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1 A general recipe for trajectory analysis
In this section, we sketch a general recipe for establishing performance guarantees of gradient descent, which
conveys the key idea for proving the main results of this paper. The main challenge is to demonstrate
that appropriate incoherence conditions are preserved throughout the trajectory of the algorithm. This
requires exploiting statistical independence of the samples in a careful manner, in conjunction with generic
optimization theory. Central to our approach is a leave-one-out perturbation argument, which allows to
decouple the statistical dependency while controlling the component-wise incoherence measures.

General Recipe (a leave-one-out analysis)

Step 1: characterize restricted strong convexity and smoothness of f , and identify the region
of incoherence and contraction (RIC).

Step 2: introduce leave-one-out sequences {Xt,(l)} and {Ht,(l)} for each l, where {Xt,(l)}
(resp. {Ht,(l)}) is independent of any sample involving φl (resp. ψl);

Step 3: establish the incoherence condition for {Xt} and {Ht} via induction. Suppose the
iterates satisfy the claimed conditions in the tth iteration:

(a) show, via restricted strong convexity, that the true iterates (Xt+1,Ht+1) and the
leave-one-out version (Xt+1,(l),Ht+1,(l)) are exceedingly close;

(b) use statistical independence to show that Xt+1,(l)−X\ (resp. Ht+1,(l)−H\) is inco-
herent w.r.t. φl (resp. ψl), namely, ‖φ∗l (Xt+1,(l) −X\)‖2 and ‖ψ∗l (Ht+1,(l) −H\)‖2
are both well-controlled;

(c) combine the bounds to establish the desired incoherence condition concerning
max
l
‖φ∗l (Xt+1 −X\)‖2 and max

l
‖ψ∗l (Ht+1 −H\)‖2.

1.1 General model
Consider the following problem where the samples are collected in a bilinear/quadratic form as

yj = ψ∗jH
\X\∗φj , 1 ≤ j ≤ m, (1)

where the objects of interest H\,X\ ∈ Cn×r or Rn×r might be vectors or tall matrices taking either real
or complex values. The design vectors {ψj} and {φj} are in either Cn or Rn, and can be either random or
deterministic. This model is quite general and entails all three examples in this paper as special cases:

• Phase retrieval : H\ = X\ = x\ ∈ Rn, and ψj = φj = aj ;

• Matrix completion: H\ = X\ ∈ Rn×r and ψj ,φj ∈ {e1, · · · , en};

• Blind deconvolution: H\ = h\ ∈ CK , X\ = x\ ∈ CK , φj = aj , and ψj = bj .

For this setting, the empirical loss function is given by

f(Z) := f(H,X) =
1

m

m∑
j=1

∣∣∣ψ∗jHX∗φj − yj∣∣∣2,
where we denote Z = (H,X). To minimize f(Z), we proceed with vanilla gradient descent

Zt+1 = Zt − η∇f
(
Zt
)
, ∀t ≥ 0

following a standard spectral initialization, where η is the step size. As a remark, for complex-valued
problems, the gradient (resp. Hessian) should be understood as the Wirtinger gradient (resp. Hessian).

It is clear from (1) that Z\ = (H\,X\) can only be recovered up to certain global ambiguity. For clarity
of presentation, we assume in this section that such ambiguity has already been taken care of via proper
global transformation.
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1.2 Outline of the recipe
We are now positioned to outline the general recipe, which entails the following steps.

• Step 1: characterizing local geometry in the RIC. Our first step is to characterize a region R —
which we term as the region of incoherence and contraction (RIC) — such that the Hessian matrix ∇2f(Z)
obeys strong convexity and smoothness,

0 ≺ αI � ∇2f(Z) � βI, ∀Z ∈ R, (2)

or at least along certain directions (i.e. restricted strong convexity and smoothness), where β/α scales
slowly (or even remains bounded) with the problem size. As revealed by optimization theory, this geometric
property (2) immediately implies linear convergence with the contraction rate 1−O(α/β) for a properly
chosen step size η, as long as all iterates stay within the RIC.

