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1 A general recipe for trajectory analysis

In this section, we sketch a general recipe for establishing performance guarantees of gradient descent, which
conveys the key idea for proving the main results of this paper. The main challenge is to demonstrate
that appropriate incoherence conditions are preserved throughout the trajectory of the algorithm. This
requires exploiting statistical independence of the samples in a careful manner, in conjunction with generic
optimization theory. Central to our approach is a leave-one-out perturbation argument, which allows to
decouple the statistical dependency while controlling the component-wise incoherence measures.

General Recipe (a leave-one-out analysis)

Step 1: characterize restricted strong convexity and smoothness of f, and identify the region
of incoherence and contraction (RIC).

Step 2: introduce leave-one-out sequences {X»®1 and {H"®} for each I, where {X%(1)}
(resp. { H»®}) is independent of any sample involving ¢; (resp. 9;);

Step 3: establish the incoherence condition for { X'} and {H'} via induction. Suppose the
iterates satisfy the claimed conditions in the tth iteration:

(a) show, via restricted strong convexity, that the true iterates (X®*!, H'*1) and the
leave-one-out version (X1 H!*LM) are exceedingly close;

(b) use statistical independence to show that X**1() — X (resp. H**1() — HY) is inco-
herent w.r.t. ¢ (resp. 4;), namely, ||¢; (X*TH0) — X8)||y and |37 (H O — HY) ||,
are both well-controlled;

(c) combine the bounds to establish the desired incoherence condition concerning
ma g7 (X1 — X9)[lp and max [ (H'+ — )|

1.1 General model
Consider the following problem where the samples are collected in a bilinear/quadratic form as
y; =P H X", 1<j<m, (1)

where the objects of interest H% X' € C™*" or R™*" might be vectors or tall matrices taking either real
or complex values. The design vectors {1} and {¢;} are in either C™ or R", and can be either random or
deterministic. This model is quite general and entails all three examples in this paper as special cases:

e Phase retrieval: H = X' = 2! € R”, and P; = P; = ay;
e Matriz completion: H = X% € R™" and 9, ¢; € {e1, -, e, };
e Blind deconvolution: H? = h% € CK, X' = 2% € CK, ¢; = a;, and ¥P; =b;.

For this setting, the empirical loss function is given by

m

1(2) = f(H,X) = S i HX ¢y~
j=1

where we denote Z = (H, X ). To minimize f(Z), we proceed with vanilla gradient descent
Z" =27"'—yVf(Z"), Vvt>0

following a standard spectral initialization, where 7 is the step size. As a remark, for complex-valued
problems, the gradient (resp. Hessian) should be understood as the Wirtinger gradient (resp. Hessian).

It is clear from that Z" = (H %, X%) can only be recovered up to certain global ambiguity. For clarity
of presentation, we assume in this section that such ambiguity has already been taken care of via proper
global transformation.



1.2 OQOutline of the recipe
We are now positioned to outline the general recipe, which entails the following steps.

e Step 1: characterizing local geometry in the RIC. Our first step is to characterize a region R —
which we term as the region of incoherence and contraction (RIC) — such that the Hessian matrix V2 f(Z)
obeys strong convexity and smoothness,

0 < ol < V*f(Z) < I, VZ € R, (2)

or at least along certain directions (i.e. restricted strong convexity and smoothness), where (/o scales
slowly (or even remains bounded) with the problem size. As revealed by optimization theory, this geometric
property immediately implies linear convergence with the contraction rate 1 — O(«/f) for a properly
chosen step size 7, as long as all iterates stay within the RIC.

A natural question then arises: what does the RIC R look like? As it turns out, the RIC typically contains
all points such that the ¢y error ||Z — Z*||p is not too large and

(incoherence) max Hd)J* (X — )(t‘)H2 and max H'L/J;(H - Hh)H2 are well-controlled. (3)
J J

In the three examples, the above incoherence condition translates to:

— Phase retrieval: max; |a;»'— (x — 2| is well-controlled;
— Matrix completion: HX — XhH2 ., 1s well-controlled;
— Blind deconvolution: max; ’a;r(w — azh)| and max; |b;r(h — hh)‘ are well-controlled.

e Step 2: introducing the leave-one-out sequences. To justify that no iterates leave the RIC, we rely
on the construction of auxiliary sequences. Specifically, for each [, produce an auxiliary sequence {Zt’(l) =
(X0 /H5M)Y such that X4 (resp. H>(Y) is independent of any sample involving ¢; (resp. ;). As an
example, suppose that the ¢;’s and the 1;’s are independently and randomly generated. Then for each I,
one can consider a leave-one-out loss function

1 * * 2
fO2) = — 3 [W HX ¢ —,
337l

that discards the Ith sample. One further generates {Z t’(l)} by running vanilla gradient descent w.r.t. this
auxiliary loss function, with a spectral initialization that similarly discards the [th sample. Note that this
procedure is only introduced to facilitate analysis and is never implemented in practice.

e Step 3: establishing the incoherence condition. We are now ready to establish the incoherence
condition with the assistance of the auxiliary sequences. Usually the proof proceeds by induction, where
our goal is to show that the next iterate remains within the RIC, given that the current one does.

— Step 3(a): proximity between the original and the leave-one-out iterates. As one can antici-
pate, {Z'} and {Z>(V} remain “glued” to each other along the whole trajectory, since their constructions
differ by only a single sample. In fact, as long as the initial estimates stay sufficiently close, their gaps
will never explode. To intuitively see why, use the fact Vf(Z?) ~ V) (Z?) to discover that

Zt+1 _ Zt+1,(l) _ Zt _ an(Zt) _ (Zt,(l) _ nvf(l) (Zt(l)))
~ Zt _ Zt,(l) _ ’I’]VQf(Zt)(Zt _ Zt’(l)),

which together with the strong convexity condition implies /5 contraction
HZt+1 _ Zt+1,(l)HF ~ H(I _ nVQf(Zt)) (Zt _ Zt,(l))HF < HZt _ Zt’(l)Hz'

Indeed, (restricted) strong convexity is crucial in controlling the size of leave-one-out perturbations.



— Step 3(b): incoherence condition of the leave-one-out iterates. The fact that Z'*! and
Z'*1(0) are exceedingly close motivates us to control the incoherence of Z*+() — Z% instead, for
1 <1< m. By construction, X*T1®) (resp. H*+t1()) is statistically independent of any sample involv-
ing the design vector ¢; (resp. 1), a fact that typically leads to a more friendly analysis for controlling
I (X*+© = X2) [, and [|op; (2O — HA) |,

— Step 3(c): combining the bounds. With these results in place, apply the triangle inequality to
obtain

lg7 (X1 = X7)

where the first term is controlled in Step 3(a) and the second term is controlled in Step 3(b). The term
|7 (H*' — H%)||, can be bounded similarly. By choosing the bounds properly, this establishes the
incoherence condition for all 1 <[ < m as desired.

< [l X = X0 g (X0 - x)

(B [

2 Analysis for phase retrieval

In this section, we instantiate the general recipe presented in Section[I]to phase retrieval and prove Theorem![I]
Similar to the Section 7.1 in [?], we are going to use 1; = c1/(logn - ||2%|3) instead of ¢1/(logn - ||z ||2) as the
step size for analysis. This is because with high probability, |||z and ||z?||, are rather close in the relative
sense. Without loss of generality, we assume throughout this section that H:ch H2 =1 and

dist(z°, %) = [|2° — x|y < [|x° + = ||,. (4)
In addition, the gradient and the Hessian of f(-) for this problem (see (L3))) are given respectively by
1 & 2
Vi@ =—>"[(aJo)" ~ 4] (a]2) a;. (5)

Jj=1

<
3
s

Vi @) = > [3(a]@)’ — ] aja], (6)

which are useful throughout the proof.

2.1 Step 1: characterizing local geometry in the RIC
2.1.1 Local geometry

We start by characterizing the region that enjoys both strong convexity and the desired level of smoothness.
This is supplied in the following lemma, which plays a crucial role in the subsequent analysis.

Lemma 1 (Restricted strong convexity and smoothness for phase retrieval). Fiz any sufficiently small
constant C1 > 0 and any sufficiently large constant Cy > 0, and suppose the sample complexity obeys
m > conlogn for some sufficiently large constant co > 0. With probability at least 1 — O(mn~10),

Vif(®) = (1/2) -1,
holds simultaneously for all x € R™ satisfying Hw — ! H2 < 2Ci; and
V2 f(z) = (5C2 (10 + Co)logn) - I,

holds simultaneously for all x € R™ obeying

|l =], < 2C1, (7a)
max |a;-r (x— :ch)| < Cy+/logn. (7b)
Proof. See Appendix [£.1] O

In words, Lemma [1| reveals that the Hessian matrix is positive definite and (almost) well-conditioned,
if one restricts attention to the set of points that are (i) not far away from the truth (cf. ) and (ii)
incoherent with respect to the measurement vectors {a;},;,, (cf. (7b)).



2.1.2 Error contraction

As we point out before, the nice local geometry enables £5 contraction, which we formalize below.

Lemma 2. With probability exceeding 1 — O(mn=1Y), one has

[l = 2], < (1= n/2) [ - 2% (8)
for any @' obeying the conditions (7)), provided that the step size satisfies 0 < n < 1/[5Cs (10 + Cs)logn].

Proof. This proof applies the standard argument when establishing the ¢ error contraction of gradient
descent for strongly convex and smooth functions. See Appendix O

With the help of Lemma we can turn the proof of Theorem [I] into ensuring that the trajectory
{#'}o<4<,, lies in the RIC specified by @D This is formally stated in the next lemma.

Lemma 3. Suppose for all 0 < t < Ty := n, the trajectory {x'} falls within the region of incoherence and
contraction (termed the RIC), namely,

| —=*[|, < €, (92)
max |al—r (z' — a:”)| < Cz+/logn, (9b)

1<i<m

then the claims in Theorem [1] hold true. Here and throughout this section, C1,Co > 0 are two absolute
constants as specified in Lemma [1}

Proof. See Appendix O

2.2 Step 2: introducing the leave-one-out sequences

In comparison to the ¢ error bound that captures the overall loss, the incoherence hypothesis (9b)) —
which concerns sample-wise control of the empirical risk — is more complicated to establish. This is partly
due to the statistical dependence between @' and the sampling vectors {a;}. As described in the general
recipe, the key idea is the introduction of a leave-one-out version of the WF iterates, which removes a single
measurement, from consideration.

To be precise, for each 1 <[ < m, we define the leave-one-out empirical loss function as

fO@) = 3 [(a]2)* —y] . (10)

dm ~
Jig#l

and the auxiliary trajectory {wt’(l) }t>0 is constructed by running WF w.r.t. f(l)(:c). In addition, the spectral

initialization %" is computed based on the rescaled leading eigenvector of the leave-one-out data matrix
yo .-t T 11
= Y viaa). (11)
34l
Clearly, the entire sequence {wt’(” } +>0 18 independent of the Ith sampling vector a;. This auxiliary procedure

is formally described in Algorithm

2.3 Step 3: establishing the incoherence condition by induction

As revealed by Lemma 3] it suffices to prove that the iterates {@'}o<¢<7, satisfies @ with high probability.
Our proof will be inductive in nature. For the sake of clarity, we list all the induction hypotheses:

&' — 2|, < Cu, (13a)

LHere, we deliberately change 2C; in (7a)) to C1 in the definition of the RIC to ensure the correctness of the analysis.



Algorithm 1 The [th leave-one-out sequence for phase retrieval

Input: {a;}1<j<m 1 and {y;}1<j<m jzi-
Spectral initialization: let \; (Y(l)) and %O be the leading eigenvalue and eigenvector of

1

l

y® — E yja;a; ,
Jii#l

respectively, and set

o _ (VO BE0, a0 o, < |30 + 2,
00

a —/A1 (YY) /3200 else.

Gradient updates: for t =0,1,2,...,7 —1 do

gt = g0 v O (1), (12)
logn

max. Hmt _ gct,(l)H2 < 03\/7 (13b)

max a (2 —af)| < Co\/logn. (13c)

Here C5 > 0 is some universal constant. The induction on (13a)), that is,

"+ —2f|, < O, (14)

has already been established in Lemma 2] This subsection is devoted to establishing (I3b) and (I3d) for the

(t

+ 1)th iteration, assuming that holds true up to the tth iteration. We defer the justification of the

base case (i.e. initialization at ¢t = 0) to Section

Step 3(a): proximity between the original and the leave-one-out iterates. The leave-one-out
sequence {z>(} behaves similarly to the true WF iterates {«'} while maintaining statistical independence
with a;, a key fact that allows us to control the incoherence of /th leave-one-out sequence w.r.t. a;. We
will formally quantify the gap between x!*! and z!**(®) in the following lemma, which establishes the

induction in (13b]).
Lemma 4. Under the hypotheses , with probability at least 1 — O(mn=10),

logn

max Hwt+1 _ 93t+1,(l)“2 < Cy — (15)

as long as the sample size obeys m > nlogn and the stepsize 0 < n < 1/[5C5 (10 4+ C) logn].

Proof. The proof relies heavily on the restricted strong convexity (see Lemma [I)) and is deferred to Ap-
pendix [4.4] O

Step 3(b): incoherence of the leave-one-out iterates. By construction, z!*H() is statistically
independent of the sampling vector a;. One can thus invoke the standard Gaussian concentration results
and the union bound to derive that with probability at least 1 — O (mn='0),

e o] (@10 _ a:h)’ < 5\/@||a:t+1,(l) _ a;“”z
< 5logn (|l20 - 2|, + 2 - 2],



(ii) 1
< 54/logn (Cg oen + C’1>

n

< Cy/logn (16)

holds for some constant Cy > 6C; > 0 and n sufficiently large. Here, (i) comes from the triangle inequality,
and (ii) arises from the proximity bound and the condition (14).

e Step 3(c): combining the bounds. We are now prepared to establish (13| for the (¢ + 1)th iteration.
Specifically,

max |alT (:1:’”rl - wh)’ < max |a; (:ct“ — :ct+1’(l))’ + max ’al—r (mt+17(l) — m“)‘

1<I<m 1<I<m 1<i<m
(i)
< max ||al\|2Hact+1 — gttt ||2 + Cy/logn
1<i<m

(i) 1
< Von - O3y 222 1 04y/logn < Ca/logn, (17)

n

where (i) follows from the Cauchy-Schwarz inequality and (I6]), the inequality (ii) is a consequence of
and (40, and the last inequality holds as long as Co/(Cs + C4) is sufficiently large.

Using mathematical induction and the union bound, we establish for all t < Ty = n with high probability.
This in turn concludes the proof of Theorem [} as long as the hypotheses are valid for the base case.
2.4 The base case: spectral initialization

In the end, we return to verify the induction hypotheses for the base case (¢ = 0), i.e. the spectral initialization
obeys . The following lemma justifies (13a)) by choosing ¢ sufficiently small.

Lemma 5. Fiz any small constant § > 0, and suppose m > conlogn for some large constant ¢y > 0.
Consider the two vectors z° and x° as defined in Algorithm |1, and suppose without loss of generality that
holds. Then with probability exceeding 1 — O(n=1Y), one has

1Y —E[Y]|| <4, (18)
|z — xf|]y < 20 and HEO - azhHZ < V/26. (19)
Proof. This result follows directly from the Davis-Kahan sin® theorem. See Appendix [£.5 O

We then move on to justifying (13b)), the proximity between the original and leave-one-out iterates for
t=0.

Lemma 6. Suppose m > conlogn for some large constant co > 0. Then with probability at least 1 — O(mn=19),
one has

logn

0 _ 00| < (.

lrgnlzgnﬂw x H2 < Cs o (20)
Proof. This is also a consequence of the Davis-Kahan sin® theorem. See Appendix O

The final claim (13c)) can be proved using the same argument as in deriving , and hence is omitted.

