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Abstract

We consider worker skill estimation for the single-
coin Dawid-Skene crowdsourcing model. In
practice skill-estimation is challenging because
worker assignments are sparse and irregular due
to the arbitrary, and uncontrolled availability of
workers. We formulate skill estimation as a
rank-one correlation-matrix completion problem,
where the observed components correspond to
observed label correlation between workers. We
show that the correlation matrix can be success-
fully recovered and skills identifiable if and only
if the sampling matrix (observed components) is
irreducible and aperiodic. We then propose an
efficient gradient descent scheme and show that
skill estimates converges to the desired global op-
tima for such sampling matrices. Our proof is
original and the results are surprising in light of
the fact that even the weighted rank-one matrix
factorization problem is NP hard in general. Next
we derive sample complexity bounds for the noisy
case in terms of spectral properties of the signless
Laplacian of the sampling matrix. Our proposed
scheme achieves state-of-art performance on a
number of real-world datasets.

1. Introduction

We consider the problem of label estimation in crowd-
sourcing. The basis of our work is the single-coin model
of Dawid & Skene (1979): In this model, the input comes
in the form of a sparsely filled W x T worker-task label
matrix. The workers possess unique unknown skills, and
tasks assume unique unknown labels. The worker-task label
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matrix collects the random labels provided by the workers
for the individual tasks. The skill level of a worker is the
(scaled) probability of the worker’s label matching the true
unknown label for any of the tasks. The observed labels are
independent of each other.

Given the workers’ skill levels, the optimal way (Nitzan &
Paroush, 1981; Shapley & Grofman, 1984) to reconstruct
the unknown labels is to use weighted majority voting where
the weights assigned to the label provided by a worker is
equal to the log-odds underlying the worker’s skill. In prac-
tice, the crowd is often highly heterogenous ranging from
highly skilled to negatively skilled workers. Downweight-
ing unskilled workers and upweighting skilled workers has
a significant impact on performance. Since skill levels are
unknown, we follow prior works (e.g., Dalvi et al., 2013;
Berend & Kontorovich, 2014; Szepesvari, 2015; Bonald &
Combes, 2016) and adopt a two-step approach, whereby
worker skills are first estimated and then these skills are
used with the optimal weighting method to recover labels.

Sparse & Irregular Assignments: In practice, skill estima-
tion is challenging because worker assignments are sparse
and irregular due to the arbitrary and uncontrolled availabil-
ity of workers (Karger et al., 2013; Dalvi et al., 2013). An
additional subtle issue is the lack of diversity in terms of in-
teractions between the workers: A worker is often grouped
with a limited subset of workers across all tasks '.

Our Contributions: (i) we formulate skill estimation as a
weighted least-squares rank-one problem where the weights
are proposed to compensate for the varying accuracy of the
moment estimates which is expected to be seen in most prac-
tical applications; (ii) we propose to use projected gradient
descent to minimize the resulting objective function; (iii)
we provide a theoretical justification of this approach: we
give natural and mild conditions on the weighting matrix

!This situation is remarkably evident on benchmark datasets:
The ‘Web’ dataset has 177 workers, with 3 to 20 workers/task and
each worker on average interacting with about another 2.7 workers
only, while the standard deviation of how many workers a worker
is interacting with is 15. The RTE dataset has 164 workers, has
only 10 workers/task on the average and each worker interacts
with fewer than 2.5 other workers, while the standard deviation of
the interaction degree is 20.
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under which we prove that gradient descent, despite the
objective being nonconvex, is guaranteed to find the rank-
one decomposition of the true moment matrix despite the
presence of sparse weighting; (iv) we provide experimental
evidence for the strength of the proposed method both on
synthetic and standard benchmark data. For the numerical
illustration, as most datasets are multiclass (the labels take
on more than two values), we also provide a naive extension
of the method to the multiclass case, essentially following
Karger et al. (2013; 2014), which works well in practice.

Technical Novelty: We derive a fundamental result for
rank-one matrix completion: the unobserved entries can be
recovered if and only if the sampling matrix is irreducible
and aperiodic. Our results for convergence of the proposed
gradient descent scheme should be especially surprising
given that the weighted low-rank factorization problem is
known to be NP-hard even for the rank-one case (Gillis &
Glineur, 2011). The apparent contradiction is resolved by
noting that we constrain both the data (rank-one) and the
weighting matrices (irreducible and aperiodic). We present
an entirely original proof that exploits combinatorial prop-
erties of bipartite graphs, which could be of independent
interest. In contrast to our approach, existing results in
low-rank matrix completion require strong assumptions on
the weighting matrix. Typically, the weighting matrix is
binary (i.e., an entry is either present or missing), and the as-
sumptions require either incoherence or a random weighting
matrix (e.g., Ge et al., 2016).