A natural question then arises: what does the RIC R look like? As it turns out, the RIC typically contains
all points such that the `2 error ‖Z −Z\‖F is not too large and

(incoherence) max
j

∥∥φ∗j (X −X\)
∥∥

2
and max

j

∥∥ψ∗j (H −H\)
∥∥

2
are well-controlled. (3)

In the three examples, the above incoherence condition translates to:

– Phase retrieval : maxj
∣∣a>j (x− x\)

∣∣ is well-controlled;
– Matrix completion:

∥∥X −X\
∥∥

2,∞ is well-controlled;

– Blind deconvolution: maxj
∣∣a>j (x− x\)

∣∣ and maxj
∣∣b>j (h− h\)

∣∣ are well-controlled.

• Step 2: introducing the leave-one-out sequences. To justify that no iterates leave the RIC, we rely
on the construction of auxiliary sequences. Specifically, for each l, produce an auxiliary sequence {Zt,(l) =
(Xt,(l),Ht,(l))} such that Xt,(l) (resp. Ht,(l)) is independent of any sample involving φl (resp. ψl). As an
example, suppose that the φl’s and the ψl’s are independently and randomly generated. Then for each l,
one can consider a leave-one-out loss function

f (l)(Z) :=
1

m

∑
j:j 6=l

∣∣∣ψ∗jHX∗φj − yj∣∣∣2
that discards the lth sample. One further generates {Zt,(l)} by running vanilla gradient descent w.r.t. this
auxiliary loss function, with a spectral initialization that similarly discards the lth sample. Note that this
procedure is only introduced to facilitate analysis and is never implemented in practice.

• Step 3: establishing the incoherence condition. We are now ready to establish the incoherence
condition with the assistance of the auxiliary sequences. Usually the proof proceeds by induction, where
our goal is to show that the next iterate remains within the RIC, given that the current one does.

– Step 3(a): proximity between the original and the leave-one-out iterates. As one can antici-
pate, {Zt} and {Zt,(l)} remain “glued” to each other along the whole trajectory, since their constructions
differ by only a single sample. In fact, as long as the initial estimates stay sufficiently close, their gaps
will never explode. To intuitively see why, use the fact ∇f(Zt) ≈ ∇f (l)(Zt) to discover that

Zt+1 −Zt+1,(l) = Zt − η∇f(Zt)−
(
Zt,(l) − η∇f (l)

(
Zt,(l)

))
≈ Zt −Zt,(l) − η∇2f(Zt)

(
Zt −Zt,(l)

)
,

which together with the strong convexity condition implies `2 contraction∥∥Zt+1 −Zt+1,(l)
∥∥

F
≈
∥∥∥(I − η∇2f(Zt)

)(
Zt −Zt,(l)

)∥∥∥
F
≤
∥∥Zt −Zt,(l)∥∥

2
.

Indeed, (restricted) strong convexity is crucial in controlling the size of leave-one-out perturbations.
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– Step 3(b): incoherence condition of the leave-one-out iterates. The fact that Zt+1 and
Zt+1,(l) are exceedingly close motivates us to control the incoherence of Zt+1,(l) − Z\ instead, for
1 ≤ l ≤ m. By construction, Xt+1,(l) (resp. Ht+1,(l)) is statistically independent of any sample involv-
ing the design vector φl (resp. ψl), a fact that typically leads to a more friendly analysis for controlling∥∥φ∗l (Xt+1,(l) −X\

)∥∥
2
and

∥∥ψ∗l (Ht+1,(l) −H\
)∥∥

2
.

– Step 3(c): combining the bounds. With these results in place, apply the triangle inequality to
obtain ∥∥φ∗l (Xt+1 −X\

)∥∥
2
≤
∥∥φl‖2∥∥Xt+1 −Xt+1,(l)

∥∥
F

+
∥∥φ∗l (Xt+1,(l) −X\

)∥∥
2
,

where the first term is controlled in Step 3(a) and the second term is controlled in Step 3(b). The term∥∥ψ∗l (Ht+1 −H\
)∥∥

2
can be bounded similarly. By choosing the bounds properly, this establishes the

incoherence condition for all 1 ≤ l ≤ m as desired.