3 Analysis for matrix completion
In this section, we instantiate the general recipe presented in Section [l| to matrix completion and prove

Theorem [2] Before continuing, we first gather a few useful facts regarding the loss function for matrix
completion. The gradient of it is given by

Vi(X) = %Pg [(XXT - (M"+E)] X. (21)



We define the expected gradient (with respect to the sampling set ) to be
VF(X)=[XX"T - (M*+E)] X

and also the (expected) gradient without noise to be
1
V felean (X) = EPQ (XXT-M"X and VFpem (X)=(XXT - M X. (22)

In addition, we need the Hessian V2 f.jean (X ), which is represented by an nr x nr matrix. Simple calculations
reveal that for any V € R"*",

vee (V) V2 fuean (X) vee (V) = % [Po (VXT+XVT) 2

1
e+ ; (Po(XXT —-M"),VVT), (23)

where vec(V') € R™ denotes the vectorization of V.
And for reference issues, we re-list the theoretical guarantees on the vanilla GD iterates specified by
Theorem [2f namely, with probability at least 1 — O (n*S), the iterates of Algorithm [2| satisfy

1
|X'H - X¥||, < <C4p pr +c ? >HX g (24a)

|xtH - XP||, (oSpw/ +cg ,/”log">||xh||2w, (24D)

X H — Xn||<(cgp,ﬂrw10 \f) x| (240)

for all 0 < t < T = O(n®), where C1, Cy4, Cs, Cs, Cy and Cpg are some absolute positive constants and
1 — (omin/D) - n < p < 1, provided that 0 < ny =1 < 2/ (25K0max)-

3.1 Step 1: characterizing local geometry in the RIC
3.1.1 Local geometry

The first step is to characterize the region where the empirical loss function enjoys restricted strong convexity
and smoothness in an appropriate sense. This is formally stated in the following lemma.

Lemma 7 (Restricted strong convexity and smoothness for matrix completion). Suppose that the sample
size obeys n%p > Cr2urnlogn for some sufficiently large constant C > 0. Then with probability at least
1—0 (n'), the Hessian V2 focan(X) as defined in obeys

vee (V)T 92 fuean (X)vee (V) 2 22 VIR and |92 atean (X)]| < Zoma (25)

for all X and V =Y Hy — Z, with Hy := argmingcor=- |Y R — Z||g, satisfying:
1€ = X5 o = €1 XF]], - (262)
1Z — X" < o)l X", (26b)

where € < 1/v/w3purlog*n and § < 1/k.
Proof. See Appendix O

Lemma reveals that the Hessian matrix is well-conditioned in a neighborhood close to X* that remains
incoherent measured in the f5/¢, norm (cf. (26a))), and along directions that point towards points which
are not far away from the truth in the spectral norm (cf. (26b)).

Remark 1. The second condition is characterized using the spectral norm || - ||, while in previous works
this is typically presented in the Frobenius norm || - ||g. It is also worth noting that the Hessian matrix —
even in the infinite-sample and noiseless case — is rank-deficient and cannot be positive definite. As a result,
we resort to the form of strong convexity by restricting attention to certain directions (see the conditions on

V).



3.1.2 Error contraction

Our goal is to demonstrate the error bounds measured in three different norms. Notably, as long as
the iterates satisfy at the tth iteration, then || X tHY - X 92,00 is sufficiently small. Under our sample
complexity assumption, X tH? satisfies the 05/ condition required in Lemma Consequently, we
can invoke Lemma [7] to arrive at the following error contraction result.

Lemma 8 (Contraction w.r.t. the Frobenius norm). Suppose n?p > Cr3u3r3nlog® n and the noise satisfies
. If the iterates satisfy (24a)) and (24b) at the tth iteration, then with probability at least 1 — O(n~19),

1 o n
xt Zllxh
np H HF—'_ClUmin\/;H HF

holds as long as 0 <1 < 2/(25K0max), 1 — (Omin/4) - 1n < p < 1, and C4 is sufficiently large.

HXt+1f{\t+1 _ XhHF < C4pt+1m,

Proof. The proof is built upon Lemmal[7] See Appendix O

Further, if the current iterate satisfies all three conditions in (24]), then we can derive a stronger sense of
error contraction, namely, contraction in terms of the spectral norm.

Lemma 9 (Contraction w.r.t. the spectral norm). Suppose n’p > Cr3pPr3nlog® n and the noise satisfies
. If the iterates satisfy at the tth iteration, then

N 1
e B X < ot [ cro e 0

holds with probability at least 1 — O(n=10), provided that 0 <1 < 1/ (20max) and 1 — (omin/3) -1 < p < 1.

Proof. The key observation is this: the iterate that proceeds according to the population-level gradient
reduces the error w.r.t. || - ||, namely,

| XTH — 1V Foean (XTH?) — X*|| < || X'H' - XF|,

as long as X'H' is sufficiently close to the truth. Notably, the orthonormal matrix H' is still chosen
to be the one that minimizes the || - ||p distance (as opposed to || - ||), which yields a symmetry property

XITXtH! = (th{\t)TXt'7 crucial for our analysis. See Appendix |5.3|for details. O

3.2 Step 2: introducing the leave-one-out sequences

In order to establish the incoherence properties (24b)) for the entire trajectory, which is difficult to deal with
directly due to the complicated statistical dependence, we introduce a collection of leave-one-out versions
of {X'},-,, denoted by {Xt’(l)}t>0 for each 1 <[ < n. Specifically, {Xt’(l)}t>0 is the iterates of gradient

descent operating on the auxiliary loss function
1 1
O(X) = ¢ [Past [XXT — (M* 4 B)] g+ 7 1P (XX = %) (28)

Here, Pq, (resp. Po-: and P;) represents the orthogonal projection onto the subspace of matrices which
vanish outside of the index set () := {(i,7) € Q| i =1lor j =1} (resp. Q7' :={(i,j) €Q|i#1,j#1} and
{(i,4) | i =1 or j =1}); that is, for any matrix M,

M, ;, if (i=1lorj=1) and (4,5) € Q,

29
0, else, (29)

[Pe, (M)]” = {

M;;, ifi#landj+#!land (i,j) € Q

0, else

0, ifi£1and j #1,
Mi,j7 lf’L:lOI']:l
(30)

[Po-t (M), ; = { and [P (M)],; = {

10



The gradient of the leave-one-out loss function is given by
1
viW(X) = S Pa [(XXT - (M"+E)]| X +P (XXT-M"X. (31)

The full algorithm to obtain the leave-one-out sequence {X*()},5 (including spectral initialization) is
summarized in Algorithm

Algorithm 2 The [th leave-one-out sequence for matrix completion
Input: Y = [Yi ], .., M, M} ,r,p.
Spectral initialization: Let U>OXOU%OT be the top-r eigendecomposition of

MO = %7994( )+ P (MF) = 77?9 (M + E) + P, (M)

with Pg-:1 and P; defined in , and set X% = UO’(l)(E(l))l/Q.
Gradient updates: for t =0,1,2,..., 7 —1 do

XL — xt0) _ ntVf(l)(Xt’(l))- (32)

Remark 2. Rather than simply dropping all samples in the Ith row/column, we replace the {th row/column
with their respective population means. In other words, the leave-one-out gradient forms an unbiased
surrogate for the true gradient, which is particularly important in ensuring high estimation accuracy.

3.3 Step 3: establishing the incoherence condition by induction

We will continue the proof of Theorem [2] in an inductive manner. As seen in Section [3.1.2] the induction
hypotheses and hold for the (t+1)th iteration as long as holds at the tth iteration. Therefore,
we are left with proving the incoherence hypothesis for all 0 <t < T = O(n®). For clarity of analysis, it
is crucial to maintain a list of induction hypotheses, which includes a few more hypotheses that complement

, and is given below.

1
X H X, < (Curtir—i + 01 2 ] (330)

1
HXfr.ﬂmm_(@pww w”%")\WQ ()

IX'H - x| < (cgp ur \f) 1%, (33¢)

/ Inl
ngagn ||X H — Xt,(l)Rt,(l)H (ng pr +O n ogn> ||X“||2 (33d)
W) gt _ x o [nlogn X
s [ (XHOFO - x), ], < Gvap+%%md ),

hold for some absolute constants 0 < p < 1 and Cy,---,C1g > 0. Here, H5® and R*® are orthonormal
matrices defined by

+ 010

H"® = arg min || X"OR— XhHF7 (34)

ReOT*r

X"WR - X'H (35)

RV .= arg min ||F

RGOTX T

11



Clearly, the first three hypotheses (33al)-(33c) constitute the conclusion of Theorem ie. . The last two
hypotheses (33d) and (33e) are auxiliary properties connecting the true iterates and the auxiliary leave-one-
out sequences. Moreover, we summarize below several immediate consequences of , which will be useful
throughout.

Lemma 10. Suppose n’p > k3u?r?nlogn and the noise satisfies , Under the hypotheses , one has

thﬁt - Xtﬂ)ﬁt’(l)HF < 5k thﬁf - Xt’(l)Rt’(l)HF : (36a)

1 o n
b b
T 2[5 I

||xt><l>Rfv<l>—Xh||2,ocs{<cg+c5>pw 8R4 05+ o) \/? } Xy (360

_ 1
|xtOFEO — x4 < {2Cgpt,ur\/TTp +2Clogzm\/§} | x| (36d)

In particular, (36a) follows from hypotheses (33c|) and (33d]).
Proof. See Appendix [5.4} O

|x OB - X3, < | x ORO - X3 < {2C4pt,u7”
F

In the sequel, we follow the general recipe outlined in Section [I] to establish the induction hypotheses.
We only need to establish , and for the (¢ + 1)th iteration, since and have been
established in Section Specifically, we resort to the leave-one-out iterates by showing that: first, the
true and the auxiliary iterates remain exceedingly close throughout; second, the Ith leave-one-out sequence
stays incoherent with e; due to statistical independence.

e Step 3(a): proximity between the original and the leave-one-out iterates. We demonstrate
that X**+! is well approximated by X**%() up to proper orthonormal transforms. This is precisely the
induction hypothesis (33d) for the (¢ + 1)th iteration.

Lemma 11. Suppose the sample complexity satisfies n®p > k*pPr3nlog® n and the noise satisfies .
Under the hypotheses for the tth iteration, we have

logn nlogn

np

—~ o
HXt+1Ht+1 _ Xt+1,(l)Rt+1,(l)HF < Capt*lpr |Xh||2,oo + 070 4 ||Xh||27oo (37)
with probability at least 1 — O(n=1%), provided that 0 < n < 2/(25k0max); 1 — (Omin/5) -0 < p < 1 and

Cr > 0 is sufficiently large.

Proof. The fact that this difference is well-controlled relies heavily on the benign geometric property of the
Hessian revealed by Lemmalﬂ Two important remarks are in order: (1) both points X*H* and X*® Rt

satisfy (26a)); (2) the difference XtH! — Xt Rt forms a valid direction for restricted strong convexity.
These two properties together allow us to invoke Lemma [7] See Appendix O

e Step 3(b): incoherence of the leave-one-out iterates. Given that X'+ is sufficiently close to
X' we turn our attention to establishing the incoherence of this surrogate X*+t1(®) wr.t. ;. This
amounts to proving the induction hypothesis (33¢]) for the (¢ + 1)th iteration.

Lemma 12. Suppose the sample complexity meets n’p > /<;3u37"3n10g3n and the noise satisfies .
Under the hypotheses for the tth iteration, one has

1
/1P

with probability at least 1 — O(n™1Y), as long as 0 <1 < 1/0max, 1 — (0min/3) -1 < p < 1, Cy > kCy and
06 > 11010/\/ IOgTL

nlogn

| X (38)

H (Xt+1,(1)ﬁt+1,(l) _ Xu)lw”z < Copt*pr HXqu,oo + CGO_L_ hHQm

12



Proof. The key observation is that X*'*1() is statistically independent from any sample in the Ilth
row/column of the matrix. Since there are an order of np samples in each row/column, we obtain enough
information that helps establish the desired incoherence property. See Appendix [5.6] O

e Step 3(c): combining the bounds. The inequalities (33d) and (33¢|) taken collectively allow us to
establish the induction hypothesis ([33b]). Specifically, for every 1 <[ < n, write

(Xt+1ﬁt+1 . Xu)l _ (Xt+1f_I\t+1 o Xt+1,(l)ﬁt+1,(z))l + (Xt+1,(l)ﬁt+1,(l) _ Xh)l ,

and the triangle inequality gives

(A - X, [, < [XE - XHOFO g [(XHORO X3, [, (39)

The second term has already been bounded by . Since we have established the induction hypotheses
(33c]) and (33d)) for the (¢+1)th iteration, the first term can be bounded by (36al]) for the (¢+1)th iteration,
ie.

HXt+1ﬁt+1 _ Xt+1,(l)f{\t+1,(l)H < Bk HXtJrlﬁtH _ Xt+1,(l)Rt+1,(l)H

Plugging the above inequality, ([37) and (38) into (39), we have F
HXt“Ht“ XHH2 _<x <C3P W\/7||Xh||2 - ming ”1‘;# HXHHZ‘”)

4 Capttpr X0+ oy [ER

< Cop [R5+ 2 [P o,

as long as C5/(kC5+C2) and Cys /(kC7+Cs) are sufficiently large. This establishes the induction hypothesis
(33b]) and finishes the proof.

3.4 The base case: spectral initialization

Finally, we return to check the base case, namely, we aim to show that the spectral initialization satisfies
the induction hypotheses (33a)-(33¢]) for ¢ = 0. This is accomplished via the following lemma.

Lemma 13. Suppose the sample size obeys n’p > pr?nlogn, the noise satisfies , and K = Omax/Omin =
1. Then with probability at least 1 — O (n™'9), the claims in (33a])-(33€) hold simultaneously for t = 0.

Proof. This follows by invoking the Davis-Kahan sin® theorem [?] as well as the entrywise eigenvector
perturbation analysis in [?]. We defer the proof to Appendix O

4 Proofs for phase retrieval

Before proceeding, we gather a few simple facts. The standard concentration inequality for x? random
variables together with the union bound reveals that the sampling vectors {a;} obey

max |a,, < Von (40)

1<5<m

with probability at least 1 — O(me~1°"). In addition, standard Gaussian concentration inequalities give

max |a wh| < 54/logn (41)

1<j<m

with probability exceeding 1 — O(mn=10).

13



4.1 Proof of Lemma [

We start with the smoothness bound, namely, V2 f(x) < O(logn) - I,,. It suffices to prove the upper bound
|V2f ()| < logn. To this end, we first decompose the Hessian (cf. (6)) into three components as follows:

m
%Z[ajsc - )}aja + = Z ajz) aja] —2 (I, +2z%a"") +2 (I, + 22"2" "),

Jj=1

=A =As =A3
where we have used y; = (a;r:ch)Q. In the sequel, we control the three terms A{, As and Az in reverse order.
e The third term Az can be easily bounded by

[As] <2 (T +2||z2*T|)) = 6

e The second term As can be controlled by means of Lemma
[[Azll <26
for an arbitrarily small constant § > 0, as long as m > conlogn for ¢y sufficiently large.
e It thus remains to control A;. Towards this we discover that
m

A1l < Z a:fa: ||a (a:+a:”)|aja;-r . (42)

Under the assumption maxi<j<m ’a;'— (:L' — :ch)’ < Cy+/logn and the fact , we can also obtain

lglja<xm|a (m+a: )| < 21gla<xm|a a;h| —|—12n]3b<xm|a]T (m—a} )| < (10 + C3) y/logn.

Substitution into leads to

|A1]| <3C5(10+ Cs)logn - < 4C5 (10 4+ Cs) logn,

m
1 § T
— ajaj
m

j=1

where the last inequality is a direct consequence of Lemma

Combining the above bounds on Aj, Ay and Aj yields
[V2f ()] < ALl + [|A2]] + [[As] < 4C2 (10 + C2)logn + 26 + 6 < 5C (10 + C2) logn,

as long as n is sufficiently large. This establishes the claimed smoothness property.
Next we move on to the strong convexity lower bound. Picking a constant C' > 0 and enforcing proper
truncation, we get

1 3w I 2
(@) =—>[3(a2)" ] a, Iigg a/2)" Lf|urp)ccp @ia) —— Y (a]a") asa] .

