt‖2

]
= λ1 · (g (m, η))

t · E
[
‖δδδ0‖2

]
See proof in the full version of this paper.

4.3 Optimal step size for a given batch size

To fully answer the first question we posed at the beginning
of this section, we will derive an optimal rule for choosing
the step size as a function of the batch size. Specifically, we
want to find step size η∗(m) to achieve fastest convergence.
Given Theorem 2, our task reduces to finding the minimizer

η∗(m) = arg min
η< 2

β
m

+m−1
m

λ1

g(m, η) (9)

Let g∗(m) denote the resulting minimum, that is, g∗(m) =
g (m, η∗(m)). The resulting expression for the minimizer
η∗(m) generally depends on the least non-zero eigenvalue
λk of the Hessian matrix. In situations where we don’t have
a good estimate for this eigenvalue (which can be close to
zero in practice), one would rather have a step size that is
independent of λk. In Theorem 5, we give a near-optimal
approximation for step size with no dependence on λk under
the assumption that β/λk = Ω(n), which is valid in many
practical settings such as in kernel learning with positive
definite kernels.

We first characterize exactly the optimal step size and the
resulting g∗(m).

Theorem 4 (Optimal step size role as function of batch size).
For every batch size m, the optimal step size function η∗(m)
and convergence rate function g∗(m) are given by:

η∗(m) =

{
m

β+(m−1)λk m ≤ β
λ1−λk + 1

2m
β+(m−1)(λ1+λk)

m > β
λ1−λk + 1

(10)

g∗(m) =

{
1− mλk

β+(m−1)λk m ≤ β
λ1−λk + 1

1− 4 m(m−1)λ1λk
(β+(m−1)(λ1+λk))

2 m > β
λ1−λk + 1

(11)

Note that if λ1 = λk, then the first case in each expression
will be valid for all m ≥ 1.

The proof of Theorem 4 follows from the two lemmas below
(whose proofs can be found in the full version of this paper).

Lemma 1. Let η0(m) , 2m
β+(m−1)(λ1+λk)

, and let

η1(m) , 2m
β+(m−1)λ1

. Then,

g(m, η) =

{
gI(m, η) , g(λk;m, η) η ≤ η0(m)

gII(m, η) , g(λ1;m, η) η0(m) < η ≤ η1(m)

Lemma 2. Given the quantities defined in Lemma 1,
let ηI(m) = argmin

η≤η0(m)

gI(m, η), and ηII(m) =

argmin
η0(m)<η≤η1(m)

gII(m, η). Then, we have

1. For all m ≥ 1, gI
(
m, ηI(m)

)
≤ gII

(
m, ηII(m)

)
.

2. For all m ≥ 1, ηI(m) = η∗(m) and gI
(
m, ηI(m)

)
=

g∗(m), where η∗(m) and g∗(m) are as given by (10)
and (11), respectively, (in Theorem 4).



The Power of Interpolation: Understanding the Effectiveness of SGD in Modern Over-parametrized Learning

Proof of Theorem 4: Given Lemma 1 and item 1 of
Lemma 2, it follows that ηI(m) is the minimizer η∗(m)
given by (9). Item 2 of Lemma 2 concludes the proof.

Nearly optimal step size with no dependence on λk: In
practice, it is usually easy to obtain a good estimate for
λ1, but it is hard to reliably estimate λk which is typically
much smaller than λ1 (e.g., (Chaudhari et al., 2016)). That
is why one would want to avoid dependence on λk in prac-
tical SGD algorithms. Under a mild assumption which is
typically valid in practice, we can easily find an accurate
approximation η̂(m) of optimal η∗(m) that depends only
on λ1 and β. Namely, we assume that λk/β ≤ 1/n. In
particular, this is always true in kernel learning with positive
definite kernels, when the data points are distinct.

The following theorem provides such approximation result-
ing in a nearly optimal convergence rate ĝ(m).