2 Analysis for phase retrieval
In this section, we instantiate the general recipe presented in Section 1 to phase retrieval and prove Theorem 1.
Similar to the Section 7.1 in [?], we are going to use ηt = c1/(log n · ‖x\‖22) instead of c1/(log n · ‖x0‖22) as the
step size for analysis. This is because with high probability, ‖x0‖2 and ‖x\‖2 are rather close in the relative
sense. Without loss of generality, we assume throughout this section that

∥∥x\∥∥
2

= 1 and

dist(x0,x\) = ‖x0 − x\‖2 ≤ ‖x0 + x\‖2. (4)

In addition, the gradient and the Hessian of f(·) for this problem (see (13)) are given respectively by

∇f (x) =
1

m

m∑
j=1

[(
a>j x

)2 − yj] (a>j x)aj , (5)

∇2f (x) =
1

m

m∑
j=1

[
3
(
a>j x

)2 − yj]aja>j , (6)

which are useful throughout the proof.

2.1 Step 1: characterizing local geometry in the RIC
2.1.1 Local geometry

We start by characterizing the region that enjoys both strong convexity and the desired level of smoothness.
This is supplied in the following lemma, which plays a crucial role in the subsequent analysis.

Lemma 1 (Restricted strong convexity and smoothness for phase retrieval). Fix any sufficiently small
constant C1 > 0 and any sufficiently large constant C2 > 0, and suppose the sample complexity obeys
m ≥ c0n log n for some sufficiently large constant c0 > 0. With probability at least 1−O(mn−10),

∇2f (x) � (1/2) · In
holds simultaneously for all x ∈ Rn satisfying

∥∥x− x\∥∥
2
≤ 2C1; and

∇2f (x) � (5C2 (10 + C2) log n) · In
holds simultaneously for all x ∈ Rn obeying ∥∥x− x\∥∥

2
≤ 2C1, (7a)

max
1≤j≤m

∣∣a>j (x− x\)∣∣ ≤ C2

√
log n. (7b)

Proof. See Appendix 4.1.

In words, Lemma 1 reveals that the Hessian matrix is positive definite and (almost) well-conditioned,
if one restricts attention to the set of points that are (i) not far away from the truth (cf. (7a)) and (ii)
incoherent with respect to the measurement vectors {aj}1≤j≤m (cf. (7b)).
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2.1.2 Error contraction

As we point out before, the nice local geometry enables `2 contraction, which we formalize below.

Lemma 2. With probability exceeding 1−O(mn−10), one has∥∥xt+1 − x\
∥∥

2
≤ (1− η/2)

∥∥xt − x\∥∥
2

(8)

for any xt obeying the conditions (7), provided that the step size satisfies 0 < η ≤ 1/ [5C2 (10 + C2) log n].

Proof. This proof applies the standard argument when establishing the `2 error contraction of gradient
descent for strongly convex and smooth functions. See Appendix 4.2.

With the help of Lemma 2, we can turn the proof of Theorem 1 into ensuring that the trajectory
{xt}0≤t≤n lies in the RIC specified by (9).1 This is formally stated in the next lemma.

Lemma 3. Suppose for all 0 ≤ t ≤ T0 := n, the trajectory {xt} falls within the region of incoherence and
contraction (termed the RIC), namely, ∥∥xt − x\∥∥

2
≤ C1, (9a)

max
1≤l≤m

∣∣a>l (xt − x\)∣∣ ≤ C2

√
log n, (9b)

then the claims in Theorem 1 hold true. Here and throughout this section, C1, C2 > 0 are two absolute
constants as specified in Lemma 1.

Proof. See Appendix 4.3.