Jj=1

—As i=As

We begin with the simpler term As. Lemma [19|implies that with probability at least 1 — O(n~19),
45— (1, + 222 <5

holds for any small constant § > 0, as long as m/(nlogn) is sufficiently large. This reveals that

As < (146)- I, + 2a"x"T.
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To bound Ay, invoke Lemma [20[ to conclude that with probability at least 1 — cze™2™ (for some constants
Co,C3 > O),
[As =3 (Brza" + Bol|a|31,) || < 6|3

for any small constant § > 0, provided that m/n is sufficiently large. Here,

Bi =K [ Lyg<oy] —E[€1g<c] and Bo:=E [ L <],

where the expectation is taken with respect to £ ~ N(0,1). By the assumption H:B — " H2 < 2(C, one has
lell, <1+2C1,  |llall} - o%3] < 2¢1 (4C1 +1), [T — w2 | <60y (4Ck + 1),

which leads to

81 =3 (Bt + AL < A =3 (Broa” + Aalel3L,) | + 3][(Biatat™ + ) - (Brae” + AalalL,)]|
< 5||:c||§ + 3061 Hwhth - :ca:TH + 3055 HIn - |:c||2In||
< 5(142C1)* + 188,01 (4C1 + 1) + 682C1 (4C, + 1)

This further implies

Ay =3 (Biaia®T + BoI,) — {5 (1+2C1)? + 186,04 (4C, + 1) + 68,01 (4C, + 1)} I.

Recognizing that 81 (resp. B2) approaches 2 (resp. 1) as C' grows, we can thus take C; small enough and C
large enough to guarantee that
Ay =5zt T 421,

Putting the preceding two bounds on A4 and A5 together yields
V2f (z) = 52T + 21, — [(1+0) - I, + 222" 7] = (1/2) - I,

as claimed.

4.2 Proof of Lemma [2]

Using the update rule (cf. (15))) as well as the fundamental theorem of calculus [?, Chapter XIII, Theorem
4.2], we get

gt — 2t =g' — V[ (2') - [2F - V[ (2 {I - /V2 dT:| (z' — z%),

where we denote x (7) = xf + 7(z! — xf), 0 < 7 < 1. Here, the first equality makes use of the fact that
Vf(z") = 0. Under the condition , it is self-evident that for all 0 < 7 < 1,

H:c (1) — a:h||2 = || (=" — Il:h)Hg <2C4 and

max |a; (z(7) — 2%)| < max a7 (z' — )| < Cyy/logn.

1<I<m 1<I<m
This means that for all 0 < 7 <1,

(1/2) - I, = V*f (x(1)) = [6C2 (10 + C2)logn] - I,
in view of Lemma [l| Picking n < 1/[5C3 (10 + C2)logn] (and hence |[nV2f(z(7))| < 1), one sees that

0=<1I,— /V2 ))dr 2 (1—-n/2)-1

1
In—77/0 V2f(x(7))d

15

which immediately yields

Hwt“—w“HgS‘ e =2, < (1 =n/2) [|l2* - 27,




4.3 Proof of Lemma [3]
We start with proving (17a)). For all 0 < ¢ < Ty, invoke Lemma [2]recursively with the conditions (9] to reach

o~ < (1 =/ o ], < Cott —m2) o], .

This finishes the proof of (17a) for 0 <t < T and also reveals that
1
|27 =2, < Cu(t = /2" [|2R], < [l (44)
provided that n =< 1/logn. Applying the Cauchy-Schwarz inequality and the fact indicate that

1
max |a] (2" —2%)| < max. lla||2 ]|z — 2%y < Von - ngEhH? < Cy4/logn,

1<i<m
leading to the satisfaction of @ Therefore, invoking Lemma [2| yields

To+1

1
|l = 2|, < (1= n/2) |2 -2, < Cllatla.

One can then repeat this argument to arrive at for all t > T}
1
Jat — al, < (- m/2) [ a2, < 03 (/) o], < Lol ()

We are left with (L7b]). It is self-evident that the iterates from 0 < ¢ < Tj satisty (17b)) by assumptions.
For t > Tj, we can use the Cauchy-Schhwarz inequality to obtain

max |a] (@' —2%)| < max |a;l|, ||’ — 2|, < vVn- = <C’2\/logn

1<j<m 1<j<m

where the penultimate relation uses the conditions ) and (| .

4.4 Proof of Lemma [4
First, going through the same derivation as in and will result in

max |a; (mt’(l) — a}b)‘ < Cyy/logn (46)

1<i<m

for some Cy < C5, which will be helpful for our analysis.
We use the gradient update rules once again to decompose

2Lt L) gt 0V f (wt) _ [wt,(l) _ va(l) (wt,(l))}
—at VS (mt) [ va( t,(1) )] [ f( £,(1) ) _vf(l)(mt,(l))}
::I:t—sct’(l)—n[Vf (mt) Vf( £,(0) )} [( Tt l)) (aT:ch) } (aT:Bt (l))al,

O O

1
m

where the last line comes from the definition of V£ (-) and V£® (-).

1. We first control the term uél), which is easier to deal with. Specifically,

w0y < il (a7 2 0)’ — (a] a%)’||a] |
m

® 1 1 (ii) 1
< Cu(Cy+5)(Cy + 10)p 281 J8T 2y [ 08T
m n n
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for any small constant ¢ > 0. Here (i) follows since and, in view of and ([46),
‘(anggt,(l))Z _ (alTa:h)Q‘ ‘alT (O — wh)‘ (‘alT (zt® — xh)‘ +2 \alTa,-“D < C4(Cy +10) logn,
and ‘a;—wt’(l)‘ < ‘al—r (mt’(l) — w”)‘ + |alTa:h| < (Cy +5)/logn.

And (ii) holds as long as m > nlogn.

. For the term V:El), the fundamental theorem of calculus [?, Chapter XIII, Theorem 4.2] tells us that

v = {In - n/ol V2f (z (7)) dr} (z! — 2t ®),

where we abuse the notation and denote x (7) = b + 7(z! — z®). By the induction hypotheses (13)
and the condition , one can verify that

|z (r) — 2|, < 7|z’ — 2|, + (1 - 7)[|]"V — ||, <2C1  and (47)
max la (z (1) —2%)| < T max la/ (z' — %) |+ (1—7) max a () - w“)‘ < Cyy/logn

for all 0 < 7 < 1, as long as Cy < Cy. The second line follows directly from (46]). To see why holds,
we note that

0 — ], < " — o], + ot - 2] < Oy 2"

+Cy,
n

where the second inequality follows from the induction hypotheses (13b)) and (13al). This combined with
(132]) gives

logn

H:B(T)—mh|’2 <7tCi+(1-1) (Cg .

+ C1> <204

as long as n is large enough, thus justifying . Hence by Lemma V2f (z (1)) is positive definite and
almost well-conditioned. By choosing 0 < n < 1/[5C5 (10 + Cs) logn], we get

||V§l)“2 <(1-n/2) ||a:t — wt’ﬂ)”z'

. Combine the preceding bounds on V{l) and Vél) as well as the induction bound 1] to arrive at

||xt+1 _ xt+1,(l)||2 <(1-7/2) Hmt _ mt,(l)||2 +en lloin <0 llorgln. (48)

This establishes for the (¢ + 1)th iteration.

4.5 Proof of Lemma [G

In view of the assumption (4) that ||z — :chHZ < ||° + 2 H2 and the fact that 2° = \/\; (Y') /3 2° for some
A1 (Y) > 0 (which we will verify below), it is straightforward to see that

|27 - 2|, < [|&° +2*]],.
One can then invoke the Davis-Kahan sin® theorem [?, Corollary 1] to obtain

1Y —E[Y]|
EY]) - (E[Y])

[0~ o, < 2v3;-
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Note that (I8) — [|[¥ — E[Y]|| < § — is a direct consequence of Lemma [I9] Additionally, the fact that
E[Y] = I+ 2xf2f" gives \; (E[Y]) = 3, A2 (E[Y]) = 1, and \; (E[Y]) — X2 (E[Y]) = 2. Combining this
spectral gap and the inequality ||Y — ]E[Y]H < §, we arrive at

& %], < vas

To connect this bound with 2, we need to take into account the scaling factor \/A; (Y') /3. To this end,
it follows from Weyl’s inequality and that

A (Y) =3[ =M (Y) - M EBY]) <Y -E[Y]] <6

and, as a consequence, A1 (Y') >3 — 4§ > 0 when ¢ < 1. This further implies that

' MY ‘ il <‘A1<Y>
VRSO

where we have used the elementary identity v/a — Vb = (a — b) /(v/a+ v/b). With these bounds in place, we

can use the triangle inequality to get
IMY) g~ ~
= || 71:(3 )azo—acoJralr:O—:ch
2

M (Y) -
|WOmW2HV i
L+ Hio - muHQ

<‘ (Y
= 3

-1 <=4 49
<3 (19)

IN

%64—v§6 < 26.

4.6 Proof of Lemma

To begin with, repeating the same argument as in Lemma [5| (which we omit here for conciseness), we see
that for any fixed constant § > 0,

HY“—EPWqHS& |2 ® — 28|, <25, ||3® -2, < V25, 1<i<m (50)

holds with probability at least 1 — O(mn~'°) as long as m > nlogn. The f5 bound on ||2° — %W, is
derived as follows.

1. We start by controlling H:c —z%0 ||2 Combining and yields
|20 = 20|, < [|2° - 22, + [|2"© — 27, < 2v26.

For ¢ sufficiently small, this implies that ||a: —z00 H2 < Hio + 00 Hg’ and hence the Davis-Kahan sin®
theorem [?] gives

I¥ - Y“)““Wz

|2° — 20|, < ) (T <||(y - Y®)z*0||. (51)
Here, the second inequality uses Weyl’s inequality:
M(Y) =2 (YY) 2 MEY)) - [[Y - E[Y]] - X EY ) - YO —E[Y ]

>3- 5—1—62L

with the proviso that 6 < 1/2.
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2. We now connect ||2° — W], with [|2° — £>®||,. Applying the Weyl’s inequality and yields
M) -3 <Y —EY]|<6 —  A(Y)eB-63+0C[24 (52)

and, similarly, A\ (Y ), [[Y]], [Y®)| € [2,4]. Invoke Lemma[21] to arrive at

YOO, a
0, < 25y (24 ) J0 - 20,

<6|[(Y —y®)z*W|,, (53)

1
ﬁHmO*

where the last inequality comes from .
3. Everything then boils down to controlling || (Y — Y(l)) AU ||2 Towards this we observe that

- 1 2 ~
e Il =¥ OO, = e (el )" aiel 20

< max (al—rxh)2 ‘al—ri()’(l)wal’b
~ 1<i<m m

(2 logn -v/logn - /n
~ m

logn nlogn
_— 54
(Vi - (54)

The inequality (i) makes use of the fact max; |a]@"| < 5v/logn (cf. ), the bound max; ||ai]|2 <
6y/n (cf. ), and max; |a] #*"| < 5/logn (due to statistical independence and standard Gaussian
concentration). As long as m/(nlogn) is sufficiently large, substituting the above bound into
leads us to conclude that

X

max Hwo — wo’(”HZ < (s logn
1<i<m n

(55)

for any constant C3 > 0.

5 Proofs for matrix completion
Before proceeding to the proofs, let us record an immediate consequence of the incoherence property :
KL Kur
135 < e < (50
where kK = Omax/0min 1S the condition number of M 5. This follows since

/ /
X5, = o522, <0l 129

1 / 1
< W ) = fE o v

KL KT
<o Xl = /= I

Unless otherwise specified, we use the indicator variable §; , to denote whether the entry in the location
(4, k) is included in Q. Under our model, d; 5, is a Bernoulli random variable with mean p.
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5.1 Proof of Lemma
By the expression of the Hessian in (23), one can decompose

vee (V)T V2 fuean (X) vee (V) = % [Po (VXT +XVT)|2 + % (Po (XXT - M%), VVT)

= % [P (VXT +XVT)|} - % [P (VX + XEVT)|2 +]13 (Po (XXT — M%), VVT)

= =qp

1 2 1 2 1 2
T3 [Pa (VXIT + X5V T - 5 VX' + XTI+ 3 VX + XV

=ag =g

The basic idea is to demonstrate that: (1) ay is bounded both from above and from below, and (2) the first
three terms are sufficiently small in size compared to ay.

1. We start by controlling . It is immediate to derive the following upper bound
2 2
o < VX[ + | XV T < 2 XY VI = 20ma [V 5
When it comes to the lower bound, one discovers that

ar= s { VX VT 4 om (X VXY )

2 Omin ||V||]2;\ + Tr |:(Z + ‘Xtl — Z)T \%4 (Z —+ ‘Xh — Z)T

V]
> 0uin [VIE+Te (ZTVZTV) 2| Z - X | 2| IVIE - |2 - X*|* IV
> (0min — 500max) |V |z + T (Z2TVZTV), (57)
where the last line comes from the assumptions that

12 - XF|| <o X[ < [|XF|  and 2] <2 - X+ )| XF|| < 2| x|
With our assumption V =Y Hy — Z in mind, it comes down to controlling

Tw(Z2'VZ'V)=Tr[ZT (YHy - Z)Z" (YHy - Z)].
From the definition of Hy, we see from Lemma [22| that ZTY Hy (and hence Z' (Y Hy — Z)) is a

symmetric matrix, which implies that
Tt(Z" (YHy - 2Z)Z" (YHy — Z)] > 0.
Substitution into gives
@1 2 (0nin — 300m0) [ VI3 2 S0 VI
provided that xké < 1/50.
2. For «q, we consider the following quantity

1Po (VXT + XVT) |5 = (Po (VXT),Po (VX)) + (Po (VXT), Po (XVT))
+(Po (XV ), Po (VX)) +(Pa (XVT),Po(XVT))
=2(Po (VX "), Po (VX)) +2(Po (VXT),Po(XVT)).

Similar decomposition can be performed on HPQ (VX T X hVT) Hi as well. These identities yield

a1 =~ [(Pa(VXT),Pa (VXT)) = (Pa (VXHT) , Po (VXT))]

D=

=F1
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+ L Pa(VXT),Pa (XVT)) — (Pa (VXET) P (X3VT))]

=02

For 35, one has
1 T
I _ xh _xh T
52_p<PQ(V(X x5)") o (X - X1 VT))
1 N Ty 4 L T Ny T
+]3<7>Q (V(x-x5)7).Po (xV )>+5<7>Q(VX ), Po (X = X)) VT))
which together with the inequality [(A, B)| < ||A|r||B|lr gives

- (58)

1 2 2
|B2| < » HPQ (V (X — Xh)T) HF + » HPSZ (V (X - X”)T) HF | Pa (x'vT)
This then calls for upper bounds on the following two terms
I -

Gl (vee-x)T)], wa vy

The injectivity of Pq (cf. [?, Section 4.2] or Lemma—when restricted to the tangent space of M —gives:
for any fixed constant vy > 0,

e < 4D XV T|p < () [ X[V e

P (x2v7)

with probability at least 1 — O (V”FIO)7 provided that n?p/(unrlogn) is sufficiently large. In addition,

Yoo x) =2 s aulv (xo-xz) |

1<]k<n
X i b T
- Y v Z o (X = X)) (X = X0) | V)]
1<j<n PSi<n

< max 6k(Xk —X“) (Xk,.—X”,) V|2
p; D)l
1 Ik 2
< ¢ — max Ojke max | Xp. — X, Vg
p1<isn £~ 1<k<n 2
2 2
<O tn|x - X IVIE,

with probability exceeding 1 — O (n~'°), which holds as long as np/logn is sufficiently large. Taken
collectively, the above bounds yield that for any small constant v > 0,

Bol < (1L | X = X3 _[VIE+2/(+7) 0l X - X2 L [VIE - (L+2) X5 V2
S (n| X5 o+ v | X3 IXE) IV S

where the last inequality makes use of the assumption || X — X%||2,00 < €[|X?||2,00. The same analysis can
be repeated to control 8;. Altogether, we obtain

jon < 181+ 18] S (me? | X35, + Ve | XF]|, ||Xh||) nvn%

() g KT
< + V/ne \/>) UmaXHVHF > Umm ”V”F’

where (i) utilizes the incoherence condition and (ii) holds with the proviso that e/k3ur < 1.
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3. To bound as, apply the Cauchy-Schwarz inequality to get
1 1
|| = ’<V S Pa (XXT - M"Y V>’ < HPPQ (XXxT - M“)H VI -
In view of Lemma with probability at least 1 — O (n*m),

H;PQ (XXT - M”)H < 2ne? || XF||;  + dey/nlogn | XF|[, [ X7

1
< (QTLGQ? + 46\/5108;”\/T> Omax < Eomin

as soon as €y/k3urlogn < 1, where we utilize the incoherence condition . This in turn implies that

1 2
laa| < Eamin HVHF .