Theorem 5. Suppose that λk/β ≤ 1/n. Let η̂(m) be de-
fined as:

η̂(m) =

{
m

β(1+(m−1)/n) m ≤ β
λ1−β/n + 1

2m
β+(m−1)(λ1+β/n)

m > β
λ1−β/n + 1

(12)

Then, the step size η̂(m) yields the following upper bound
on g (m, η̂(m)), denoted as ĝ(m):

ĝ (m) =

{
1− mλk

β(1+(m−1)/n) m ≤ β
λ1−β/n + 1

1− 4 m(m−1)λ1λk
(β+(m−1)(λ1+β/n))

2 m > β
λ1−β/n + 1

(13)

Proof. The proof follows by observing that if λk/β ≤ 1/n,
then η̂(m) lies in the feasible region for the minimization
problem in (9). In particular, η̂(m) ≤ η0(m), where η0(m)
is as defined in Lemma 1. The upper bound ĝ (m) follows
from substituting η̂(m) in gI(m, η) defined in Lemma 1,
then upper-bounding the resulting expression.

It is easy to see that the convergence rate ĝ(m) resulting
from the step size η̂ is at most factor 1+O(m/n) slower than
the optimal rate g∗(m). This factor is negligible when m�
n. Since we expect n � β, we can further approximate
η̂(m) ≈ m/β when m / β/λ1 and η̂ ≈ 2m

β+(m−1)λ1
when

m ' β/λ1.

4.4 Batch size selection

In this section, we will derive the optimal batch size given a
fixed computational budget in terms of the computational
efficiency defined as the number of gradient computations
to obtain a fixed desired accuracy. We will show that single-
point batch is in fact optimal in that setting. Moreover, we
will show that any mini-batch size in the range from 1 to
a certain constant m∗ independent of n, is nearly optimal
in terms of gradient computations. Interestingly, for values
beyond m∗ the computational efficiency drops sharply. This

result has direct implications for the batch size selection in
parallel computation.

4.4.1 OPTIMALITY OF A SINGLE-POINT BATCH

Suppose we are limited by a fixed number of gradient com-
putations. Then, what would be the batch size that yields
the least approximation error? Equivalently, suppose we are
required to achieve a certain target accuracy ε (i.e., want to
reach parameter ŵww such that L(ŵww) −L(www∗) ≤ ε). Then,
again, what would be the optimal batch size that yields the
least amount of computation.

Suppose we are being charged a unit cost for each gradient
computation, then it is not hard to see that the cost function
we seek to minimize is g∗(m)

1
m , where g∗(m) is as given

by Theorem 4. To see this, note that for a batch size m,
the number of iterations to reach a fixed desired accuracy
is t(m) = constant

log(1/g∗(m)) . Hence, the computation cost is
m · t(m) = constant

log(1/g∗(m))1/m
. Hence, minimizing the com-

putation cost is tantamount to minimizing g∗(m)1/m. The
following theorem shows that the exact minimizer is m = 1.
Later, we will see that any value for m from 2 to ≈ β/λ1 is
actually not far from optimal. So, if we have cheap or free
computation available (e.g., parallel computation), then it
would make sense to choose m ≈ β/λ1. We will provide
more details in the following subsection.
Theorem 6 (Optimal batch size under a limited computa-
tional budget). When we are charged a unit cost per gradi-
ent computation, the batch size that minimizes the overall
computational cost required to achieve a fixed accuracy (i.e.,
maximizes the computational efficiency) is m = 1. Namely,

arg min
m∈N

g∗(m)
1
m = 1

Here, we give a less formal but more intuitive argument
based on a reasonable approximation for g∗(m). Such ap-
proximation in fact is valid in most of the practical settings.
In the full version of this paper, we give an exact and detailed
analysis. Note that g∗(m) can be written as 1 − λk

β s(m),
where s(m) is given by

s(m) =


m

1+(m−1)λkβ
m ≤ β

λ1−λk + 1

4m(m−1)λ1

β
(
1+(m−1)λ1+λk

β

)2 m > β
λ1−λk + 1

(14)

Proof outline: Note that g∗(m)1/m ≈ e−s(m)/m. This ap-
proximation becomes very accurate when λk � λ1, which
is typically the case for most of the practical settings where
λ1/λk ≈ n and n is very large. Here, s(m) is an approxi-
mation for the speed-up factor t(1)/t(m) introduced after
Theorem 1. Assuming that this approximation is accurate,
for the sake of an intuitive argument, minimizing g∗(m)1/m

becomes equivalent to maximizing s(m)/m. Now, note
that when m ≤ β

λ1−λk + 1, then s(m)/m = 1

1+(m−1)λkβ
,
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which is decreasing in m. Hence, for m ≤ β
λ1−λk + 1,

we have s(m)/m ≤ s(1) = 1. On the other hand, when
m > β

λ1−λk + 1, we have

s(m)

m
=

4(m− 1)λ1

β
(

1 + (m− 1)λ1+λk
β

)2 ,
which is also decreasing inm, and hence, it’s upper bounded
by its value atm = m∗ , β

λ1−λk +1. By direct substitution
and simple cancellations, we can show that s(m∗)/m∗ ≤
λ1−λk
λ1

< 1. Thus, m = 1 is optimal.