2.2 Step 2: introducing the leave-one-out sequences
In comparison to the `2 error bound (9a) that captures the overall loss, the incoherence hypothesis (9b) —
which concerns sample-wise control of the empirical risk — is more complicated to establish. This is partly
due to the statistical dependence between xt and the sampling vectors {al}. As described in the general
recipe, the key idea is the introduction of a leave-one-out version of the WF iterates, which removes a single
measurement from consideration.

To be precise, for each 1 ≤ l ≤ m, we define the leave-one-out empirical loss function as

f (l)(x) :=
1

4m

∑
j:j 6=l

[(
a>j x

)2 − yj]2 , (10)

and the auxiliary trajectory
{
xt,(l)

}
t≥0

is constructed by running WF w.r.t. f (l)(x). In addition, the spectral
initialization x0,(l) is computed based on the rescaled leading eigenvector of the leave-one-out data matrix

Y (l) :=
1

m

∑
j:j 6=l

yjaja
>
j . (11)

Clearly, the entire sequence
{
xt,(l)

}
t≥0

is independent of the lth sampling vector al. This auxiliary procedure
is formally described in Algorithm 1.

2.3 Step 3: establishing the incoherence condition by induction
As revealed by Lemma 3, it suffices to prove that the iterates {xt}0≤t≤T0

satisfies (9) with high probability.
Our proof will be inductive in nature. For the sake of clarity, we list all the induction hypotheses:∥∥xt − x\∥∥

2
≤ C1, (13a)

1Here, we deliberately change 2C1 in (7a) to C1 in the definition of the RIC (9a) to ensure the correctness of the analysis.
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Algorithm 1 The lth leave-one-out sequence for phase retrieval
Input: {aj}1≤j≤m,j 6=l and {yj}1≤j≤m,j 6=l.
Spectral initialization: let λ1

(
Y (l)

)
and x̃0,(l) be the leading eigenvalue and eigenvector of

Y (l) =
1

m

∑
j:j 6=l

yjaja
>
j ,

respectively, and set

x0,(l) =


√
λ1

(
Y (l)

)
/3 x̃0,(l), if

∥∥x̃0,(l) − x\
∥∥

2
≤
∥∥x̃0,(l) + x\

∥∥
2
,

−
√
λ1

(
Y (l)

)
/3 x̃0,(l), else.

Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

xt+1,(l) = xt,(l) − ηt∇f (l)
(
xt,(l)

)
. (12)

max
1≤l≤m

∥∥xt − xt,(l)∥∥
2
≤ C3

√
log n

n
(13b)

max
1≤j≤m

∣∣a>j (xt − x\)∣∣ ≤ C2

√
log n. (13c)

Here C3 > 0 is some universal constant. The induction on (13a), that is,∥∥xt+1 − x\
∥∥

2
≤ C1, (14)

has already been established in Lemma 2. This subsection is devoted to establishing (13b) and (13c) for the
(t + 1)th iteration, assuming that (13) holds true up to the tth iteration. We defer the justification of the
base case (i.e. initialization at t = 0) to Section 2.4.

• Step 3(a): proximity between the original and the leave-one-out iterates. The leave-one-out
sequence {xt,(l)} behaves similarly to the true WF iterates {xt} while maintaining statistical independence
with al, a key fact that allows us to control the incoherence of lth leave-one-out sequence w.r.t. al. We
will formally quantify the gap between xt+1 and xt+1,(l) in the following lemma, which establishes the
induction in (13b).

Lemma 4. Under the hypotheses (13), with probability at least 1−O(mn−10),

max
1≤l≤m

∥∥xt+1 − xt+1,(l)
∥∥

2
≤ C3

√
log n

n
, (15)

as long as the sample size obeys m� n log n and the stepsize 0 < η ≤ 1/ [5C2 (10 + C2) log n].

Proof. The proof relies heavily on the restricted strong convexity (see Lemma 1) and is deferred to Ap-
pendix 4.4.