Notably, this bound holds uniformly over all X satisfying the condition in Lemma [7] regardless of the
statistical dependence between X and the sampling set 2.

4. The last term ag can also be controlled using the injectivity of P when restricted to the tangent space
of M. Specifically, it follows from the bounds in [?, Section 4.2] or Lemma [25[ that

2 1
joal < 7[[VXHT + XV < 90mac [V [F < 150w IV 7

for any v > 0 such that s is a small constant, as soon as n?p > k?urnlogn.
5. Taking all the preceding bounds collectively yields
vee (V) V2 fuean (X) vec (V) > aq — |y | — || — |as]
9 3 2 1 2
>\ == min 14 Z o Ymin |4
> (35 25) amn IVIE = gomn IV
for all V satisfying our assumptions, and
vee (V)T 92 facan (X) vee (V)| < au + Jaa| + faz] + o
3 2 ) 2
S <20max + loamin) HV”F S io—max ||V||F

for all V. Since this upper bound holds uniformly over all V', we conclude that

5
Hvzfdean (X)H S io—max

as claimed.

5.2 Proof of Lemma
Given that H'*! is chosen to minimize the error in terms of the Frobenius norm (cf. )7 we have
HXt—‘rlﬁt—H _ X“H < HXtH]’LI\t _ XuH _ H (Xt~ V1 (X1)] H — XhH
F F F
o

X'H' - V(X' H") - X¥|
(i)

‘Xtﬁt —n [v Fetean (XTH') — %PQ (E) th{\t} '

F
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; (59)

—~ — 1 —
B S () - (08— a0, 0 2y 20|

= =2

where (i) follows from the identity Vf(X*R) = Vf (X*) R for any orthonormal matrix R € O™*", (ii) arises
from the definitions of V.f (X) and V fejean (X) (see and (22)), respectively), and the last inequality
utilizes the triangle inequality and the fact that V fujean(X?) = 0. It thus suffices to control a; and as.

1. For the second term sy in , it is easy to see that
1 — 1 n
as <7 prsz (E)H HXthHF <2 prﬂ (E)H X < 27700\/;|Xh”F

for some absolute constant C' > 0. Here, the second inequality holds because || X tH e < |1X tH

XE|, + || X5 < 2||XF||,, following the hypothesis (24a)) together with our assumptions on the noise
and the sample complexity. The last inequality makes use of Lemma [27]

2. For the first term a; in , the fundamental theorem of calculus [?, Chapter XIII, Theorem 4.2] reveals
vee | XUH' = 19 forean (X' H') = (X* = 0¥ forean (X7))
= vee [XTH" = X =0+ vee [V fucan (X H') = ¥ foan (X7)]

- ( L —1 /O v Ferean (X (7)) dT> vec (Xtﬁt — X“) , (60)

=A

where we denote X (1) := X + T(Xtﬁt — X?t). Taking the squared Euclidean norm of both sides of the
equality leads to

(a1)2 - VeC(Xtﬁt _ X“)T (Lo — nA)Q VeC(Xt./H\t _ Xh)
= vec(thI\t _ X“)T (IM oA+ 172A2) vec(th/LI\t - X“)
< thﬁt - X“Hi +n? | A7 Hth/LI\t - XhHi -2 vec(th/LI\t - Xu)TA Vec(th{\t — X, (61)
where in we have used the fact that
vee( X~ X*)T A%vee(XH' — X*) < IR |vec (X H - x%)||| = A | x B - X7

Based on the condition , it is easily seen that V7 € [0, 1],

X () - X7, _ (cm/ \/’“‘)g") X, .

Taking X = X (7),Y = Xt and Z = X “ in Lemma E, one can easily Vel‘lf he assumptions therein
given our sample size condition n2p > k3u3r3nlog® n and the noise condition . As a result,

vee(X'H' = X*) A vee(X'H' - X*) > P2 XH - X¥[} and 4] < gam.

Substituting these two inequalities into yields

2 - 25 2o Lyt 2 Umm It 2
(a1)? < (1 R — o) | XUH = XF|[ < (1 T8y ) (X H - X,
as long as 0 < 1 < (201min)/ (2502, ), which further implies that

a1 < (11— 28y) | X' H' - XF|,.
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3. Combining the preceding bounds on both «; and as and making use of the hypothesis (24a)), we have

|xrE - x| < (1= Ty | xE - X +27700'\/%HXHHF
- 4 F p

_ Twmin L X oy xe ™xe
< (1 Z2) (Cotmr i X+ O [ X0 ) + 206 [ )

< (1 — Uzinn) Cuptpr L G + 2770] J\/ﬁHXhHF
Omin p

= X | (1 Z5)

1 o n
< Cup ™ |5+ 01 [

as long as 0 < 1 < (20min)/(2502,.); 1 — (0min/4) -1 < p < 1 and C is sufficiently large. This completes
the proof of the contraction with respect to the Frobenius norm.

5.3 Proof of Lemma
To facilitate analysis, we construct an auxiliary matrix defined as follows
~ —~ 1
XM= X"H' —n-Pq [X'X'T — (M* + E)] X"
p
With this auxiliary matrix in place, we invoke the triangle inequality to bound

HXt+1f_I\t+1 - XuH < ||Xt+1ﬁt+1 _ ftHH 4 ||5(/t+1 _ Xh|| ) (63)

= =

1. We start with the second term a2 and show that the auxiliary matrix Xt+1 s also not far from the truth.
The definition of X*+! allows one to express

ag = foﬁt - n%PQ [(X'X'T — (M*+ E)] X* - XhH
< H;PQ (E)H | x| + thﬁt = n%PQ (XIX'T - XRXT) xR - X“H

<7 H;Pg (E)H X5 + thﬁt — (XX - XAXET) X X“H

=01
+1 H;PQ (XX - XX XP - (XX - XX X“H,

=02

where we have used the triangle inequality to separate the population-level component (i.e. 81), the
perturbation (i.e. 33), and the noise component. In what follows, we will denote

A':= X'H' - X"
which, by Lemma satisfies the following symmetry property

HTXTx'=xX'TX'H' =  ATX'=X"TA" (66)
(a) The population-level component f is easier to control. Specifically, we first simplify its expression as
By =||A" —n(ATAT + ATXET 4 XEATT) X
<||Af—n(ATXET + XPATT) XF|| +p||AatATT X

=M =72
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The leading term +; can be upper bounded by
71 = [|Af = nAIEE - pXIATTXE| = AT - pA'S! - pXEXETAL|

=[5 1 - 20w 4 5 (1 - 2any & < (18 - 2 1 - 20n) )

where the second identity follows from the symmetry property . By choosing 7 < 1/(20max), one
has 0 < I, — 2n2% < (1 — 2noin) I and 0 < I, — 2pM*® < I,., and further one can ensure

1 < 3 [0~ 200m) + 11| 8] = (1~ 70m) [ A" (67)
Next, regarding the higher order term ~s, we can easily obtain
72 < | At |x7] (68)
The bounds (67) and (68) taken collectively give
Br < (1= nowin) || A']| 4+ n A" X7 (69)
(b) We now turn to the perturbation part 8, by showing that
%,82 = Hl% (ATATT + ATXTT 4 XA XP - [ATATT + ATXET 4 XEATT X“H

H (A'X"T) X% — (A'X"T) X°

+ H;PQ (X*A'T) XF — (XA X°

F F

::91 1292

; (70)

+ H;PQ (ATATT) X7 — (A'ATT) X°
F

:=03

where the last inequality holds due to the triangle inequality as well as the fact that ||A|| < [|A]|p. In
the sequel, we shall bound the three terms separately.

e For the first term 6 in (70)), the lth row of %PQ (A'X*T) X% — (A'X"T) X! is given by

1 — 1 —
D> Gy ) ALXE X = AL |0 6y ) XET X
=1

j=1

S
<

where, as usual, d; ; = l{( j)en). Lemma [28| together with the union bound reveals that

n

1 1
SO G —p) XX S Wp X3 11X Tog m + || XE[5 logn)

Jj=1

[ X530 Tmax log m N | X¥13 o log 7
p p

for all 1 <1 < n with high probability. This gives

1 n

AL 2> 6 - n X < ad, |2 S 6 - n XX
J

Jj=1 9

<

~

||)(h||2 ooamaxlogn )(h QoolOg’l’L
| § DX s s .
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which further reveals that

2

n

1 T 1 X5(3 oo omaxlogn || XP[J3 o logn
= (SIS pag x| s g Esmmelen X
=1 J

(i) | X3 7Omax logn /7| XE||3 , logn
t 2,00" Y max 2,00
NN S s

(i) kur2logn  kprd/?logn
<y { e o hosn
(2) YO min ||At|| )

for arbitrarily small v > 0. Here, (i) follows from ||A!||p < /r||A?|, (ii) holds owing to the incoher-
ence condition , and (iii) follows as long as n?p > k3ur?nlogn.
e For the second term 65 in , denote

A="Pq (X'A'T) X —p(X*A'T) XY

whose [th row is given by

A =X (8 —p) AT X (71)
j=1

Recalling the induction hypotheses (24b]) and (24c), we define

logn nlogn

A < Captiory B2 |, + oy [RE | x), i= (72
1

N ﬁ ||| = . (73)

With these two definitions in place, we now introduce a “truncation level”

w 1= 2p€0max (74)

1A} < Cop'pir—= || X + C1o

g
Omin

that allows us to bound 65 in terms of the following two terms

1 | s 1 |
b = — Z [ A5 < = Z | Au,.
p =1 p =1

> 1| >
2 a0} 5 DAL L gya, 50} -
=1

= =2
We will apply different strategies when upper bounding the terms ¢; and ¢5, with their bounds given
in the following two lemmas under the induction hypotheses (24bf) and (24c)).

Lemma 14. Under the conditions in Lemma(9, there exist some constants ¢,C > 0 such that with
probability exceeding 1 — cexp(—Cnrlogn),

D1 S €/ D | X3 o log? n (75)

holds simultaneously for all At obeying (@ and . Here, £ is defined in (@
Lemma 15. Under the conditions in Lemma@ with probability at least 1 — O (n_lo),

b2 S €\ prplog? n || XF| (76)

holds simultaneously for all At obeying (@ and . Here, £ is defined in (@
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The bounds and together with the incoherence condition yield

0y < 5\/]0crmam||Xﬂ||2 00m"log n+ §\/Hur2plog n||Xh|| HHMT 10g n{amax.

e Next, we assert that the third term 63 in has the same upper bound as 65. The proof follows by
repeating the same argument used in bounding 65, and is hence omitted.

Take the previous three bounds on 61, 6 and 3 together to arrive at

~ rur?log?n
By <1 (161] + [62] + 163]) < myomm || AY]] + cn\/% Omax

for some constant C' > 0.

(c) Substituting the preceding bounds on f; and s into , we reach

®) 1
a2 2 (1 10w + min 41| A7) A7) 40 270 (B | |7

- 2 1oo?
t Oyl (Csptw OB | x|, + oy | B ’|Xh||zoo>
p np ’ Omin p )

< (1= T |8 ] 7o ) )

~ 21002
O (C”t” Bt o+ Gy [ TE | x, m)
p np ’ Omin p ’

(iii) Ornin 7
< (1= Ta) AT + ooy 17

~ 2,213 log® 1
I Ll S (WW [
np np

for some constant C' > 0. Here, (i) uses the definition of ¢ (cf. (72)), (ii) holds if ~ is small enough
and ||AY]| HX b | < Omin, and (111) follows from Lemma as well as the 1ncoherence condltlon . An
immediate consequence of (77) is that under the sample size condition and the noise Condltlon of this
lemma, one has

n b
p) x| ()

[0 = X5 X3 < o2 (78)
if 0 <7 <1/0max.

2. We then move on to the first term o in , which can be rewritten as
o = || X"TH'R, — X',
with

R, = (f{\t)_lﬁ“’l = argRggny

X"'H'R - X', (79)

(a) First, we claim that X'+1 satisfies

I, =arg min |
REO’PXT

(80)

meaning that X Xt s already rotated to the direction_that is most “aligned” with X%. This important
property eases the analysis. In fact, in view of Lemma . follows if one can show that X7 X t+! is
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symmetric and positive semidefinite. First of all, it follows from Lemmathat XU XY is symmetric
and, hence, by definition,

XX = XU XH - gX”PQ [(X'X'T — (M* + E)] X*
is also symmetric. Additionally,
TR A < R XX < 2

where the second inequality holds according to . Weyl’s inequality guarantees that
=~ 1
XhTX]H_l = gaminIra

thus justifying via Lemma,
With and in place, we resort to Lemma [24|to establish the bound. Specifically, take X; = Xt
and Xy = X1 H!, and it comes from that

1262 = X {1X]] < ormin /2

Moreover, we have —
1% = Xo| || XF| = [|X" H* — X X

b

in which
XHH - X = (Xt - n%% [(X'X'T — (M" + E)] Xt> H'
- {thf\t - 77%739 [(X!X'T — (M*+ E)] X“}
= —n%% [(X'X'T — (M’ + E)] (Xtﬁt - Xh) .
This allows one to derive

HXtJrlﬁt _ YtHH <n

1 tytT _ agh tIrt _ yh 1 tIrt _ yh
pPQ [(X'X MF] (X H - X )H "‘ﬂHPPQ(E) (X H X)
<o (2l + avtogn A, ] + Coy 2 ) ] =y

for some absolute constant C' > 0. Here the last inequality follows from Lemma [27] and Lemma As
a consequence,

16, = X X4 < 0 (20 &)+ avitoga A 5] + Co 2 ) a1 7).

Under our sample size condition and the noise condition and the induction hypotheses (24)), one
can show

1 X1 — Xo| || XF| < owmin/4.
Apply Lemma [24] and to reach

a; < 5I€HXt+1iI\t — f”'lH

< e (2|} . +2vilogn A, | X¥] + o [ ) ).

28



3. Combining the above bounds on «; and «as, we arrive at

B - X < (1 Z) A+ 00y 2 )X
2 D

_ 2,,2,-3 3
L Gy [ o (Csptw /1, n) x|
np np D

e (20 A"} + 2w A", [ + 0o [2 ) Y|

< Cop* = | X+ o
min

with the proviso that p > 1 — (owin/3) - 1, & is a constant, and n?p > p3r3nlog® n.

5.3.1 Proof of Lemma [14]

In what follows, we first assume that the §;;’s are independent, and then use the standard decoupling trick
to extend the result to symmetric sampling case (i.e. §;5 = 0 ;).