2. Related Work

Discriminative Approach: In contrast to our two-step ap-
proach, several works adopt a discriminative method for
label prediction. These methods (Li & Yu, 2014; Tian &
Zhu, 2015) directly identify true labels by various aggrega-
tion rules that incorporate worker reliability.

Skill Estimation: As mentioned earlier, we work in the
problem of estimating skills under single-coin model. Past
approaches to skill estimation are based on maximum likeli-
hood/maximum aposteriori (ML/MAP) estimation, or mo-
ment matching, or a combination of these. In particular,
various versions of the EM algorithm have been proposed
to implement ML/MAP estimation, starting with the work
of (Dawid & Skene, 1979). Variants and extensions of
this method, tested in various problems, include (Hui &
Walter, 1980; Smyth et al., 1995; Albert & Dodd, 2004;
Raykar et al., 2010; Liu et al., 2012). A number of recent
works were concerned with performance guarantees for EM
and some of its variants (Gao & Zhou, 2013; Zhang et al.,
2014; Gao et al., 2016). Another popular direction is to
add priors over worker skills, labels or worker-task assign-
ments. To properly deal with the extra information, various
Bayesian methods (belief propagation, mean-field and vari-

ational methods) have been considered (Raykar et al., 2010;
Karger et al., 2011; Liu et al., 2012; Karger et al., 2013;
2014). Moment matching is also widely used (Ghosh et al.,
2011; Dalvi et al., 2013; Zhang et al., 2014; Gao et al.,
2016; Bonald & Combes, 2016; Zhang et al., 2016). With
the exception of Bonald & Combes (2016), who propose an
ad-hoc method, the algorithms in these works use matrix or
tensor factorization.’

In theory, an ML/MAP method which is guaranteed to
maximize the likelihood/posterior, is the ideal method to
accommodate irregular worker-task assignments. However,
as far as we know, none of the existing algorithms, unless
initialized with a moment-matching-based spectral method,
is proven to indeed find a satisfactory approximate maxi-
mizer of the objective that it is maximizing (Zhang et al.,
2016). At the same time, moment matching methods that
use spectral (and in general algebraic) algorithms implicitly
assume the regularity of worker-task assignments, too. In-
deed, the approach of Ghosh et al. (2011) crucially relies on
the regularity of the worker-task assignment (as the method
proposed uses unnormalized statistics). In particular, this
method is not expected to work at all on non-regular data.
Other spectral methods, being purely algebraic, implicitly
treat all entries in the estimated matrices and tensors as if
they had the same accuracy, which, in the case of irregular
worker-task assignments, is far from the truth. In particular,
the need to explicitly deal with data with unequal accuracy
is a widely recognized issue that has a long history in the
low-rank factorization community, going back to the work
of Gabriel & Zamir (1979). Starting with this work, the
standard recommendation is to reformulate the low-rank es-
timation problem as a weighted least-squares problem (e.g.,
Gabriel & Zamir, 1979; Srebro & Jaakkola, 2003). In this
paper we will also follow this recommendation.

While Dalvi et al. (2013) also use a weighted least-squares
objective, this is not by choice, but rather as a consequence
of the need to normalize the data rather than to correct for
the inaccuracy of the data. Furthermore, rather than consid-
ering the direct minimization of the resulting objective, they
use two heuristic approaches that also use an unweighted
spectral method.

In this light, our goal is to make spectral methods suitable
for non-regular worker-task data often seen in practice.

Matrix Factorization/Completion: Unlike the general matrix
factorization problem arising in recommender systems (Ko-
ren et al., 2009), we are primarily concerned with rank-one
estimation of square symmetric matrices. Existing results
on matrix completion (Ge et al., 2016) for square symmetric
matrices are more general but require stronger assumptions

2While Ghosh et al. (2011) pioneered the matrix factorization
approach, their work is less relevant to this discussion as they
estimate the labels directly.
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on the matrix such as incoherence and random sampling.

Notation and conventions: The set of reals is denoted by
R, the set of natural numbers which does not include zero is
denoted by N. For k € N, [k] = {1,...,k}. Empty sums
are defined as zero. We will use PP to denote the probabil-
ity measure over the measure space holding our random
variables, while E will be used to denote the corresponding
expectation operator. For p € [1, 0o}, we use [|v]|,, to denote
the p-norm of vectors. Further, ||-|| stands for the 2-norm,
||-|| is the Frobenius-norm. The cardinality of a set S is
denoted by |S|. For a real-valued vector z, || denotes the
vector whose ith component is |z;|. Proofs of new results,
missing from the main text are given in the appendix.