• Step 3(b): incoherence of the leave-one-out iterates. By construction, xt+1,(l) is statistically
independent of the sampling vector al. One can thus invoke the standard Gaussian concentration results
and the union bound to derive that with probability at least 1−O

(
mn−10

)
,

max
1≤l≤m

∣∣∣a>l (xt+1,(l) − x\
)∣∣∣ ≤ 5

√
log n

∥∥xt+1,(l) − x\
∥∥

2

(i)
≤ 5

√
log n

(∥∥xt+1,(l) − xt+1
∥∥

2
+
∥∥xt+1 − x\

∥∥
2

)
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(ii)

≤ 5
√

log n

(
C3

√
log n

n
+ C1

)
≤ C4

√
log n (16)

holds for some constant C4 ≥ 6C1 > 0 and n sufficiently large. Here, (i) comes from the triangle inequality,
and (ii) arises from the proximity bound (15) and the condition (14).

• Step 3(c): combining the bounds. We are now prepared to establish (13c) for the (t+ 1)th iteration.
Specifically,

max
1≤l≤m

∣∣a>l (xt+1 − x\
)∣∣ ≤ max

1≤l≤m

∣∣∣a>l (xt+1 − xt+1,(l)
)∣∣∣+ max

1≤l≤m

∣∣∣a>l (xt+1,(l) − x\
)∣∣∣

(i)
≤ max

1≤l≤m
‖al‖2

∥∥xt+1 − xt+1,(l)
∥∥

2
+ C4

√
log n

(ii)
≤
√

6n · C3

√
log n

n
+ C4

√
log n ≤ C2

√
log n, (17)

where (i) follows from the Cauchy-Schwarz inequality and (16), the inequality (ii) is a consequence of (15)
and (40), and the last inequality holds as long as C2/(C3 + C4) is sufficiently large.

Using mathematical induction and the union bound, we establish (13) for all t ≤ T0 = n with high probability.
This in turn concludes the proof of Theorem 1, as long as the hypotheses are valid for the base case.

2.4 The base case: spectral initialization
In the end, we return to verify the induction hypotheses for the base case (t = 0), i.e. the spectral initialization
obeys (13). The following lemma justifies (13a) by choosing δ sufficiently small.

Lemma 5. Fix any small constant δ > 0, and suppose m > c0n log n for some large constant c0 > 0.
Consider the two vectors x0 and x̃0 as defined in Algorithm 1, and suppose without loss of generality that
(4) holds. Then with probability exceeding 1−O(n−10), one has

‖Y − E [Y ]‖ ≤ δ, (18)

‖x0 − x\‖2 ≤ 2δ and
∥∥x̃0 − x\

∥∥
2
≤
√

2δ. (19)

Proof. This result follows directly from the Davis-Kahan sinΘ theorem. See Appendix 4.5.

We then move on to justifying (13b), the proximity between the original and leave-one-out iterates for
t = 0.

Lemma 6. Supposem > c0n log n for some large constant c0 > 0. Then with probability at least 1−O(mn−10),
one has

max
1≤l≤m

∥∥x0 − x0,(l)
∥∥

2
≤ C3

√
log n

n
. (20)

Proof. This is also a consequence of the Davis-Kahan sinΘ theorem. See Appendix 4.6.

The final claim (13c) can be proved using the same argument as in deriving (17), and hence is omitted.

3 Analysis for matrix completion
In this section, we instantiate the general recipe presented in Section 1 to matrix completion and prove
Theorem 2. Before continuing, we first gather a few useful facts regarding the loss function for matrix
completion. The gradient of it is given by

∇f (X) =
1

p
PΩ

[
XX> −

(
M \ +E

)]
X. (21)
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We define the expected gradient (with respect to the sampling set Ω) to be

∇F (X) =
[
XX> −

(
M \ +E

)]
X

and also the (expected) gradient without noise to be

∇fclean (X) =
1

p
PΩ

(
XX> −M \

)
X and ∇Fclean (X) =

(
XX> −M \

)
X. (22)