To begin with, we justify the concentration bound for any A independent of 2, followed by the standard
covering argument that extends the bound to all Af. For any A independent of €2, one has

o g tT »
Bi= max | X5 6o =2 AT, |, < IX7] 06
n T
and V= |E |3 (6, —p)’ XE AL XE, (Xl“’,A;TXj.’A)
Jj=1

2 n
<pfxi | Ix L [ ara,
Jj=1

<o [ 1l
<2 | X*; . oman
where ¢ and 1) are defined respectively in and (73). Here, the last line makes use of the fact that
¥, . & < € X7 = € (52)

as long as n is sufficiently large. Apply the matrix Bernstein inequality [?, Theorem 6.1.1] to get

ct?
P{||A.|, >t} <2rexp | — 5 P
2pE2 0 max HXth,oo +- HXH”ZOO 3

ct?
<2rexp | — 5
4p£20-max || 2,00

for some constant ¢ > 0, provided that

t S 2pamax£'

This upper bound on ¢ is exactly the truncation level w we introduce in . With this in mind, we can
easily verify that

Leja <0}

is a sub-Gaussian random variable with variance proxy not exceeding O (pfzamax HX b HZ - log r) . Therefore,

invoking the concentration bounds for quadratic functions [?, Theorem 2.1] yields that for some constants
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Cy, C > 0, with probability at least 1 — Cpe= " logn
n
2 2
0t = 14015 T, 1,0} S P |XE 3 conr log” n.
1=1

Now that we have established an upper bound on any fixed matrix A’ (which holds with exponentially
high probability), we can proceed to invoke the standard epsilon-net argument to establish a uniform bound
over all feasible A?. This argument is fairly standard, and is thus omitted; see [?, Section 2.3.1] or the proof
of Lemma In conclusion, we have that with probability exceeding 1 — Cpe—2Cnrlog ",

2
b1 = | S NALIE a1 co) S \/PE20max | X o log® n (33)
=1

holds simultaneously for all A* € R"*" obeying the conditions of the lemma.

In the end, we comment on how to extend the bound to the symmetric sampling pattern where d; ; = 0y ;.
Recall from that the diagonal element d;; cannot change the ¢ norm of A;. by more than HXh Hz o6
As a result, changing all the diagonals {d;;} cannot change the quantity of interest (i.e. ¢1) by more than
Vn HX hHZ & This is smaller than the right hand side of under our incoherence and sample size
conditions. Hence from now on we ignore the effect of {d;;} and focus on off-diagonal terms. The proof then
follows from the same argument as in [?, Theorem D.2|. More specifically, we can employ the construction
of Bernoulli random variables introduced therein to demonstrate that the upper bound in still holds if
the indicator §; ; is replaced by (7; ; + 7/ ) /2, where 7; ; and 7] ; are independent copies of the symmetric
Bernoulli random variables. Recognizing that supa: ¢1 is a norm of the Bernoulli random variables 7; ;,
one can repeat the decoupling argument in [?, Claim D.3| to finish the proof. We omit the details here for
brevity.

5.3.2 Proof of Lemma [15]
Observe from that

1ALy < ([ X5l o 1D @6 —p) ALLXS (84)
j=1
< [[X%s,0 0, A5TXG |+ p [lAf] ]| x7]
j=1
51,1X57.
<X | 2 AL ALL]] : + v | XF|
S X5
<[ XF[l, . (G (AN - 12vp[| X[ +pe [ X)) (85)

where 1 is as defined in and G () is as defined in Lemma Here, the last inequality follows from
Lemma namely, for some constant C' > 0, the following holds with probability at least 1 — O(n~10)

‘ 6l71XE . |

’ 2
< (I + O/ XE13 12 Yo+ CLXER o o
1 X5

(86)

]
<p+0\/p logn +CW> I
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where we also use the incoherence condition and the sample complexity condition n?p > kurnlogn.
Hence, the event
HAl7'||2 Zw= 2p0'max£

together with and necessarily implies that

Z 51 J AtTXh 2 2po—maX|£2 and

2omaxt 27| Xl
XX - PY XL VPV

t
|G (a9l = 1.2,/p = 1.2

where the last inequality follows from the bound (82). As a result, with probability at least 1 —O(n1%) (i.e.
when holds for all I’s) we can upper bound ¢5 by

€ p
2 15V, IX°I

n n
G2 = ZHAng]l 1AL ,> < ZHAI, 51 1.5/p6/omax |’
= e lza} = & {1enanz |

where the indicator functions are now specified with respect to |G} (A?)]|.
Next, we divide into multiple cases based on the size of ||G; (A?)||. By Lemma [29| for some constants
¢1,c2 > 0, with probability at least 1 — ¢ exp (—canrlogn),

an
;1{\|G1<At>uz4ﬁw+ﬁzkrs} = (87)
=1

for any k > 0 and any « 2 logn. We claim that it suffices to consider the set of sufficiently large k& obeying

2
\/275 > 4,/pp or equivalently k > log 1?[] ; (88)

otherwise we can use to obtain
U + Ve < 8B < 1.5\/5”an200 x5
which contradicts the event ||A;.[|, > w. Consequently, we divide all indices into the following sets
Sp={1<1<n: |G (A" e (V2Fre, vV2iTrg] } (89)
defined for each integer k obeying . Under the condition 7 it follows from that

n
an

IZH{ch(AwnzWHm} < lz]l{uczwmzzxﬁwﬁkrg} S Srs
=1 =1

meaning that the cardinality of S satisfies

an an
|Sk2| < ks O Skl < k5

which decays exponentially fast as k increases. Therefore, when restricting attention to the set of indices
within Sj, we can obtain

[ 13 € 11X o, (122 e B 1) + 171
€Sk
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X (292 e B | X+ pu | XF))

2k—5

(i) an
< 4y i 13X o V2R Ire VB || XF|

(2) 32~/ arkur?pé HX”H2 ,

where (i) follows from the bound and the constraint in S, (ii) is a consequence of and (iii)
uses the incoherence condition .

Now that we have developed an upper bound with respect to each Sy, we can add them up to yield the
final upper bound. Note that there are in total no more than O (logn) different sets, i.e. S, = 0 if & > ¢ logn
for ¢; sufficiently large. This arises since

IGH(AD] < [[a"]lr < Vil ATz < ViE < Vin/rE

and hence
Lriguansaypervare) =0 and  Sp=10
if k/logn is sufficiently large. One can thus conclude that

c1 logn 9
< > Y A (Varurpg || XE*) - logn,
k=log 16pw2 leSk

leading to ¢o < &y/akuriplogn ||Xh||2. The proof is finished by taking o = clogn for some sufficiently
large constant ¢ > 0.

5.4 Proof of Lemma [10]
1. To obtain (36al), we invoke Lemma Setting X; = X'H! and X, = Xt-O R0 we get

() 1 C [nl () 1
H'Xl — XhH H.XhH S Cth,ur\/T—pUmax + Kliono' r ;gnomax S §Umin7

where (i) follows from (33c) and (ii) holds as long as n%p > k%;?r?n and the noise satisfies (24). In
addition,

11X — X || X7]| < [1X1 — Xollp || X7

() logn C nlogn
2 (a2 o+ 2o [P ) e

(ii) /1 n C /nlo n
<C3p ur 08 ———Omax T+ 7 & Omax

(iii) 1
<
- 2

O—mll’l Y

where (i) utlhzes 1 , (ii) follows since HXh ||2 o < || X#||, and (iii) holds if n?p > xk?p?r*nlogn and the
noise satisfies (24). With these in place, Lemma [24] immediately yields (36a)).

2. The first inequality in 1} follows directly from the definition of H*®. The second inequality is con-
cerned with the estimation error of X R with respect to the Frobenius norm. Combining 1)

(33d)) and the triangle inequality yields

R R R
F F F
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1 Cioc [n logn Cro0 |nlogn
§C4ptur\/7Tp||X“||F+U;in\/;HX“HFJngptW o 1 s+ o [ X
. 1 b Cio [n o . S — C7a nlogn o a—
< Outur = |3, A7 [P oty 282 [ X
¢ 1 h 2610 n b
<200l [ X + 2% 2| "

where the last step holds true as long as n > xulogn.
3. To obtain (36d), we use and (33b)) to get
HXW)R‘W) _XnH < thﬁt _ XuH 4 thﬁt _Xt,(nRu(z)H
2,00 2,00 F
C7o0 [nlogn ||Xh||
D 2,00

< Capfiur SBR[ |3, o Captry [ |, +
n P ’ np ’ g
I C C 1
< (C3+Cs5) p'pr (;gpn X, o + 80+ To nogn||X“H2,oo~

4. Finally, to obtain (36d)), one can take the triangle inequality

HXt,(l)I’;I\t,(l) -~ XuH < HXt,(l)ﬁt,(l) x|+ thﬁt _ Xu”
F

|

<o [ XH - XM ORNO|| 4+ | xH -
- F
where the second line follows from (36a)). Combine (33d]) and (33¢c) to yield

HXt,(nﬁt,(z) _ XuH

1 C 1
<5ﬁ<c?,ptw~ X+ oo anhnm)wgpw e 1+ 20 [ x|

o
< 5x Kpr HXhH (Cgp,m’ llogn 0, /nlogn>+09pur ||X”|| C1oaf||Xh||

2C g0
Wuxw%w;\

where the second inequality uses the incoherence of X# (cf. ) and the last inequality holds as long as

n > k3urlogn.

< 2Cop" ur

5.5 Proof of Lemma [11]
From the definition of R‘+1(1) (see ), we must have
HXt+11’—_I\t+1 - Xt+1,(l)Rt+1,(l)H < HXt+11’—_I\t _ Xt+1,(l)Rt,(l)H .
F F

The gradient update rules in and allow one to express
XL _ xtLO gt — = [X' =9V (XY)] Ht — {Xt,(l) — Vo (Xt,(l))] RO
— XUH! — an(Xtﬁt) _ [Xt,(l)Rt,(l) _ va(l) (Xt,(l)Rt,(l))}
_ (Xtﬁt o Xt,(l)Rt,(l)) —n {vf(Xtﬁt) o vf(Xt,(l)Rt,(l))]
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1 [Vf(Xt O RE0) — v O (x40 R (z))}

where we have again used the fact that Vf (X") R = Vf(X'R) for any orthonormal matrix R € O"*"
(similarly for ¥V f® (X 75’(l))). Relate the right-hand side of the above equation with V fejean (X) to reach

XU xtLO gt — (Xtﬁt B Xt,(l)Rt,(l)) _q [Vfclean (Xtﬁt) — YV fotenn (Xt,(l)Rt,(l)):|

::Bgl)

. [1%[ (XOXHOT _ M)~ (XHOXHOT - Mu)} Xt gt )
P

::B;l)

1 — 1
+ nl—?PQ (E) (Xth - XtvU)Rt’(”) + %PQZ (E) Xt RHD), (91)

::Bél) ::By)
where we have used the following relationship between V) (X) and V f (X):
1
VI(X)=Vf(X)- 5P [(XXT - (M"+E)]| X +P (XXT - M) X (92)

for all X € R™*" with Pq, and P; defined respectively in and . In the sequel, we control the four
terms in reverse order.

1. The last term B fll) is controlled via the following lemma.

Lemma 16. Suppose that the sample size obeys n®p > Cp2r2nlog? n for some sufficiently large constant
C > 0. Then with probability at least 1 — O ( ’10) the matriz B( ) as defined in satisfies

I
|80, 5y 1252 e,

2. The third term Bél) can be bounded as follows

l
|58 <

‘;PQ (E)H HXtI’—_I\t _ Xt,(l)Rt,(l)HF < ng\/z thﬁt _ Xt,(l)Rt,(l)HF,

where the second inequality comes from Lemma

3. For the second term Bél)7 we have the following lemma.

Lemma 17. Suppose that the sample size obeys n?p > p’r’nlogn. Then with probability exceeding
1-0 (n_lo) the matriz Bé) as defined in 91 satisfies

2 2
‘B(l /n pAr logn HXt ) gt XhH oo (93)

4. Regarding the first term Bil), apply the fundamental theorem of calculus [?, Chapter XIII, Theorem 4.2]
to get

Vec( (l) = ( e — / V2 feean (X (7)) d )Vec (Xf’f-I\t —Xt’(l)Rt’(l))7 (94)
where we abuse the notation and denote X (r) := Xt*OR:O 4 7 ( XtH?! — Xt’(l)Rt’(l)). Going through
the same derivations as in the proof of Lemma [§] (see Appendix [5.2)), we get

B, < (1- 22) | X H' - x*O RO 95
B0 < (1 %2y F )

with the proviso that 0 < 7 < (20min)/(2502,,5)-
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Applying the triangle inequality to and invoking the preceding four bounds, we arrive at

HXt+1Ht+1 XL L) H

< (1- 2y || xtH - x 0RO +C gy [T Togn Tzlog”HXW RO =X e
- 2,00

~ — . ]
O[3 | X XAORO| g [P
p F P 5
_ (1 _ Uminn+5na\/ﬁ) thﬁt _ Xt’(l)Rt7(l)H | Gy |42 log HXt,(nRt,(z) _XuH _—
4 D F np 2,00
~ nlogn
+Cno X5, o
20mln Tt t,() t(l "521‘ r logn t,(1) s ( b
< |x'H - x" RO+ Cy | X ORM - X o
2,00
~ nlogn
+Cno 1XF, o

for some absolute constant C~‘ > (. Here the last inequality holds as long as J\/ P <K Opmin, Which is satisfied
under our noise condition . This taken collectively with the hypotheses (33dl) and ( - ) leads to

HXtJrlﬁtJrl _ xHLO gHALO) H
F

20 min logn o [nlogn
< (1220 (corn 222 a0 8 e, )

~  [K2u2r2logn logn nlogn
+ Oy | B0 (G 4 Cs) | 4 (C + Cr) = B2 IXE], o Ooma
np np min p ’

nlogn
15, o

+ CN'nJ

logn nlogn

- X

< (1 — Jmin n) Csp'pr

g
Cr—
5 * 7O—min

i
HQ,oo H 2,00

as long as C; > 0 is sufficiently large, where we have used the sample complexity assumption n?p >
k*u%r?nlogn and the step size 0 < 1 < 1/(20max) < 1/(20min). This finishes the proof.

5.5.1 Proof of Lemma [16]

By the unitary invariance of the Frobenius norm, one has

|82%], = 5 [Poc @y x-01
F

where all nonzero entries of the matrix Pq, (E) reside in the {th row/column. Decouple the effects of the ith
row and the Ith column of P, (E) to reach

2B, < | auEaxs® | + |3 ssmaxio) (90
K | i )
J
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where 6;; := 1y j)cq) indicates whether the (I,j)-th entry is observed. Since X*® is independent of
{01, }1<j<n and {E; j}1<j<n, we can treat the first term as a sum of independent vectors {u;}. It is easy to
verify that

<], oo, 5o ]
2 o = H 200 11615 l,]”w1 ~ 0 900

where || - ||y, denotes the sub-exponential norm [?, Section 6]. Further, one can calculate
n 2
Vim B[St XGOS S X0OXOT | <o
j=1

Invoke the matrix Bernstein inequality [?, Proposition 2| to discover that with probability at least 1 —

o) (n—lo)’

n
S ous| S VVIogn+ || 1027 n
j=1

2

< \/p02 | Xt l)H logn + o HXt (Z)H log®n
Sax/nplognHXt’(l)H —l—oHXt (l)H log®n
2,00
< o\/nplognHXt’(l)H ,
2,00

where the third inequality follows from || X*® ||i <n|Xx-® H; _» and the last inequality holds as long as

np > log”® n.
Additionally, the remaining term « in can be controlled using the same argument, giving rise to

a < U\/nplognHXt’(l) H2 -

We then complete the proof by observing that

X, = [XOROY, < X ORO X, |, <2 oD

HZ,oo

where the last inequality follows by combining (36c]), the sample complexity condition n?p > u2r?nlogn,
and the noise condition .