3. Problem Setup

We consider binary crowdsourcing tasks where a set of
workers provide binary labels for a large number of items.
Let W € N be a fixed positive integer denoting the number
of workers. A problem instance § = (s, A, g) is given by a
skill vector s = (s1,...,sw) € [-1,1]", the worker-task
assignment set A C [W] x N and the vector of “ground
truth labels” g € {£1}V.

When A C [W] x [T] for some T € N, we say that 6 is a fi-
nite instance with 7T tasks, otherwise € is an infinite instance.
We allow infinite tasks to be able to discuss asymptotic iden-
tifiability. ©yy denotes the set of all instances.

Definition 1 (Interaction Graph). Let A be a worker-task
assignment set. The (worker) interaction graph underlying
Ais a graph G = G 4 with vertex set [W] such that G =
(W), E) with i,j € [W] connected ((i,j) € E)in G if
there exists some task t € N such that both (i,t) and (j,1t)
are elements of A.

The problem in label recovery with crowdsourcing is
to recover the ground truth labels (g;); given observa-
tions (Yau,¢)(w,¢)c 4» a collection of +1-valued random vari-
ables such that Y,,;, = Z,¢g; for (w,t) € A, where
(Zw,t)(w,t)e is a collection of mutually independent ran-
dom variables that satisfy E[Z,, ;] = s,,.

A (deterministic) inference method underlying an assign-
ment set A takes the observations (Y, ¢) (w,)c 4 and returns
a real-valued score for each task in A; the signs of the
scores give the label-estimates. Formally, we define an in-
ference method as a map 7 : {#£1}4 — RY, where given
Y € {£1}4, 44(Y), the t component of v(Y') € R, is the
score inferred for task ¢. Inference methods are aimed at
working with finite assignment sets. To process an infinite
assignment set, we define the notion of inference schema.
In particular, an inference schema underlying an infinite
assignment set A is defined as the infinite sequence of infer-
ence methods (1), () .. such that v(*) is an inference
method for A N [W] x [T].

When important, we will use the subindex 6 in Py to denote
the dependence of the probability distribution over the prob-
ability space holding our random variables. We will use Ey
to denote the corresponding expectation operator. With this
notation, the average loss suffered by an inference schema
v = (v, 4@, ...) on the first T tasks of an instance 6 is

Lr(3:0) = 7 B[S, 1 {0 (¥)g < 0}].

The optimal inference schema for an assignment set A given
the knowledge of the skill vector s € [—1,1]" is denoted
by 75 4- The next section gives a simple explicit form for
this optimal schema. The average regret of an inference
schema v = (4,42 . ..) for an instance # € © is its
excess loss on the instance as compared to the loss of the
optimal schema:

Ry(7;0) = Lr(v;:0) — L(7: 4;0) .

We define asymptotic consistency and learnability:

Definition 2 (Consistency and Learnability). An infer-
ence schema is said to be (asymptotically) consistent
for an instance set © C Ow if for any 6 € O,
limsupy_, . Rr(y) = 0. An instance set © C Oy is
(asymptotically) learnable, if there is a consistent inference
schema for it.

3.1. Two-Step Plug-in Approach

We propose a two-step approach based on first estimating
the skills and then utilizing a plug-in classifier to predict the
ground-truth labels. The motivation for a two-step approach
stems from existing results that characterize accuracy in
terms of skill estimation errors. For the sake of exposition,
we recall some of these results.

For future reference, define the log-odds weighted majority
vote parameterized by parameter vector o € (—1,1)" as

1+«

YY) = Z v(e;)Y; ¢, where v(a) =log s

i:(1,t)€A

(Nitzan & Paroush, 1981) showed that the optimal decision
rule v 4, which in fact minimizes the probability of the
error P (v, 5(Y)g; < 0) individually for every ¢ € N, takes
this form with parameter o = s, with weights v} = v(s;).

When skills are known, (Berend & Kontorovich, 2014) pro-
vide an upper error bound, as well as an asymptotically
matching lower error bound in terms of the so called com-
mittee potential. When skills are only approximately known,
(Szepesviri, 2015; Berend & Kontorovich, 2014) also show
that similar results can be obtained:

Lemma 1. For any ¢ > 0, the loss with estimated weights
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0; = v(8;) satisfies

T

> L{na(¥)g: < 03]

T
Eq [ZHW‘(Y)gt < e}} +Py(|[v* =01 > €).

1
—E
T 0

—

<

Nl

The error ||v* — ¥||; can be bounded in terms of the multi-
plicative norm-differences in the skill estimates (see (Berend
& Kontorovich, 2014)):
Lemma 2. Suppose ﬁfz , til
[v(s:) — v(8:)] < 2/64].

€ [1 — 8;,1 + 0;] then

These results together imply that a plug-in estimator with
a guaranteed accuracy on the skill levels in turn leads to a
bound on the error probability of predicting ground-truth
labels. This motivates the skill estimation problem.