One may wonder whether the above result is valid if the
near-optimal step size η̂(m) (that does not depend on λk)
is used. That is, one may ask whether the same optimality
result is valid if the near optimal error rate function ĝ(m)
is used instead of g∗(m) in Theorem 6. Indeed, we show
that the same optimality remains true even if computational
efficiency is measured with respect to ĝ(m). This is formally
stated in the theorem below (see proof in the full paper).

Theorem 7. When the near-optimal step size η̂(m) is used
(and assuming that λk/β ≤ 1/n), the batch size that mini-
mizes the overall computational cost required to achieve a
fixed accuracy is m = 1. Namely,

arg min
m∈N

ĝ(m)
1
m = 1

4.4.2 NEAR OPTIMAL LARGER BATCH SIZES

Suppose that several gradient computations can be per-
formed in parallel. In some cases doubling the size of the
mini-batch can halve the number of iterations needed to
reach a fixed desired accuracy. Such observations has moti-
vated many works to use large batch size with distributed
synchronized SGD (Chen et al., 2016; Goyal et al., 2017;
You et al., 2017; Smith et al., 2017). One critical problem
in this large batch setting is how to choose the step size. To
keep the same covariance, (Bottou et al., 2016; Li, 2017;
Hoffer et al., 2017) choose the step size η ∼

√
m for batch

size m. On the other hand, (Krizhevsky, 2014; Goyal et al.,
2017; You et al., 2017; Smith et al., 2017) observed that
rescaling the step size η ∼ m works well in practice when
m is not too large. To explain these observations, we di-
rectly connect the parallelism, or the batch size m, to the
required number of iterations t(m) defined previously. It
turns out that (a) when the batch size is small, doubling the
size will almost halve the required iterations; (b) after the
batch size surpasses certain value, increasing the size to any
amount would only reduce the required iterations by at most
a constant factor.

Our analysis uses the optimal step size and conver-
gence rate derived in Theorem 4. Now consider
the factor by which we save the number of itera-
tions when increasing the batch size from 1 to m.

Figure 2: Factor of iterations
saved: t(1)

t(m)
≈ s(m)

Using the approximation

g∗(m)
1
m ≈ e−

λk
β ·

s(m)
m ,

we have s(m) ≈ t(1)
t(m) ,

the speedup factor.
The change of s(m) is
illustrated in Figure 2
where two regimes are
highlighted:

Linear scaling regime (m ≤ β
λ1−λk + 1): This is the

regime where increasing the batch size m will quickly
drive down t(m) needed to reach certain accuracy. When
λk � λ1, s(m) ≈ m, which suggests t(m/2) ≈ 2 · t(m).
In other words, doubling the batch size in this regime will
roughly halve the number of iterations needed. Note that we
choose step size η ← m

β+(m−1)λk . When λk ≤ β
n � λ1,

η ∼ m, which is consistent with the linear scaling heuristic
used in (Krizhevsky, 2014; Goyal et al., 2017; Smith et al.,
2017). In this case, the largest batch size in the linear scaling
regime can be practically calculated through

m∗ =
β

λ1 − λk
+ 1 ≈ β

λ1 − β/n
+ 1 ≈ β

λ1
+ 1 (15)

Saturation regime (m > β
λ1−λk + 1): Increasing

batch size in this regime becomes much less benefi-
cial. Although s(m) is monotonically increasing, it is
upper bounded by limm→∞ s(m) = 4β

λ1
. In fact, since

t(m∗)/ limm→∞ t(m) < 4 for small λk, no batch size in
this regime can reduce the needed iterations by a factor of
more than 4.