5.5.2 Proof of Lemma [17]

For notational simplicity, we denote
C = x"OxtOT _po = xtOxtOT _ xEx6T (98)

Since the Frobenius norm is unitarily invariant, we have

l
|52 =

270, (©) - Pr(C) X0

F

=W

Again, all nonzero entries of the matrix W reside in its {th row/column. We can deal with the Ith row and
the lth column of W separately as follows

n
p l l ,l
;HBé)H Z @15 —p) Ca XN+ [ (0 —p)° ”CHOOHX;"()HQ
J=1 2 Jig#l

36



< |2 - cuX 2O+ vaslel. Xt

2

where &, := 1{( j)en} and the second line relies on the fact that >, . (61,7 — p)? = np. It follows that

— l) (
L= s [0 - ) X0 < el x40, S2i01X] ..
ZE (0 =0’ ]CE XX T < e | 30 X XG0T
j=1
2
= plclZ x| < ap ol x4

Here, (i) is a consequence of (97). In addition, (ii) follows from
HXt,(l)H — HXt,(l)Rt,(l)H < HXW)R“” _XuH + x|, < 2| x|
P F P F= F

where the last inequality comes from (36b)), the sample complexity condition n?p > p?r?nlogn, and the
noise condition (24). The matrix Bernstein inequality [?, Theorem 6.1.1] reveals that

DLIERER < VViogn + Llogn < /p[|CI% [ X¥]2 logn + €], | X7, logn
J=1 2

with probability exceeding 1 — O (n*w), and as a result,

PUBI| < Vplognlicll, | X8|, + vap IC] |X°)), .. (99)
n F :

as soon as np > logn.
To finish up, we make the observation that

lc|.. = ||x“©Rr-0 (Xt*(l)Rt>(l))T—XhXhT

o0

< (Xt,(th,(z) _ Xu) (Xt,(th,(l))TH . HXu (Xt,(th,(z) _Xu)T _xuxeT

o0

< || xt® RO _XuH HXt,mRt,(z)H + || x7, HXt’(l)Rf"(l) _ XuH
2,00 2,00 0
<3|x 0RO - x| |xE, (100)

where the last line arises from @ This combined with gives

HBS)HF < 10% IC | 1X5]| 5 + "\/Z”C”oo 1%,
%n\/?”‘xt’(l)Rt,(l) B qulm 13, o 11 Jr"\/ZHXt’(l)Rt’(l) _ Xh”loo ”XHH;OO
2 n\/@ |xeoren x| Wamax + ”\/Z S
\/ﬁ xR - x|

where (i) comes from (I00)), and (ii) makes use of the incoherence condition
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5.6 Proof of Lemma 12

We first introduce an auxiliary matrix

X0 = xtO L0 ) [H;Ql [Xt,U)Xt,(l)T — (M* +E)} +P, (Xt,th,(z)T _ Mu)} Xt
p

With this in place, we can use the triangle inequality to obtain

H (Xt-i-l,(l)ﬁt-i-l,(l) _ X“) + H(}Ztﬂ,(l) _ Xh)

< H (Xt-i-l,(l)ﬁtJrl,(Z) _ XVHL(J))
2 l

L, s 112 L, 2

= =Q
In what follows, we bound the two terms a; and ay separately.

1. Regarding the second term as of 1] we see from the definition of X'+ (see 1] that

<3\(Jt+1,(l) _ X”) _ [Xt,(l)ﬁt,(l) — (Xt,(z)Xt,(l)T _ XuXhT) xh_ Xh} ’
1, L.

where we also utilize the definitions of Pq—: and P; in . For notational convenience, we denote

ALD . xtOFsO _ xi
This allows us to rewrite as
(X“tﬂ,(l) _ X“) _ Af:'(l) - [(Au(l)XhT n XuAt,(Z)T) Xh} — [At,(l)At,(l)TXh]
- AP —qapUst - px AOTXE A O AEDT X,
which further implies that
o -]l ]
< AL, 0 = =t w2 o A O 0+ A [l g

<[ At g )+ 2mlixe], [t )

L L L

(101)

(102)

(103)

(104)

Here, the last line follows from the fact that HA;’,(I) H < HXhH2 . To see this, one can use the induction
5 9 ,00

hypothesis (33¢€) to get

1
Nz

nlogn
p

a0, < Contur— X7, + G B X, < X

(105)

as long as np > p?r? and ov/(nlogn) /p < omin. By taking 0 < 7 < 1/0max, we have 0 < I, — nX8 <

(1 — nomin) I, and hence can obtain

(0%) S (1 - 770'min)

ARO| - 2n )X, [anO x5

An immediate consequence of the above two inequalities and (36d)) is

ag < ||Xh||2,oo-

2. The first term a; of (102)) can be equivalently written as

oy = H (Xt+1,(l)f{\t,(l)R1 _ j{t+1,(l))l

2

38

(106)

(107)



where

R, = (H\t,(l))*lﬁwrl,(l) = arg Rngn ’XHL(Z)I’;I\t,(l)R _ XHHF’
e TXT

Simple algebra yields

oy < H(Xm,(l)ﬁt,(l) _ 3@+1,(l))l R,

+ | X iR -
9 ’ 2

< H(Xt“’(l)ﬁ“(l) - ft“’(”) H +2| X%, 1Ry — L.
Lollg 100 ——
=2

=P

Here, to bound the the second term we have used
| O, < R - x  ], = e e, < 20,

where the last inequality follows from (107)). It remains to upper bound f; and S2. For both 5, and 5s,
a central quantity to control is X0 HHO — Xt+1L.(0 By the definition of X*+1® in (101) and the
gradient update rule for X*tH(®) (see (32))), one has

xtHLO L0 _ xt+1L0)

= {Xtv(l)f{\t»(l) —n [lfpﬂ_l [Xty(l)Xt,(l)T _ (Mh + E)} P ()(ty(l))(?%(l)T _ Mh)} Xt»(l)ﬁty(l)}
P
_ {Xtmﬁt,m . [H;Ql [XHOXHOT (M 4 B)| P (XHOXHOT - Mu)} Xu}
P

=y {17991 (X O x0T - XEXT) P (XHOXHOT - X“X”Tﬂ At 1 Mpo (B ARO),
p p
(108)

It is easy to verify that
1 ONIN
[y o] 2 [poce)
p p

(i) [ (iii
NI E <) éo'min

for § > 0 sufficiently small. Here, (i) uses the elementary fact that the spectral norm of a submatrix is
no more than that of the matrix itself, (ii) arises from Lemma [27| and (iii) is a consequence of the noise
condition . Therefore, in order to control (108), we need to upper bound the following quantity

v o= H;pﬂl (Xt’(l)Xt’(l)T _ thhT) +7P (Xtv(l)Xty(l)T _ thhT) ‘ ) (109)
To this end, we make the observation that
v < Hl'pQ (Xw)Xt,(l)T _ XuXuT) ’
p
=1
1
+ HPPQ’ (XWXW)T - X“X“T) -P (vaU)Xtv(l)T - XhXﬂ) ’ (110)

=72

where Pg, is defined in (29). An application of Lemma [30] reveals that

2
7 < 20| XPORNO - X[t av/mlogn | XHORO - x| X,
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where R4 € O™*" is defined in . Let C = XtWXHOT — XX as in (98), and one can bound
the other term -5 by taking advantage of the triangle inequality and the symmetry property:

5 [ , O O
CEERD LRI TN RVEY b SRE U < I S

=1

where (i) comes from the standard Chernoff bound Z;;l (01, — p)? = np, and in (ii) we utilize the bound
established in (100). The previous two bounds taken collectively give

2
v < 2n|| X OR - XE|| +avaogn | XHORN - xF||xE|

~ In 1)
4 c\ﬁ e Re® x4, < Somn (111)

for some constant C' > 0 and § > 0 sufficiently small. The last inequality follows from li the incoherence
condition and our sample size condition. In summary, we obtain

[ Eo - Feo|| <y (7 ; Hlpgz <E>H> A0 < o 220 (112)
— p [— b

for 6 > 0 sufficiently small. With the estimate (112]) in place, we can continue our derivation on ; and
Ba.

(a) With regard to f;, in view of (108) we can obtain

g, 0 ,7‘ (xtOXHOT Z xiXET) AR

)

2

< 77‘ (Xt,(l)Xt,(l)T _ XuXuT)

]

L, 2’

(i) . HAW) (Xt,(l)f_l—\t,(l))T _'_XhAt,(l)T:|

=

< (At e+ =i, Jase]) as]

2
<uflai®], el aso) e alxt ], ol (13

where (i) follows from the definitions of Pq-: and P; (see and note that all entries in the [th row
of Po-1(+) are identically zero), and the identity (ii) is due to the definition of A®»®) in (104).

(b) For (5, we first claim that

I. :=arg min
RGOTX')"

XtHLOR - X”HF, (114)

whose justification follows similar reasonings as that of , and is therefore omitted. In particular, it
gives rise to the facts that X7 X**1(®) is symmetric and

=~ 1
(Xt-s-l,(l))TXh - §UminIr~ (115)

We are now ready to invoke Lemma to bound (3. We abuse the notation and denote C :=
(ftJrL(l))Txh and E — (Xt+1,(l)f1\t,(l) _ XVHL(”)TX“. We have
1
”EH < igmin <oy (C)

The first inequality arises from ((112)), namely,

IE| < HXtJrl,(l)ﬁt,(l) _ X/t+1,(l)H HXnH < D6Gmin

A0 |15
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2 (i) 1

(26 o 1 XH° < Zom
< N6 min || X < 50min,

where (i) holds since [|A*®|| < || X*|| and (ii) holds true for § sufficiently small and 7 < 1/0ax. Invoke
Lemma 23] to obtain

2

Po= 1B = L]l < or-1(C) +0r (C) 1El
< 2 ||xtrogo fwl,(l)H 7| (116)
Omin
<20 a0 | )

where (116) follows since 7,1 (C) > 0, (C) > omin/2 from (115]), and the last line comes from (112]).
(c¢) Putting the previous bounds (113 and (117) together yields

 <alar], o a0 +alxi ], Ja O] + st fao i as)

HZ,oo H

3. Combine ((102)), (106]) and (118} to reach

H (x OFEHE0O - XF) < (1= o)

ARO - 2n | xE,  [|ane] X7

Lla
sl e o e, e
= (1o e o oo ) AL, smiocel, ot o
(ii) Omin ‘ 1 Cs nlogn b
< (17 5 77) <Czp ur\/@+0min0\/7> HX ||2,oo

1 2C n
wan |15, (200tmr |30 + 2200 [ x4
(iii) - 1
< Cyp /«””\/@

Here, (i) follows since HAt*(l)H < ||X”|| and ¢ is sufficiently small, (ii) invokes the hypotheses 1) and
(36d) and recognizes that

Cs nlogn
o

1] o + 1%l o -

Omin

1 2C nlogn Omin
x| |at@] <2 x| (209w 2 1%+ St WHX”H)S >

holds under the sample size and noise condition, while (iii) is valid as long as 1 — (onin/3) -7 < p < 1,

Cs > kCg and Cg > IiClo/\/m.

5.7 Proof of Lemma [13

For notational convenience, we define the following two orthonormal matrices

U'R — UhHF and QY :=arg min
RcOrxr

Q :=arg min UVR - UhHF.

ReOrxr

The problem of finding H* (see ) is called the orthogonal Procrustes problem [?]. It is well-known that
the minimizer H? always exists and is given by

H' = sgn (XtTXh).
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Here, the sign matrix sgn(B) is defined as
sgn(B) :=UV" (119)

for any matrix B with singular value decomposition B = UXV T, where the columns of U and V are left
and right singular vectors, respectively.

Before proceeding, we make note of the following perturbation bounds on M° and M®) (as defined in
Algorithm [2| and Algorithm 2 respectively):

®
et e

n a n
< C\/7HMh|‘200+CO-\/; \/7|‘Xh”200 \/m\/;\/amin
g

111 (iv)

| —/Tmax + ——— } X" < omin, 120
< o+ = e X € o (120)

for some universal constant C' > 0. Here, (i) arises from the triangle inequality, (ii) utilizes Lemma [26] and
Lemma, (iii) follows from the incoherence condition (b6) and (iv) holds under our sample complexity
assumption that n?p > u?r?n and the noise condition (24)). Similarly, we have

a2 - a5 {W\/g@+ \/;T\/Z} 11X < o (121)
Combine Weyl’s inequality, and to obtain
[0 - =) < [|M° — M| < i and |50 - 25| < | MO - ME| < o, (122)
which further implies
%amin <o, (EO) <o (EO) < 20max and %amin <o, (E(l)) <o (E(l)) < 20max- (123)
We start by proving 7 and . The key decomposition we need is the following

1/2

XOH" - X5 = U (=) (H - Q) + U [(2°) @ - @ (2)*] + (U°Q - U¥) (=) (124)

1. For the spectral norm error bound in (33d)), the triangle inequality together with (124) yields

B e e R

where we have also used the fact that |[U°|| = 1. Recognizing that IMO MhH < Omin (see (1 ) and
the assumption omax/omin S 1, we can apply Lemma [34] m Lemma and Lemma [32] E to obtain

Hﬁo—QllﬁfﬂMo—M“Ha (125a)
Omin
|=)"q-a ”21\ S =Mt (125b)
[v°Q-vf| s — HMO M. (125¢)
These taken collectively imply the advertised upper bound
1
IXOH — XF|| £ v/ — HMO ME|| + —— ﬁ 1M = M| S s || M0 — M|

< {m/,/“maw - [api.
np Omin Omin

where we also utilize the fact that H (20)1/2 || < V20max (see ) and the bounded condition number
assumption, i.€. Omax/0min < 1. This finishes the proof of .
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2. With regard to the Frobenius norm bound in (33al), one has

|x°H" - X“H < Vr||XOR° - x|

~ori s i BV = (o4 2 ) v
< o2 A,

Here (i) arises from 1) and (ii) holds true since omax/Omin < 1 and /r\/Omin < |
the proof of (33a)).

3. The proof of (33b)) follows from similar arguments as used in proving (33¢c)). Combine (124 and the triangle
inequality to reach

> thus completing

|xom -], <ol {20 7 - 0] + =) @ - @ =™}
,00
+ Vomax [[U°Q = UF|, -
Plugging in the estimates , (123)), (125a)) and (125b)) results in

= 1 o n
0770 _ wh o h 0 00 _ 178
|x°H - x Hm < {um/np o \/;} X [T, + v [[U°Q — TP, -

It remains to study the component-wise error of UY. To this end, it has already been shown in |?, Lemma

14] that
HLOQLh”zoofS(‘“"\/lJr >
; np o

under our assumptions. These combined with the previous inequality give

e~ 1 o n 1
00 _ xt < [ — 24 i < [~
HX H X H2,oo ~ {MT np + Omin \/;} max HU ||2’OO ~ {,UT np M

where the last relation is due to the observation that

Vo [U| 0 S Vomin [UF|5 o < (1% o -

n
p) HUh||2,oo and ||UO||2,OO 5 ||Uh|’27oo (126)

g_n ;
1

4. We now move on to proving 1) Recall that Q) = arg mingeorxr
inequality,

UOR — Uh”F. By the triangle

e 0 | < 0t x|

< |x H2 |0 — Q| + H (x°0Q® - x7), || . (127)
Note that th,_ = Mﬁ_Uh (Z)h)_l/2 and, by construction of M®

—1/2 —1/2

ng(l) _ Ml(f.)UO,(l) (E(l)) _ Mlh"U07(l)(E(l))

We can thus decompose

(XO’(“Q”) - X“)l_ = M, {UW) {(zm)*mQ(l) —Q® (zu)—l/ﬂ n (Uo,(l)Q(l) _ Uu) (zu)—l/2}7
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which further implies that

xe0Q0 —x), [, < g, . {|(20) 0" - @ (=) 4 =

Uo0Q _ UuH} .

V Umln
(128)
In order to control this, we first see that
H(E(l)) 1/2Q Q(l (Zh 1/2” _ H Z:(l))71/2 {Q(l) (Eh)l/z B (2(1 )1/2Q(l } ( 71/2H
s — Qv (=" - (=) 72V
Umln
1
S = M@ - x|
O min

where the penultimate inequality uses (123]) and the last inequality arises from Lemma Additionally,
Lemma [32| gives

HUO hQ® _ UuH <t

MO - M“H.