4. Weighted Least-Squares Estimation

In this section, we propose an asymptotically consistent skill
estimator for irregular worker-task assignments. By this we
not only mean that only a subset of workers provide labels
for a given task, but more importantly we mean that the
interaction graph is not a clique and there is considerable
variability in how often workers work on identical tasks.

Recall that given an instance § = (s, 4, g), the data of the
learner is given in the sparse matrix (Y; ¢)(;+)eca Which is a
collection of independent binary random variables such that
Yit = g:Z;s and s; = E(Z, ;). Define N € NW*W (0 be
the matrix whose (i, j)th entry with ¢ # j gives the number
of times the workers ¢ and j labeled the same task:

We also let N;; = 0. Note that the there is an edge between
workers ¢ and j in the interaction graph, denoted by G =
([W1], E), exactly when N;; > 0. That s, (¢, j) € E if and
only if N;; > 0. When A is infinite, /V;; may be infinite.
In this case, for i # j we also define N;;(T") = |{t € [T] :
(i,1), (4, t) € A}| to denote the number of times workers ¢
and j provide a label for the same task and let N;;(T") = 0.

Let 6 be a finite instance. When (i,1), (j,t) € A, since
g? = 1, by our independence assumptions, E [Y; +,Y; ¢] =
s;5;. This motivates estimating the skills using

- . 1

§ = argminge_y 4w 5 | Z (YiiYie — xixy)® (1)
(2,t),(5,t)EA

Note that the number of terms constraining the skill esti-
mate of particular worker in this objective scales with how

many other workers this worker works with. Intuitively, this
should feel “right”: the more a worker works with others,
the more information we should have about its skill level.

As it turns out, there is an alternative form for this objective,
which is also very instrumental and which will form the
basis of our algorithm and also of our analysis. To introduce
this form, define C;; = s;s; and let

~ 1
Cij = Nim Z(i,t),(j,t)eA YiiYje. 2)

The alternative form of the objective in Eq. (1) is given by
the following result:

Lemma3. Let L : [-1,1]" — [0, o) be defined by

1 ~ 2
L(x) = 5 Z N’LJ(C’LJ — xixj) .
(i.7)ekE
The optimization problem of Eq. (1) is equivalent to the
optimization problem argmin,c(_; 41w L(z).

The proof, which is based on simple algebra, is given in
Appendix A. In fact, the proof shows that the two objective
functions are equal up to a shift by a constant.

The objective function from Lemma 3 can be seen as a
weighted low-rank objective, first proposed by Gabriel &
Zamir (1979). Clearly, the objective prescribes to approxi-
mate C using x|, with the error in the (4, j)th entry scaled
by N;;. Note that this weighting is reasonable as the vari-
ance of Cy; is 1/N;; and we expect from the theory of
least-squares that an objective combining multiple terms
where the data is heteroscedastic (has unequal variance),
the terms should be weighted with the inverse of the data
variances. Since, N;; = 0, the weighting function N can in
general be full-rank, and in this case the general weighted
rank-one optimization is known to be NP-hard (Gillis &
Glineur, 2011). However, our data has special structure,
which may allow one to avoid the existing hardness results:
On the one hand, as the number of data points increases, C“Z-j
will be near rank-one itself. On the other hand, we will put
natural restrictions on the weighting matrix which are in fact
necessary for identifiability. This restriction will essentially
say that the limiting interaction graph, in which two workers
are connected if and only if N;; = oo, should be irreducible
and non-bipartite.

4.1. Plug-in Projected Gradient Descent

To solve the weighted least-squares objective, we propose a
Projected Gradient Descent (PGD) algorithm (cf. Section 4).
At each step we sequentially update the skill level based on
following the negative gradient of the loss L:

S =si4q D Ny(Cyy —sish)s!
(i.5)€E
S =P,
where P(+) : R — [—1 + 75> 1 — & | is aprojection
function (i.e., P(x) truncates its input so that it belongs
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Algorithm 1 Plug-in Projected Gradient Scheme
Input: N,Y = (Y;¢)pearn, 7> 0.
Ti ~ U[*]., 1], Nl = Zj Nzg
Cij < zﬁ 2oy, Giyea Yt Y V(i j) s.t. Nij > 0.
repeat
fori=1,...,W do ~
€XT; < T + n ZjE[W] NijCij:cj

=12 jeqw) Vi

x; + min{z;, 1 — =
e mingi, T )
x; < max{x;, -1+ W}

end for
until = converges
§  sgn(Qeqw) Ti)T
fort=1,....,Tdo A
Vi = 2 iew) Yir log ?—ri
end for
return (Y;),cr)

to the interval it is projecting to), v > 0 is the step size;
N; = [{t : (i,t) € A}| is the number of tasks labeled by
worker ¢ and 7 > 0 is a tuning parameter.