In addition, we need the Hessian ∇2fclean(X), which is represented by an nr×nr matrix. Simple calculations
reveal that for any V ∈ Rn×r,

vec (V )
>∇2fclean (X) vec (V ) =

1

2p

∥∥PΩ

(
V X> +XV >

)∥∥2

F
+

1

p

〈
PΩ

(
XX> −M \

)
,V V >

〉
, (23)

where vec(V ) ∈ Rnr denotes the vectorization of V .
And for reference issues, we re-list the theoretical guarantees on the vanilla GD iterates specified by

Theorem 2, namely, with probability at least 1−O
(
n−3

)
, the iterates of Algorithm 2 satisfy∥∥XtĤt −X\

∥∥
F
≤
(
C4ρ

tµr
1
√
np

+ C1
σ

σmin

√
n

p

)∥∥X\
∥∥

F
, (24a)

∥∥XtĤt −X\
∥∥

2,∞ ≤

(
C5ρ

tµr

√
log n

np
+ C8

σ

σmin

√
n log n

p

)∥∥X\
∥∥

2,∞, (24b)

∥∥XtĤt −X\
∥∥ ≤ (C9ρ

tµr
1
√
np

+ C10
σ

σmin

√
n

p

)∥∥X\
∥∥ (24c)

for all 0 ≤ t ≤ T = O(n5), where C1, C4, C5, C8, C9 and C10 are some absolute positive constants and
1− (σmin/5) · η ≤ ρ < 1, provided that 0 < ηt ≡ η ≤ 2/ (25κσmax).

3.1 Step 1: characterizing local geometry in the RIC
3.1.1 Local geometry

The first step is to characterize the region where the empirical loss function enjoys restricted strong convexity
and smoothness in an appropriate sense. This is formally stated in the following lemma.

Lemma 7 (Restricted strong convexity and smoothness for matrix completion). Suppose that the sample
size obeys n2p ≥ Cκ2µrn log n for some sufficiently large constant C > 0. Then with probability at least
1−O

(
n−10

)
, the Hessian ∇2fclean(X) as defined in (23) obeys

vec (V )
>∇2fclean (X) vec (V ) ≥ σmin

2
‖V ‖2F and

∥∥∇2fclean (X)
∥∥ ≤ 5

2
σmax (25)

for all X and V = Y HY −Z, with HY := arg minR∈Or×r ‖Y R−Z‖F, satisfying:∥∥X −X\
∥∥

2,∞ ≤ ε
∥∥X\

∥∥
2,∞ , (26a)

‖Z −X\‖ ≤ δ‖X\‖, (26b)

where ε� 1/
√
κ3µr log2 n and δ � 1/κ.

Proof. See Appendix 5.1.

Lemma 7 reveals that the Hessian matrix is well-conditioned in a neighborhood close to X\ that remains
incoherent measured in the `2/`∞ norm (cf. (26a)), and along directions that point towards points which
are not far away from the truth in the spectral norm (cf. (26b)).
Remark 1. The second condition (26b) is characterized using the spectral norm ‖·‖, while in previous works
this is typically presented in the Frobenius norm ‖ · ‖F. It is also worth noting that the Hessian matrix —
even in the infinite-sample and noiseless case — is rank-deficient and cannot be positive definite. As a result,
we resort to the form of strong convexity by restricting attention to certain directions (see the conditions on
V ).
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3.1.2 Error contraction

Our goal is to demonstrate the error bounds (24) measured in three different norms. Notably, as long as
the iterates satisfy (24) at the tth iteration, then ‖XtĤt −X\‖2,∞ is sufficiently small. Under our sample
complexity assumption, XtĤt satisfies the `2/`∞ condition (26a) required in Lemma 7. Consequently, we
can invoke Lemma 7 to arrive at the following error contraction result.