Jmln

Plugging the previous two bounds into (128)), we reach

1 1
o0t 00, |, 5 e - o el 5 o+

min

n
A

where the last relation follows from HM”H2 o = ||X”X”T||2 - < /Omax HX“H2 - and the estimate (|121)).
Note that this also implies that HXlOi(l) H <2 HXh H2 - To see this, one has by the unitary invariance of
g :

)
Substituting the above bounds back to yields in
H(Xo,(wﬁo,(l) X% H < |lx?| Hﬁo,(l) _ Q(l)H I P S A (1 x|
L 2 200 np Omin p 2,00
1
s/ 2 B,
np Omin | P ’

where the second line relies on Lemma the bound (121)), and the condition opax/0min < 1. This
establishes (33¢)).

. Our final step is to justify |i Define B := argmingecorxr ||U0’(l)R— U°
R%®) (cf. (35)), one has

x)O =x200| <|(x*0Q® —x¥), || +|X7| <2|x,.-
’ 2 ’ 2 2 2 ’

||F From the definition of

e < e
F F
Recognizing that
x00 B _ x — oW [(E(Z))l/QB _B (20)1/2} n (Uo,(z)B _ UO) (20)1/2)
we can use the triangle inequality to bound
HXo,(z)B _ XoH < H (E(Z))l/QB _B (20)1/2” n HUo,(z)B _ UoH H(Eo)l/zu _
F F F

In view of Lemma (33 and the bounds (120)) and (121}, one has

1
F~ v/ Omin

H (E(l))_l/QB _ BEl/ZH

(M° - M(l))onl)H
F
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From Davis-Kahan’s sin® theorem [?] we see that

HUW)B - UOH <1l - M(l))UO*(l)H .
F "™ Omin F
These estimates taken together with (123) give
1

preon - x],
P

- 0 _ prOYo
A/ Omin (M M )U HF

It then boils down to controlling || (MO - M(l)) (SAR0) HF Quantities of this type have showed up multiple

times already, and hence we omit the proof details for conciseness (see Appendix . With probability
at least 1 — O (n_lo),

o009 & fr B [ ]
F np P 2,00

If one further has 1

joo@), L 210 £ =X (129)

Omin

then taking the previous bounds collectively establishes the desired bound

— 1 ! X
onHO _ Xo,u)Ro,(l)H S {W\/@+ Z\ /" Ogn} 1] -
F np Omin p ’

Proof of Claim . Denote by M ()77 the matrix derived by zeroing out the Ith row/column of M®
and U7 ¢ R containing the leading 7 eigenvectors of M ()#¢*° On the one hand, [?, Lemma 4
and Lemma 14| demonstrate that

max ||U(l),zero
1<l<n

2,00 S U*

2,00+

On the other hand, by the Davis-Kahan sin © theorem [?] we obtain

HU07(1)8gn <U07(l)TU(l)7zero) . U(l),zero < 1 <M(l) _ M(l)7zero> U(l)7zero (130)
F ™ Omin F’
where sgn(A) denotes the sign matrix of A. For any j # [, one has
(M(z) _ M(z),zero) U (D-zero _ (M(l) _ M(z),zem) Ul(l),zero — 0y,
g il ’
since the {th row of U l(l,)’zem is identically zero by construction. In addition,
H(M(z) _ M(l),zero) UOzerol|| — HMu UOzerol| < HMuH <o HUuH
. ) I, 9 = 2,00 — = max 2,00 °
As a consequence, one has
H (M(l) . M(l),zero) U(l),zero _ H (M(l) _ M(l),zero) U(l),zero < Omax ||Uh”2
F L, 5 007
which combined with (130) and the assumption oyax/0min < 1 yields
HUO’(Z)SgD (UO,(Z)TU(Z),zero) _ U(l),zero < Hl]hH2
F~ 100
The claim (129) then follows by combining the above estimates:
HUO,(l)H _ HUO’(l)Sgn (Uo,(Z)TU(z),zero) ‘
2,00 2,00
< |||, o+ HUO,(Z)Sgn (Uo,(Z)TU(z),zem) W] < U,
= s F ~ ;00
where we have utilized the unitary invariance of |||, .- O
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6 Technical lemmas
6.1 Technical lemmas for phase retrieval
6.1.1 Matrix concentration inequalities

Lemma 18. Suppose that a; R N(0,1,) for every 1 < j < m. Fiz any small constant § > 0. With
probability at least 1 — Coe™ 2™ one has

I~ T
Ezlajaj —I,|| <6,
]:

as long as m > con for some sufficiently large constant co > 0. Here, Co, co > 0 are some universal constants.

Proof. This is an immediate consequence of [?, Corollary 5.35]. O

Lemma 19. Suppose that a; i N(0,1,,), for every 1 < j < m. Fiz any small constant § > 0. With
probability at least 1 — O(n~10), we have

1 m
- Z (ajTa:h)2 ajajT — (||a:b||§In + thazﬂ) < 5||zt:h|\§7

provided that m > conlogn for some sufficiently large constant cy > 0.

Proof. This is adapted from [?, Lemma 7.4]. O

Lemma 20. Suppose that a; bLd N(0,1,), for every 1 < j < m. Fiz any small constant § > 0 and any
constant C' > 0. Suppose m > con for some sufficiently large constant ¢y > 0. Then with probability at least
1 — Che™2™,

S\H

Z ]1{|a el<cy @ja; — (Bixx’ + Bolla|31,)|| < 6l|w|3, Vo eR"

holds for some absolute constants co, Co > 0, where

Br=E [ Lg<cy] —E[? Ljg<c] and By =E [ Ljg<c]
with £ being a standard Gaussian random variable.

Proof. This is supplied in [?, supplementary material]. O

6.1.2 Matrix perturbation bounds

Lemma 21. Let A\i(A), u be the leading eigenvalue and eigenvector of a symmetric matriz A, respectively,
and A1 (A), u be the leading eigenvalue and eigenvector of a symmetric matriz A, respectively. Suppose that
A (A), M (A), || All, [|A]l € [C1,C4] for some Cy,Cs > 0. Then,

VA - nda) <

Proof. Observe that

VAT u - () @

A A)“Hz
Vien

+(Va+ ) el

R e R e |
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< VAT - @)+ ) -l (131)
where the last inequality follows since ||ul|, = 1. Using the identity v/a — v/b = (a — b)/(v/a + V/b), we have

A (4) = () Pl ~ Mi(A)]
‘\//\17—1—\//\1 ] we

where the last inequality comes from our assumptions on A (A) and A;(A). This combined with (131) yields

VA - Y a| <

To control ‘)\1 (A) - AL(A)

A1 (A)

‘)\1 M(J‘D‘
2v/Cy

+/Co |u — ), (132)

, use the relationship between the eigenvalue and the eigenvector to obtain

‘/\1(A) - Al(ﬁ)‘ - ‘uTAu - ﬁTﬁﬁ‘
g‘uT(A—aﬁﬁ4+¢uTﬁu-ﬁTﬁa‘+‘ﬁTﬁa-ﬂTﬁﬂ
< [I(A — A)ul, +2|lu—al, || 4]
which together with gives

VAT w- () @

(A = A)ull, +2||u — all, |A]
2v/C1

+ Vs [lu —al,

(A=A, [ c .
Ml (B ) -,
as claimed. O

6.2 Technical lemmas for matrix completion
6.2.1 Orthogonal Procrustes problem

The orthogonal Procrustes problem is a matrix approximation problem which seeks an orthogonal matrix R
to best “align” two matrices A and B. Specifically, for A, B € R"*", define R to be the minimizer of

minimizegeorxr  ||AR — Bl|g . (133)
The first lemma is concerned with the characterization of the minimizer R of l)

Lemma 22. For A,B € R"*", R is the minimizer of if and only if RTATB is symmetric and
positive semidefinite.

Proof. This is an immediate consequence of [?, Theorem 2]. O

__ Let ATB = UXVT be the singular ~value decomposition of ATB € R™". It is easy to check that
R := UV satisfies the conditions that RT AT B is both symmetric and positive semidefinite. In view of
Lemma R =UVT is the minimizer of . In the special case when C := AT B is invertible, R enjoys
the following equivalent form:

R=H(C)=cC(Cc'c) ", (134)
where H () is an R™*"-valued function on R"*". This motivates us to look at the perturbation bounds for
the matrix-valued function H (+), which is formulated in the following lemma.
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Lemma 23. Let C € R"™" be a nonsingular matriz. Then for any matric E € R™" with || E|| < omin (C)
and any unitarily invariant norm ||-||, one has

2
or—1(C) + 0 (C)

|Hc+m -H@E)| < 1)),

where f{\() is defined above.
Proof. This is an immediate consequence of [?, Theorem 2.3]. O

With Lemma 23] in place, we are ready to present the following bounds on two matrices after “aligning”
them with X",

Lemma 24. Instate the notation in Section , Suppose X1, Xo € R™*" are two matrices such that

10— X X7 < /2 (1350)
1 X1 — Xo|| | X¥|| < owmin/4. (135b)

Denote

R, .= argminHXlRthHF and Ry = argminHXngXhHF.
ReQOmxr RecOTXr

Then the following two inequalities hold true:
||X1R1 — X2R2|| S 5K ||X1 — X2|| and ||X1R1 — X2R2||F S 5K HXI — X2||F .
Proof. Before proving the claims, we first gather some immediate consequences of the assumptions ((135)).
Denote C = X X" and E = (X, — X;)' X". It is easily seen that C is invertible since
1) i
€= XX < | X0 — XH||X7] € omin/2 2 0, (C) > omin/2, (136)

where (i) follows from the assumption (135a)) and (ii) is a direct application of Weyl’s inequality. In addition,
C + E = X X" is also invertible since

® (i)
B[l <[ X1 — Xo HXHH < Omin/4 < 0, (C),

where (i) arises from the assumption (135bf) and (ii) holds because of (136). When both C and C + E are
invertible, the orthonormal matrices R; and Ry admit closed-form expressions as follows

R=Cc(Cc’C)"? and Ry,=(C+E) [(C+E)T (C+ E)}_”2
Moreover, we have the following bound on || X1 ||:
() (i) . (iif)
1] < (|30 - X5+ x| < grsn + (10 < g+ X < 2 X (137)

21 x| 21Xt

where (i) is the triangle inequality, (i) uses the assumption (135a)) and (iii) arises from the fact that || X" || =

\/ Umax~

With these in place, we turn to establishing the claimed bounds. We will focus on the upper bound
on | X1 R; — X2Rs||p, as the bound on || X R; — X2 Rs|| can be easily obtained using the same argument.
Simple algebra reveals that

[X1R — XoRs|lp = [[(X1 — X2) R2 + X1 (R1 — Re)lp
< [ X1 = Xoflp + | X1 [[B: — Ralg
< || X1 — Xollp + 2|| XY [|R: — Rallg (138)
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where the first inequality uses the fact that ||Rz|| = 1 and the last inequality comes from (137). An
application of Lemma [23[leads us to conclude that

IR = Bolly < s | Bl
< oo xT x|, (139)
< 2% - Xl | XY (140
where utilizes ((136)). Combine and to reach
IX1By — XaRally < X1 = Xl + —— X2 = Xalp [ X
< (1 446) [ X1 — Xofg,
which finishes the proof by noting that « > 1. O

6.2.2 Matrix concentration inequalities

This section collects various measure concentration results regarding the Bernoulli random variables {3, 1 }1<j k<n,
which is ubiquitous in the analysis for matrix completion.

Lemma 25. Fiz any small constant § > 0, and suppose that m > § 2unrlogn. Then with probability
exceeding 1 — O (n_lo), one has

(1=9)[BlF < %IIPQ(B)IIF < (1+9)|Bllr

holds simultaneously for all B € R™*™ lying within the tangent space of M?.

Proof. This result has been established in [?, Section 4.2] for asymmetric sampling patterns (where each
(i,7), i # j is included in Q independently). It is straightforward to extend the proof and the result to
symmetric sampling patterns (where each (4, 7), ¢ > j is included in § independently). We omit the proof
for conciseness. O

Lemma 26. Fiz a matriz M € R™¥™. Suppose n’p > conlogn for some sufficiently large constant co > 0.
With probability at least 1 — O (n’lo), one has

1
HPQ (M) —MH <o /2 M, .
p \V »

where C > 0 is some absolute constant.

Proof. See [?, Lemma 3.2|. Similar to Lemma the result therein was provided for the asymmetric sampling
patterns but can be easily extended to the symmetric case. O

Lemma 27. Recall from Section that E € R™*"™ is the symmetric noise matriz. Suppose the sample size
obeys n%p > conlog®n for some sufficiently large constant co > 0. With probability at least 1 — O (n‘lo),

one has )
] <o
p p

Proof. See [?, Lemma 11]. O

where C > 0 is some universal constant.
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Lemma 28. Fiz some matric A € R™" with n > 2r and some 1 < | < n. Suppose {015}, ;, are
independent Bernoulli random variables with means {pj}1<j<n no more than p. Define

Gi(A) = [611A] 612A] - 61,A) ] €R™

Then one has

| ) 3 2] A2,
Median (|G (A)l] < \[pIAIP + /20 | A1, 1] log (47) + == log (4r)

and for any constant C > 3, with probability exceeding 1 — n~(1-5¢—1)

n

> (61~ AT, Ay | <€ (VoA AT Togn + AIS  ogn )

Jj=1

and

1G1 ()] < \/p |l +C (%p A2 .. [ AP logn + [ AJ2, 10gn).

Proof. By the definition of G| (A) and the triangle inequality, one has

n

IGi (A = |G (4) HZ%A A <306 - ) AL A +p AP
j=1
Therefore, it suffices to control the first term. It can be seen that {(d;; — pj)A A }1< <, Are iid.

zero-mean random matrices. Letting

L= max (55— p;) AL A < A3

n

and V= ZE[(%—pj)QAjT,-Aj,-AjT,-Aj,} SE{(fSl,j—pj)ﬂ 1Al (D AT A, <pllAl . A7

j=1 j=1
and invoking matrix Bernstein’s inequality [?, Theorem 6.1.1], one has for all ¢ > 0,
n

—t2/2
P (01,5 — pj) A»T,‘Ajf >ty <2r-exp < 5 5 5 ) . (141)
; ! PllAlz . A7+ Al - /3

We can thus find an upper bound on Median [HZ" (015 —pj) Al A H] by finding a value ¢ that ensures
the right-hand side of (141)) is smaller than 1/2. Using this strategy and some simple calculations, we get

n 2||All;
Median Z (01,5 — pj) A LA S\/2p||A||§7OO ||A||210g(47’)+%10g(4r)

and for any C > 3,

n

> 6y ) AL A | < € (VoA IAI g+ AL . logn

Jj=1

holds with probability at least 1 —n~(1:5¢=1) As a consequence, we have

. 2 2 2 2| A5
Median [[|G; (A)[|] </ [|A]l +\/2p||A||27oo | A[" log (4r) + ——== log (4r),
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and with probability exceeding 1 — n~(1-5¢=1),

1G: (A) < pllAIP + C Wp |AJ2 ., A togn + ||A||§7wlogn) .

This completes the proof. O

Lemma 29. Let {5lvj}1<l<j<n be i.i.d. Bernoulli random variables with mean p and &, ; = 0;;. For any

A € R, define
Gi (A) = [61,1AI_, 5172A;’_7 e 7617nA:; } c R™*".

Suppose the sample size obeys n®p > wurnlog®n. Then for any k > 0 and a > 0 large enough, with
probability at least 1 — cie”*Cm" logn/2

= 1 < 2anlogn
Z {IlGi(a)|z4ypy+2vhre} = L
=1

holds simultaneously for all A € R™ " obeying

nlogn

1
Al 00 < Coplary [ S22 [ X o + Cio 175,00 =€

ond A < Coplr— | 5] + Crom [ |5 = .

where c1,C5, Cg, Cy, C19 > 0 are some absolute constants.
Proof. For simplicity of presentation, we will prove the claim for the asymmetric case where {d;;},, i<n

are independent. The results immediately carry over to the symmetric case as claimed in this lemma. To
see this, note that we can always divide G;(A) into

Gi(A) = G (A) + G (A,

where all nonzero components of G;**®(A) come from the upper triangular part (those blocks with I < j
), while all nonzero components of GI°"**(A) are from the lower triangular part (those blocks with [ > j).
We can then look at {G;"**(A) |1 <1 <n} and {G;"*"(A) |1 <1< n} separately using the argument
we develop for the asymmetric case. From now on, we assume that {d; ;}, - 1j<n 8T€ independent.