The purpose of the projection is to stay away from the
boundary of the hypercube, where the log-odds function is
changing very rapidly. The justification is that skills close
to one have overwhelming impact on the plug-in rule and
since the skill estimates are expected to have an uncertainty
proportional to 7/+/N; with probability const x e~ there
is little loss in accuracy in confining the parameter estimates
to the appropriately reduced hypercube. While in principle
one could tune this parameter, we use 7 = 1 in this paper.
As noted earlier, the skill vector can only be identified up
to sign. To break this symmetry, in the paper we assume
that the true unknown skill vector satisfies > s; > 0. Thus,
the final step of the algorithm reverses the sign of the skill
vector estimate found if necessary to ensure that the estimate
also has the property that the total skill level is positive.

5. Theoretical Results

In this section we derive theoretical results to shed light
on the fundamental structural properties required of the
interaction graph induced by an assignment set to ensure
learnability with missing data. Subsequently, we analyze
convergence properties of the PGD algorithm.

5.1. Learnability

There are different ways to let the number of tasks approach
infinite while keeping an interaction graph fixed.

Case A: For a fixed interaction graph G = ([W], E') we can
consider assignment sets such that the minimum number
of shared tasks, Tinin(1") = min; j)ep Nij(T') approaches

infinity. Learnability in this context is a property of the
interaction graph.

Case B: We can also start from an infinite assignment set A
and define G = ([W], E) as the graph where two workers
are connected by an edge if IV;; = co. In other words define
connectivity based on whether two workers interact finitely
or infinitely many times.

We will follow the second approach as it is slightly more
general than the first (the second approach allows assign-
ment sets A where some workers interact only finitely many
times, while the first approach does not allow such assign-
ment sets). Thus, we fix an assignment set A and will
consider a set of instances © sharing this assignment set.

To express complete ignorance towards the true unknown la-
bels assigned to tasks, we state our result for truth-complete
instance sets: For any § = (s, A,g) € ©, we require
Os.4 C O where O, 4 = {(s,4,9) : g€ {-1,+1}N}.

As mentioned before, the inference problem is inherently
symmetric: The likelihood assigned to some observed data
Y under an instance § = (s, A, g) is the same as under
the instance (—s, A, —g). Thus, an instance set cannot be
learnable unless somehow these symmetric solutions are
ruled out. To express the condition on this we need a few
more definitions. In particular, given © C Oy, we let
S(0) ={se[-1,1J" : (s,4,9g) € O} be the set of skill
vectors underlying ©. For a skill vector s € [—1, 1] we let
P(s) = {i € [W] : s; > 0} be the set of workers whose
skills are positive and we let P(s) = {P(s), P(—s)} be
the (incomplete) partitioning of workers into workers with
positive and negative skills. Note that workers with zero
skill are left out. Finally, we say that © is rich if there exists
s € [-1,1]" and o > 1 such that x;cpy{as;, si/a} C
S(0).

With this, we are ready to state our first main result:

Theorem 1 (Characterization of learnability). Fix an in-
finite assignment set A and assume that G = G is
connected. Then, a rich, truth-complete set of instances
© C ©4 over A is learnable if and only if the following
hold:

(i) Forany s,s' € S(O) such that |s| = |s'| and P(s) =
P(s'), it follows that s = s';

(ii) The graph is non-bipartite, i.e, it has an odd-cycle.

Richness is required so that there is sufficient ambiguity
about skills. Condition (i) requires that any s € © should be
uniquely identified by |s| and knowing which components
of s have the same sign and which components are zero. For
example, this condition will be met if © is restricted so that
it only contains skill vectors that have a positive sum (which
is the condition we will make in the rest of the paper).
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The forward direction of the theorem statement hinges upon
the following result:

Lemmad. Forany g € {£1}, s € [-1,1]" and an assign-
ment set with a connected, non-bipartite interaction graph
G<, there exists a method to estimate |s| and P(s).

The reverse implication in the theorem statement follows
from the following result:

Lemma 5. Assume that the lengths of all cycles in G are
even. Then there exists s,s' € [-1,1]W, s ¢ {—s', 8"} such
that Ci; = 8;8; = 5;53

Learnability for Finite Tasks: We mention in passing that
asymptotic learnability is a fundamental requirement, which
if not met precludes any reasonable finite time result.

5.2. Convergence of the PGD Algorithm

The previous section established that for learnability the
limiting interaction graph G must be a non-bipartite con-
nected graph. We will now show that PGD under these
assumptions converges to a unique minimum for both the
noisy and noiseless cases; by the latter we mean that in the
loss L of Lemma 3, we set C;; = Cij = s;5; for (i, j) € E.
Note that the (non-bipartite) odd-cycle condition together
with that G is connected gives that the worker-interaction
count matrix NV is irreducible and aperiodic (and vice versa).
We show that in this case the loss has a unique minima and
the PGD algorithm recovers the skill-vector.