5 Experimental Results

This section will provide empirical evidence for our theo-
retical results on the effectiveness of mini-batch SGD in
the interpolated setting. We first consider a kernel learning
problem, where the parameters β, λ1, and m∗ can be com-
puted efficiently (see (Ma & Belkin, 2017) for details). In
all experiments we set the step size to be η̂ defined in (12).

Remark: near optimality of η̂ in practice. We observe
empirically that increasing the step size from η̂ to 2 η̂ consis-
tently leads to divergence, indicating that η̂ differs from the
optimal step size by at most a factor of 2. This is consistent
with our Theorem 5 on near-optimal step size.

5.1 Comparison of SGD with critical mini-batch size
m∗ to full gradient descent

Theorem 4 suggests that SGD using batch size m∗ defined
in (15) can reach the same error as GD using at most 4
times the number of iterations. This is consistent with our
experimental results for MNIST (LeCun et al., 1998), HINT-
S (Healy et al., 2013), and TIMIT (Garofolo et al., 1993)
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(a) MNIST (Gaussian, σ = 5), β =
1, λ1 = 0.15,m∗ ≈ 8

(b) HINT-S (EigenPro-Laplace, σ =
20), β = 0.6, λ1 = 0.012,m∗ ≈ 52

(c) TIMIT (Gaussian, σ = 11), β =
1, λ1 = 0.054, m∗ ≈ 20

Figure 3: Comparison of training error (n = 104) for different mini-batch sizes (m) vs. number of iterations

(a) MNIST (Gaussian, σ = 5), β =
1, λ1 = 0.15,m∗ ≈ 8

(b) HINT-S (EigenPro-Laplace, σ =
20), β = 0.6, λ1 = 0.012,m∗ ≈ 52

(c) TIMIT (Gaussian, σ = 11), β =
1, λ1 = 0.054, m∗ ≈ 20

Figure 4: Comparison of training error (n = 104) for different mini-batch sizes (m) vs. number of epochs (proportional to computation,
note for n data points, n ·Nepoch = m ·Niter)

in Figure 3. Moreover, in line with our analysis, SGD with
batch size larger thanm∗ but still much smaller than the data
size, converges nearly identically to full gradient descent.

Remark. Since our analysis is concerned with the training
error, only the training error is reported here. For complete-
ness, we report the test error in the full version of this paper.
As consistently observed in such over-parametrized settings,
test error decreases with the training error.

5.2 Optimality of batch size m = 1

Our theoretical results, Theorem 6 and Theorem 7 show that
m = 1 achieves the optimal computational efficiency. Note
for a given batch size, the corresponding optimal step size
is chosen according to equation (12). The experiments in
Figure 4 show that m = 1 indeed achieves the lowest error
for any fixed number of epochs.

5.3 Linear scaling and saturation regimes

In the interpolation regime, Theorem 6 shows linear scaling
for mini-batch sizes up to a (typically small) “critical” batch
size m∗ defined in (15) followed by the saturation regime.
In Figure 4 we plot the training error for different batch sizes
as a function of the number of epochs. Note that the number
of epochs is proportional to the amount of computation mea-
sured in terms of gradient evaluations. The linear scaling
regime (1 ≤ m ≤ m∗) is reflected in the small difference

in the training error for m = 1 and m = m∗ in Figure 4
(the bottom three curves. As expected from our theoretical
results, they have similar computational efficiency. On the
other hand, we see that large mini-batch sizes (m� m∗) re-
quire drastically more computations, which is the saturation
phenomenon reflected in the top two curves.

Relation to the “linear scaling rule” in neural networks.
A number of recent large scale neural network methods in-
cluding (Krizhevsky, 2014; Chen et al., 2016; Goyal et al.,
2017) use the “linear scaling rule” to accelerate training
using parallel computation. After the initial “warmup” stage
to find a good region of parameters, this rule suggest increas-
ing the step size to a level proportional to the mini-batch
size m. In spite of the wide adoption and effectiveness
of this technique, there has been no satisfactory explana-
tion (Krizhevsky, 2014) as the usual variance-based analysis
suggests increasing the step size by a factor of

√
m instead

of m (Bottou et al., 2016). We note that this “linear scal-
ing” can be explained by our analysis, assuming that the
warmup stage ends up in a neighborhood of an interpolating
minimum.
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