Suppose for the moment that A is statistically independent of {d; ;}. Clearly, for any A, Ae R™*T

IN

Gi(a) |- [a@)l| <|le @) -a(@d)| < |6 @) -a(d))

n 2
Z HAJE‘ - AJE‘H
. 2
Jj=1

=d(A,A),

IN

which implies that ||G; (A)|| is 1-Lipschitz with respect to the metric d (-,-). Moreover,

A - < <
@asxn 101,581l < HA”gm =¢

according to our assumption. Hence, Talagrand’s inequality [?, Proposition 1] reveals the existence of some
absolute constants C, c > 0 such that for all A >0

P{|Gi (A)] — Median[||G1 (A)]]] = A&} < Cexp (—cX?). (142)
We then proceed to control Median [||G; (A)||]. A direct application of Lemma [28| yields

2
Median [|G: ()] < \/ 202 + /plog ey + 2 log (4r) < 2/p,

51



where the last relation holds since py? > €2 log r, which follows by combining the definitions of ¥ and &, the
sample size condition np > kurlog?n, and the incoherence condition . Thus, substitution into (142)
and taking A = Vkr give

}P’{HGZ (A =2y + vk:r{} < Cexp (—ckr) (143)

for any k > 0. Furthermore, invoking [?, Corollary A.1.14] and using the bound (143)), one has

n gt
P (Z ﬂ{HGz(A)HZL/WJr\/WE} > tnCexp (—ck‘r)) < 2exp (— nC' exp (—ckr))
=1

for any t > 6. Choose t = alogn/ [kC exp (—ckr)] > 6 to obtain

an logn aC
(Z Lyeia)iz2ypu+vire} = > < 2exp (—Qnr log n) : (144)

So far we have demonstrated that for any fixed A obeying our assumptions, > ;" ]I{HG:(A)H>2\/W+\/H§}

is well controlled with exponentially high probability. In order to extend the results to all feasible A, we
resort to the standard e-net argument. Clearly, due to the homogeneity property of ||G; (A)]], it suffices to
restrict attention to the following set:

S={A[min{¢, ¢} <[|A[| <9}, (145)
where /& < || X8|/ X5 l2.00 < v/n- We then proceed with the following steps.

1. Introduce the auxiliary function

1, if |G;(A)| > 4y/py + 2Vkr€,
IGU(A)|-2/pY—VETE .

xi(A) = 2ﬁ¢+%§ , i |G (A)]| € [2y/pY + VErE, 4y + 2VEré],
0, else.

Clearly, this function is sandwiched between two indicator functions

Loy ayizayppravime) < XUA) S Lryg a)sa ot vire) -
Note that x; is more convenient to work with due to continuity.

2. Consider an e-net N, [?, Section 2.3.1] of the set S as defined in (145). For any ¢ = 1/n°() one can find
such a net with cardinality log |N¢| < nrlogn. Apply the union bound and (144)) to yield

omlogn anlogn
(le VA€N><]P’<Z]1{|G As2ypvsvire) 2 VAeNe>

< 2|N|exp (—azcnr logn> < 2exp (—afm" log n> ,

as long as « is chosen to be sufficiently large.

3. One can then use the continuity argument to extend the bound to all A outside the e-net, i.e. with
exponentially high probability,

- 2an1
>oaa) < =EE vAES

2anlogn
= D jaa)zameravirg <D X(A) ===, VAES
=1 =1

This is fairly standard (see, e.g. [?, Section 2.3.1]) and is thus omitted here.
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We have thus concluded the proof. O

Lemma 30. Suppose the sample size obeys n’p > Crurnlogn for some sufficiently large constant C > 0.
Then with probability at least 1 — O (n’lo),

[0 (exT = x50T) | < ot 7+ dentonn [ X7, 1Y)
holds simultaneously for all X € R™" satisfying
HXiXhHZoo < €||XUH2,OO7 (146)

where € > 0 is any fized constant.

Proof. To simplify the notations hereafter, we denote A := X — X% With this notation in place, one can
decompose
XX - XX = AX*T + X'AT + AAT,

which together with the triangle inequality implies that

H;PQ (XX - X'Xx"T)

<[irax

i

‘ + H;Pg (AAT)

H (AAT) ’ +2 H (AX"T) ‘ : (147)
= =Q
In the sequel, we bound «; and «ay separately.
1. Recall from [?, Theorem 2.5] the elementary inequality that
Ic| < |licl|, (148)

where |C| := [|¢; j[]1<i,j<n for any matrix C' = [¢; ;]

j<n- In addition, for any matrix D := [d; j]1<i j<n
such that |d; ;| > |c; ;| for all ¢ and j, one has |||C|| Il

<i
< D| |- Therefore

1 1
o< a(aaT) | < 1Al TR0 a17)

Lemma [26 then tells us that with probability at least 1 — O(n~19),

< cﬁ (149)

for some universal constant C' > 0, as long as p > logn/n. This together with the triangle inequality
yields

H;Pg (117) —11"

o

‘ < H;PQ (117) —11”

+ 117 < C’\/Z+ n < 2n, (150)

provided that p > 1/n. Putting together the previous bounds, we arrive at
ar < 2| Al - (151)

2. Regarding the second term «s, apply the elementary inequality once again to get
[P (AXZT)[| < [[Pa (JAXET])],

which motivates us to look at HPQ (‘AX“T’) H instead. A key step of this part is to take advantage of
the ¢3 oo norm constraint of Pq (’AX “TD. Specifically, we claim for the moment that with probability
exceeding 1 — O(n~10),
2
[Pa (JAX5T)

[0 < 2P0ma [ A3 o =0 (152)
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holds under our sample size condition. In addition, we also have the following trivial £, norm bound
1Po (AXT) o < 1A [ XF 0 1= (153)
In what follows, for simplicity of presentation, we will denote
A:="7Pq (|AX"T)). (154)

(a) To facilitate the analysis of || Al|, we first introduce ko + 1 = 3 log (rkur) auxiliary matricesﬂ B, € R™*"

that satisfy
ko—1

[ < [1Broll + > 1Bl (155)
s=0

To be precise, each By is defined such that

1 : 1 1

as f A 6 LY ESE ,T P}

[Bs]jk:{gb% 11 sk €T s <k—1  and
’ R else,

[Bk ] _ 2%073 if Aj,k < 2%07’
0%k 0, else,

which clearly satisfy (155); in words, B; is constructed by rounding up those entries of A within a
prescribed magnitude interval. Thus, it suffices to bound || B;|| for every s. To this end, we start with
s = ko and use the definition of By, to get

(i) (ii) 1 (iii)
1Bro| < 1B lloc V/ (200)° < dnp 1A g o0 [|XF]|5 0 < 4V 1AL o [| X7,

NS

where (i) arises from Lemma [31] with 2np being a crude upper bound on the number of nonzero entries
in each row and each column. This can be derived by applying the standard Chernoff bound on 2. The
second inequality (ii) relies on the definitions of v and kg. The last one (iii) follows from the incoherence
condition . Besides, for any 0 < s < kg — 1, by construction one has

1
2 2
”BSHQ,OO < 40 = 8pomax HA||27<>0 and [Bslloo = YR

where 6 is as defined in (152). Here, we have used the fact that the magnitude of each entry of By is at
most 2 times that of A. An immediate implication is that there are at most

2 2
1B 13,00 < BPomax 1AL o
2 = 2
IBs1% (557)

nonzero entries in each row of B, and at most

:k’r

ke = 2np

nonzero entries in each column of B,, where k. is derived from the standard Chernoff bound on .
Utilizing Lemma [3T] once more, we discover that

1
[ Bs| < HBSHOO Vkike = ?’Y\/ koke = \/16”p2‘7max HAH;OO = 4\/517 ||A||2,oo ||XhH

for each 0 < s < kg — 1. Combining all, we arrive at

ko—1
A < D7 1IBsll + 1Bro || < (ko + 1) 4v/np | Al o | XF
s=0

2For simplicity, we assume % log (kur) is an integer. The argument here can be easily adapted to the case when % log (kpur)
is not an integer.

54



< 2y/nplog (kpr) || Al o || X7
< 2y/nplogn || A, . | X7,

where the last relation holds under the condition n > kur. This further gives

1
s < , |A]| < 2v/nlogn ||All, . | XF. (156)
(b) In order to finish the proof of this part, we need to justify the claim (152)). Observe that
2 n 2
6T _ 0T
|[Pa(laxT)], |, =200, (anX]Ta,)

- " X IT el T
= A, (Zj:1 5, X XJ) Al
<Al szzl o, X5 X | (157)

for every 1 < I < n, where §; ; indicates whether the entry with the index (I, j) is observed or not.
Invoke Lemma [28] to yield

n 2
[0 X = Xt s )|

< POmax + C <\/p 13 o0 1X2)1% log m + || XF|5 k’g”)

< <p+C [prurlogn _’_Cnﬂrlogn) _
n n

< 2pomax; (158)
with high probability, as soon as np > kurlogn. Combining (157) and (158)) yields

2
|(Pe (jaxT))], [ < 20mac A, 1<i<n
as claimed in (152]).
3. Taken together, the preceding bounds (147)), (151) and (156]) yield

H1PQ (XX - X'x"T)
p

’ <o +2a2 <20 Al +4vnlogn A, || X

The proof is completed by substituting the assumption ||Al, . <€ HX“H2 o O

In the end of this subsection, we record a useful lemma to bound the spectral norm of a sparse Bernoulli
matrix.

Lemma 31. Let A € {0,1}""" be a binary matriz, and suppose that there are at most k. and k. nonzero
entries in each row and column of A, respectively. Then one has ||A| < Vkck:.

Proof. This immediately follows from the elementary inequality ||A[|? < [|All151]|Allco—00 (see [?, equa-
tion (1.11)]), where ||A|l1—1 and [|A||co—oo are the induced I-norm (or maximum absolute column sum
norm) and the induced oo-norm (or maximum absolute row sum norm), respectively. O

6.2.3 Matrix perturbation bounds

Lemma 32. Let M € R™*™ be a symmetric matriz with the top-r eigendecomposition USU . Assume
||M - MhH < Omin/2 and denote
Q = argmin HUR — UhHF .
RGOTX‘V'
Then there is some numerical constant c3 > 0 such that

C3

U@ -Uf|| < = ||M — .

Omin
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Proof. Define Q = UTU". The triangle inequality gives
lve-vf <|v@-Q)|+|ve-Ui|<|l@-Ql+|vv v~ Ui (159)

[?, Lemma 3] asserts that
~ 2
Q@ - Q| < 4([|M — M| /ormin)
as long as HM — MhH < Opmin/2. For the remaining term in 1) one can use UYTU? = I, to obtain

[vvTut-UY| = |[uvTUt - Ut U < U T - UtUT ||,
which together with the Davis-Kahan sin® theorem [?] reveals that

[oUTUE - U < = v -
for some constant co > 0. Combine the estimates on H@ — QH, HUUTU" — U“H and to reach

2
|U@ - Ut < (- ||mr - 2|
Omin

for some numerical constant cs > 0, where we have utilized the fact that HM - M “H /Omin < 1/2. O

Lemma 33. Let M, M € R™™" be two symmetric matrices with top-r eigendecompositions UXU T a
UZUT, respectively. Assume HM MhH < Omin/4 and HM MhH < omin/4, and suppose Umix/amm 18
bounded by some constant ¢; > 0, with omax and omin the largest and the smallest singular values of M,
respectively. If we denote

Q=

ReOrxr

then there exists some numerical constant cs > 0 such that

g -au < S jit-m| o Qs < |- anu],.

V Umm

Proof. Here, we focus on the Frobenius norm; the bound on the operator norm follows from the same
argument, and hence we omit the proof. Since ||-|| is unitarily invariant, we have

a0, [arsria-s),

where QT X1/2Q and £!/2 are the matrix square roots of QT £Q and ¥, respectively. In view of the matrix
square root perturbation bound [?, Lemma 2.1],

1
Omin [ (2)1/2 ] + Omin 1/2

=0 - @], < joT=e 3], <

.
) 2H (16
\V Umln Q Q 0

where the last inequality follows from the lower estimates
Tmin () > Omin (B7) — | M — M| > onin /4
and, similarly, Umin(i) > Opmin/4. Recognizing that ¥ = UT MU and > = ﬁTMﬁ, one gets
je7=e 5|, =[we) mwe) -oTaD],
<|w@) MuQ) - (UQ) MUQ)| +|ve) MUQ) -TTMUQ)|

+|[oT™M W) - 0T MO
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< |01 - myu|_+2|uQ-U|, M|l < || (M - m)U| +donnllUQ T (161
where the last relation holds due to the upper estimate
ML) < | M)+ [| M~ ME|| < 0mmae + anin/4 < 200m
Invoke the Davis-Kahan sin® theorem [?] to obtain

C2 2¢o

0@ Ol < o (=200, < 2|3 - anyo], (162)
for some constant co > 0, where the last inequality follows from the bounds
o) (M) > o, (M2) = [ M = M?|| > 3omin/4,
Or 1 (M) < 0pp1 (M?) + | M — M| < 0nin /4.
Combine , , and the fact omax/Omin < ¢1 to reach
~ ¢ —
HEl/zQ_Qzl/zuF < \/(% (M—M)UHF
for some constant ¢z > 0. O

Lemma 34. Let M € R™*™ be a symmetric matriz with the top-r eigendecomposition UXUT. Denote
X =UXY? gnd X" = UYZH/2, and define

Q:: argminHUR—UhHF and H:= .‘:wgmin||XR—Xh

RecOrxr RecOTXx" HF .

Assume ||M — MhH < Omin/2, and suppose Omax/Omin s bounded by some constant ¢y > 0. Then there
erists a numerical constant cs > 0 such that

Q- H| < = ||p— mF|.
Umln

Proof. We first collect several useful facts about the spectrum of 3. Weyl’s inequality tells us that HE — X H <
||M — MhH < Omin/2, which further implies that

0, (8) >0, (8°) - |[Z =% > omin/2  and 2] < |2+ || - = < 20max-
Denote
Q=U'"U" and H=XTX"
Simple algebra yields

1/2 1/2

=312(Q-Q) (=9 + (512Q - Q=) (1) + @ (m5)

=F =A

H =3X'2Q (%

It can be easily seen that o,._1 (A) > 0, (A) > omin/2, and
B < 2] @ - @ (=) + 526 - @22 (=)

§2UmaxHQ_QH+VUmaX ’7
H”—/

=«

21/2@ o Q21/2

=B

which can be controlled as follows.
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e Regarding «, use [?, Lemma 3] to reach
o= Q- Q| <4|M - jory,.

e For (3, one has

(ii)
- 20, 21/2

$1/20 - 21/2‘

joT=e

20’r 21/2 ‘

where (i) and (iii) come from the unitary invariance of ||-||, and (ii) follows from the matrix square root
perturbation bound [?, Lemma 2.1]. We can further take the triangle inequality to obtain

|2Q- x| -|ze-ez+2@-0-@-=|
<|=Q-Q3+2|=( Q- Q|
= U (M -M)UT +Q (2 -%)| +2]=]|lQ - Q|
<|u(M-M)UT |+ [Q (2 -3)| +21I=] @ - Q|
<2||M — M¥|| + domaxar,
where the last inequality uses the Weyl’s inequality || X% — || < ||M — M?|| and the fact that [|Z]| < 20 max.

e Rearrange the previous bounds to arrive at

| E| < 20max® + v/Tmax —— (2 HM MhH —|—4omaxa) <y HM MhH

T (
for some numerical constant ¢y > 0, where we have used the assumption that opax/Omin is bounded.
Recognizing that Q = sgn (A) (see definition in (119)), we are ready to invoke Lemma 23] to deduce that

2
~ o1 (A) + o, (A)

for some constant cz > 0. O
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