Theorem 2. The PGD Algorithm of Sec 4 for s; > 0, Vi,
when initialized in the positive orthant, converges to the
global minima under the conditions (i) and (ii) of Theorem 1
in the noiseless case. Furthermore, skill vectors can be
recovered uniquely by means of a post-processing step for
arbitrary C;; under conditions (i) and (ii) of Theorem 1.

The proof of the result is based on analyzing the critical
points of the loss L underlying the PGD algorithm. Specifi-
cally, we wish to verify whether or not there exists a vector

x # s such that, foreachi = 1,..., W, we have
w
ZNij(xixj — 87;Sj)1'j =0. (3)
j=1

We argue that when worker-interaction matrix N = [N;]
is irreducible and is aperiodic, the only two points that
satisfy this equation are z = s and * = —s. We then rule
out the incorrect equilibrium point by invoking our prior
assumption that ) . s; > 0. Figure 1 illustrates the key
insight of our proof. Note that for the noiseless case, the
theorem imposes few restrictions on the interactions in terms
of number of tasks per worker, the total number of tasks,
or whether task assignments can be asynchronous. Indeed,
interactions could involve only two workers for each task
and yet PGD converges to the skill-vector.

Figure 1. Illustration of the proof of Thm 2. The equilibrium points
of PGD correspond to 3, Nij(uiu; — 1) = 0 where u; = b
and Nij = N;j;s;s;, which is irreducible and aperiodic (for s; >
0). We breakup nodes into three groups: (i) nodes ¢ with u; =
Umax = max; =+ (i) those nodes i with u; = Umin = min; 2+
(iii) all other nodes i and consider the case with UmaxUmin =
1. The label on the edge going from node j to k is the sign of
u;jur — 1. We show that the components Njk corresponding to
ujur > 1 (positive edges) and wju, < 1 (negative edges) must
be zero leaving behind a bipartite graph (black edges), which is a
contradiction.

We will now extend these results to the noisy case. First
notice that we can obtain asymptotic consistency as a direct
corollary of Theorem 2:

Corollary 1. Skill estimates are asymptotically consis-
tent if the limiting interaction graph with weights p;; =
limy_ oo N (T)/T > 0 is irreducible and aperiodic.

The proof of this result follows from C;; — Cj;.

NOISY OBSERVATIONS: We next consider the noisy case,
namely, C;; # Cj;. In particular, let A = [A;;] bea W xW
matrix with C;; = C;; + A,;. We leverage local strong
convexity of the gradient to bound the skill-estimation error
in terms of A. To this end, we consider the equilibrium

points of the PGD with perturbation A:

w

ZNij(mi(Ej — 87;8]' + Aij)xj =0

Jj=1
w w

e ZNH(II}liﬂj — SZ'Sj)IL’j = ZNiinjxj . (4)
J=1 J=1

Let f denote L in the case when C‘ij = 5;5; (“noise-free”
objective). Note that the LHS of the last equality is V f ().
Hence, it follows that if x is a stationary point of L and z
is bounded away from zero, then V f at x is small. Now,
V f(s) = 0 since s is a minimum of f. If we knew that f is
strongly convex in a neighborhood of s, it would follow, at
least, for small enough A that z is close to s. To show that f
is indeed strongly convex, write V2 f(z) = DsP(z/s)Ds
where Pii(l') = Zj 2N”x12, P”(.I') = 4N”.'1315L‘J — 2Ni]‘,
for i # j. Positive definiteness of P(1) follows from the
fact that P(1) is a so-called unsigned Laplacian matrix (cf.
Proposition 2.1 of (Desai & Rao, 1994)). The argument is
finished by resorting to continuity. This gives the following
theorem (the detailed proof is in the appendix):
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Theorem 3. Suppose the worker-interaction matrix satisfies
the assumptions in Theorem 2, Then for each e € (0, 1) there
exists a constant c. > 0 with the following property: for
any A € RWV>W 5 € RW such that |A|| < ¢ and x is the
solution of Eq. 4 and min; |xz;| > €, and max; |x;| < 1,

[Nl FIA]
— <2

= sl < 5——5m
Sminamin(P(l))

where Sy, = min |s;|.
3

Note that | N||# term in numerator and o, (P(1)) (the
smallest eigenvalue of P(1)) in the denominator both scale
linearly with the number of tasks. Thus, the theorem states
that for small enough perturbations, the error of stationary
solutions scales proportionally to ||A[|,, with the propor-
tional constant governed by the squared inverse minimum
skill level and the minimum eigenvalue of P(1), which is
known to characterize how far the weighted graph with
weights NV is from being “bipartite” (Desai & Rao, 1994).