Lemma 8 (Contraction w.r.t. the Frobenius norm). Suppose n2p ≥ Cκ3µ3r3n log3 n and the noise satisfies
(24). If the iterates satisfy (24a) and (24b) at the tth iteration, then with probability at least 1−O(n−10),

∥∥Xt+1Ĥt+1 −X\
∥∥

F
≤ C4ρ

t+1µr
1
√
np

∥∥X\
∥∥

F
+ C1

σ

σmin

√
n

p

∥∥X\
∥∥

F

holds as long as 0 < η ≤ 2/(25κσmax), 1− (σmin/4) · η ≤ ρ < 1, and C1 is sufficiently large.

Proof. The proof is built upon Lemma 7. See Appendix 5.2.

Further, if the current iterate satisfies all three conditions in (24), then we can derive a stronger sense of
error contraction, namely, contraction in terms of the spectral norm.

Lemma 9 (Contraction w.r.t. the spectral norm). Suppose n2p ≥ Cκ3µ3r3n log3 n and the noise satisfies
(24). If the iterates satisfy (24) at the tth iteration, then

∥∥Xt+1Ĥt+1 −X\
∥∥ ≤ C9ρ

t+1µr
1
√
np

∥∥X\
∥∥+ C10

σ

σmin

√
n

p

∥∥X\
∥∥ (27)

holds with probability at least 1−O(n−10), provided that 0 < η ≤ 1/ (2σmax) and 1− (σmin/3) · η ≤ ρ < 1.

Proof. The key observation is this: the iterate that proceeds according to the population-level gradient
reduces the error w.r.t. ‖ · ‖, namely,∥∥XtĤt − η∇Fclean

(
XtĤt

)
−X\

∥∥ < ∥∥XtĤt −X\
∥∥,

as long as XtĤt is sufficiently close to the truth. Notably, the orthonormal matrix Ĥt is still chosen
to be the one that minimizes the ‖ · ‖F distance (as opposed to ‖ · ‖), which yields a symmetry property
X\>XtĤt =

(
XtĤt

)>
X\, crucial for our analysis. See Appendix 5.3 for details.

3.2 Step 2: introducing the leave-one-out sequences
In order to establish the incoherence properties (24b) for the entire trajectory, which is difficult to deal with
directly due to the complicated statistical dependence, we introduce a collection of leave-one-out versions
of {Xt}t≥0, denoted by

{
Xt,(l)

}
t≥0

for each 1 ≤ l ≤ n. Specifically,
{
Xt,(l)

}
t≥0

is the iterates of gradient
descent operating on the auxiliary loss function

f (l) (X) :=
1

4p

∥∥PΩ−l
[
XX> −

(
M \ +E

)]∥∥2

F
+

1

4

∥∥Pl (XX> −M \
)∥∥2

F
. (28)

Here, PΩl (resp. PΩ−l and Pl) represents the orthogonal projection onto the subspace of matrices which
vanish outside of the index set Ωl := {(i, j) ∈ Ω | i = l or j = l} (resp. Ω−l := {(i, j) ∈ Ω | i 6= l, j 6= l} and
{(i, j) | i = l or j = l}); that is, for any matrix M ,

[PΩl (M)]i,j =

{
Mi,j , if (i = l or j = l) and (i, j) ∈ Ω,

0, else,
(29)

[PΩ−l (M)]i,j =

{
Mi,j , if i 6= l and j 6= l and (i, j) ∈ Ω

0, else
and [Pl (M)]i,j =

{
0, if i 6= l and j 6= l,

Mi,j , if i = l or j = l.

(30)
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The gradient of the leave-one-out loss function (28) is given by

∇f (l) (X) =
1

p
PΩ−l

[
XX> −

(
M \ +E

)]
X + Pl

(
XX> −M \

)
X. (31)

The full algorithm to obtain the leave-one-out sequence {Xt,(l)}t≥0 (including spectral initialization) is
summarized in Algorithm 2.

Algorithm 2 The lth leave-one-out sequence for matrix completion

Input: Y = [Yi,j ]1≤i,j≤n ,M
\
·,l,M

\
l,·, r, p.