FINITE-TASK BOUND: Note that we can directly apply
this result to obtain a finite task characterization as well. In
particular consider a connected and non-bipartite interaction
graph. Define, Tyyin = ming j)ep Nyj as the minimum
number of shared tasks; d,.x as the maximum degree and
D sum of the degrees. It follows by standard Hoeffding
bounds that with probability greater than (1 — §) we have

max(; j)ep |Cij — CA’”‘ < %. By setting A= Cij —
C; ; and invoking the Gershgorin circle theorem we conclude
that with || A|| < %\/%/6) with probability greater than
1 — 6. Substituting this expression in Theorem 3 yields with
probability greater than 1 — § that

dmax 1Og(D/5)HN”F
Sgninamin(P(l))\/m '

[l — sl <

6. Experimental Results

SYNTHETIC EXPERIMENTS: We will experiment with
different graph types, increasing levels of label noise, graph-
size, skill distribution, and different weighting functions
on synthetic data. Results for graph size, skill distribution
and weightings appear in supplementary material. Here we
describe results for different graph types and noise.

Impact of Graph Type: We consider three 11-node (# work-
ers) irreducible, non-bipartite graphs, namely, a Clique (G),
Star with augmented odd cycle (G2), and a Ring (G3) to
illustrate the impact of sparsity (Clique has dense worker
interactions while Star/Ring have fewer than 3 worker in-
teractions) and graph-type (Ring vs. Star). These graphs
satisfy condition (ii) of Thm 1.

Noise Robustness: To see the impact of noise, we vary the
noise level by increasing the number of tasks, which in
turn reduces the error in the correlation matrix. Tasks are

randomly assigned to binary classes =1 with total number of
tasks ranging from 11 to 330. Skills are randomly assigned
on a uniform grid between 0.8 and —0.3?

We compare the average prediction error PE =
T dimt T 1{Y; # g;} with the Majority Voting (MV) al-
gorithm, the KOS algorithm (Karger et al., 2013), Opt-D&S
algorithm (Zhang et al., 2014), the ER algorithm (Dalvi
et al., 2013), the IWMYV algorithm (Li & Yu, 2014), and the
M3V algorithm (Tian & Zhu, 2015). The KOS algorithm
is based on belief propagation, Opt-D&S uses a spectral
method to initialize EM, the ER algorithm is the more suc-
cessful spectral method of the paper defining it, the IWMV
algorithm is an EM-style algorithm. Each algorithm is aver-
aged over 15 trials on each dataset. The average prediction
errors are presented in Figure 2. As the number of tasks
grows, the average prediction error of PGD algorithm de-
creases. PGD is evidently robust to missing data/sparsity
and graph-type. OPT-DS, which is close to PGD perfor-
mance suffers significant performance degradation on sparse
graphs such as rings. We can attribute this to the fact that a
tensor-based method requires at least 3 worker annotations
for each task (Zhang et al., 2014).

BENCHMARK DATASET EXPERIMENTS: We illustrate
the performance of PGD algorithm against state-of-art al-
gorithms. Each algorithm is executed on four data-sets,
i.e. RTEI (Snow et al.), Temp (Snow et al.), Dogs (Deng
et al., 2009), and WebSearch (Zhou et al., 2012). Following
convention we report errors between ground-truth and re-
covered labels. A summary of these data-sets is presented in
Table 1. RTE1 and Temp data-sets have binary labels where
our algorithm could be directly applied.

Multi-Class Datasets: For Dogs and Web (multiclass) we
run our algorithm with one-vs-rest strategy for each class
by assuming class-independent models determine the prob-
ability of the worker flipping the ground truth. A score
function for class-conditional skill is calculated for each
class k using score(k) = > ; ;)c 4108 (Y, = k),

k3

where k € K is the class index and 1(-) is a +1 indicator.
We predict the label by finding the class corresponding to
the maximum of the score function. We also consider a
closely related strategy (Li & Yu, 2014) (see also Supple-
mentary) where the flipped ground-truth label is randomly
assigned to one of the other classes. The skill estimation
and label estimation for this scenario is a straightforward
extension of our proposed scheme since the confusion ma-
trix is characterized by a single skill parameter. We report
the best results among these two setups in Table 1. PGD
algorithm uniformly outperforms the state-of-art algorithms.

3 The reason for this choice is to satisfy condition (i) in Theo-
rem 1, i.e., requiring overall skills to be positive. Aggregate skill
is about 0.25.
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(a) Clique. (b) Star graph with 3-cycle. (c) Ring.
Figure 2. Illustrative comparisons of prediction performance for three graph types. Only mean values are plotted for exposition. For
the clique, standard deviation values with 11 tasks were 0.09, 0.10, 0.14, 0.14, 0.19, 0.09, and 0.09 for MV, KOS, OPT-D&S, PGD,
ER, IWMYV, and M3V respectively; and with 330 tasks they were 0.02, 0.01, 0.017, 0.014, 0.012, 0.013, and 0.018 respectively. For
the star-graph the standard deviations for 11 tasks were 0.09, 0.13, 0.13, 0.06, 0.13 0.09, and 0.07 for MV, KOS, OPT-D&S, PGD,
ER, IWMYV, M3V respectively and for 330 tasks they were 0.016, 0.015, 0.013, 0.012, 0.04, 0.03, and 0.013. For the ring the standard
deviation for 11 tasks were 0.096, 0.05, 0.08, 0.1, 0.11, 0.09, 0.08 and for 330 tasks they were 0.017, 0.05, 0.02, 0.043, 0.05, 0.086,
0.05. Standard deviations decrease with growing number of tasks.

Table 1. Benchmark Datasets with Prediction Errors for Different Methods.
Datasets | Tasks | Workers | Instances | Classes | Sparsity level Data PGD MV Opt-D&S | KOS ER | IWMV | M3W
RTE1 800 164 8000 2 0.0610 RTE1 0.07 | 0.1031 0.0712 0.3975 | 0.14 0.08 0.0813
Temp 462 76 4620 2 0.1316 Temp | 0.0512 | 0.0639 0.0584 0.0628 | 0.052 0.06 0.0606
Dogs 807 109 8070 4 0.0917 Dogs | 0.1660 | 0.1958 0.1689 0.3172 | 0.18 0.19 0.1822
Web 2665 177 15567 5 0.0033 Web | 0.1485 | 0.2693 0.1586 0.4293 | 0.22 0.22 0.1847
e ozp 1 “Ewv . . . .
014 “ v tions among workers and obtain fairly robust estimates of
013 o | -I- . . Do
” b Bt Eren skill-levels required for accurate prediction.

Average Prediction Error
Average Prediction Error

20 40 60 80 100 120 140 160 10 20 30 40 50 60 70
Maximum Degree of Worker Interation Graph(RTE) Maximum Degree of Worker Interation Graph(TEMP)

(a) RTEL. (b) TEMP.
Figure 3. Impact of Graph Sparsification.

Influence of Graph Sparsification: Here we consider the sce-
nario where fewer workers label each task on the binary clas-
sification benchmark datasets. Binary classification tasks
are aligned with our theoretical results. This experiment will
highlight the performance of state-of-art algorithms under
sparse task-assignments. We simulate this effect based on
random sparsification. In particular, we sort the degree of
each node on the interaction graph. To sparsify the graph we
randomly delete edges starting with the highest degree node
and continue this process for other nodes until we obtain an
interaction graph with desired maximum degree. We also
remove symmetrically remove corresponding edges of inci-
dent workers to maintain symmetry. This has the implicit
effect of deleting some of the tasks as well (for instance,
if a task is annotated by two workers). Higher levels of
sparsification leads to fewer availability of tasks for train-
ing. We iteratively run PGD and the other algorithms for 50
Monte-Carlo trials with different desired maximum degrees.
The average prediction errors are displayed in Figure 3. The
reason IWMV performs poorly is that majority votes are no
longer reliable, which IWMYV relies on. Our PGD algorithm
is surprisingly robust to sparsification of interactions and de-
grades gracefully relative to other schemes. This highlights
the fact that PGD is capable of leveraging sparse interac-

Time Complexity: We also compare the time complexity
of proposed algorithm against state-of-art algorithms. Our
PGD algorithm requires fewer iterations in comparison to
other iterative methods and each iteration scales linearly
with W and the maximum degree, D, ., of the worker-
interaction graph which is bounded by W. Time complexity
of different algorithms is summarized in Table 2 *.

Table 2. Time Complexity/Iteration of Different Methods.
Alg. PGD IWMV M3W
Com. | O(DyaxW) | O(TW) | O(W?T)

7. Conclusions

We propose a new moment-matching approach with
weighted rank-one approximation and propose a gradient
algorithm for worker skill estimation in Crowdsourcing. In
contrast to prior work, the weights are set up to correct for
the spread of the measured worker-worker agreements ac-
curacies which are typical in real-world problems where
who works on the same task with whom is out of control.
Our results explicitly characterize identifiability and conver-
gence rates in terms of spectral graph theoretical quantities,
revealing the importance of worker interaction graphs for
skill estimation. The general problem studied here, is re-
lated to state estimation with intermittent and active sensor
communications (Saligrama & Castanon, 2006; Hanawal
et al., 2017), which we plan to explore in future work.

40Opt-D&S, KOS, and ER algorithms are omitted. They employ
spectral factorization and have high time complexity.
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