Spectral initialization: Let U0,(l)Σ(l)U0,(l)> be the top-r eigendecomposition of

M (l) :=
1

p
PΩ−l (Y ) + Pl

(
M \

)
=

1

p
PΩ−l

(
M \ +E

)
+ Pl

(
M \

)
with PΩ−l and Pl defined in (30), and set X0,(l) = U0,(l)

(
Σ(l)

)1/2.
Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

Xt+1,(l) = Xt,(l) − ηt∇f (l)
(
Xt,(l)

)
. (32)

Remark 2. Rather than simply dropping all samples in the lth row/column, we replace the lth row/column
with their respective population means. In other words, the leave-one-out gradient forms an unbiased
surrogate for the true gradient, which is particularly important in ensuring high estimation accuracy.

3.3 Step 3: establishing the incoherence condition by induction
We will continue the proof of Theorem 2 in an inductive manner. As seen in Section 3.1.2, the induction
hypotheses (24a) and (24c) hold for the (t+1)th iteration as long as (24) holds at the tth iteration. Therefore,
we are left with proving the incoherence hypothesis (24b) for all 0 ≤ t ≤ T = O(n5). For clarity of analysis, it
is crucial to maintain a list of induction hypotheses, which includes a few more hypotheses that complement
(24), and is given below.

∥∥XtĤt −X\
∥∥

F
≤
(
C4ρ

tµr
1
√
np

+ C1
σ

σmin

√
n

p

)∥∥X\
∥∥

F
, (33a)

∥∥XtĤt −X\
∥∥

2,∞ ≤

(
C5ρ

tµr

√
log n

np
+ C8

σ

σmin

√
n log n

p

)∥∥X\
∥∥

2,∞ , (33b)

∥∥XtĤt −X\
∥∥ ≤ (C9ρ

tµr
1
√
np

+ C10
σ

σmin

√
n

p

)∥∥X\
∥∥ , (33c)

max
1≤l≤n

∥∥XtĤt −Xt,(l)Rt,(l)
∥∥

F
≤

(
C3ρ

tµr

√
log n

np
+ C7

σ

σmin

√
n log n

p

)∥∥X\
∥∥

2,∞ , (33d)

max
1≤l≤n

∥∥(Xt,(l)Ĥt,(l) −X\
)
l,·

∥∥
2
≤

(
C2ρ

tµr
1
√
np

+ C6
σ

σmin

√
n log n

p

)∥∥X\
∥∥

2,∞ (33e)

hold for some absolute constants 0 < ρ < 1 and C1, · · · , C10 > 0. Here, Ĥt,(l) and Rt,(l) are orthonormal
matrices defined by

Ĥt,(l) := arg min
R∈Or×r

∥∥∥Xt,(l)R−X\
∥∥∥

F
, (34)

Rt,(l) := arg min
R∈Or×r

∥∥Xt,(l)R−XtĤt
∥∥

F
. (35)
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Clearly, the first three hypotheses (33a)-(33c) constitute the conclusion of Theorem 2, i.e. (24). The last two
hypotheses (33d) and (33e) are auxiliary properties connecting the true iterates and the auxiliary leave-one-
out sequences. Moreover, we summarize below several immediate consequences of (33), which will be useful
throughout.

Lemma 10. Suppose n2p� κ3µ2r2n log n and the noise satisfies (24). Under the hypotheses (33), one has

∥∥∥XtĤt −Xt,(l)Ĥt,(l)
∥∥∥

F
≤ 5κ

∥∥∥XtĤt −Xt,(l)Rt,(l)
∥∥∥

F
, (36a)∥∥Xt,(l)Ĥt,(l) −X\

∥∥
F
≤
∥∥∥Xt,(l)Rt,(l) −X\

∥∥∥
F
≤
{

2C4ρ
tµr

1
√
np

+ 2C1
σ

σmin

√
n

p

}∥∥X\
∥∥

F
, (36b)

∥∥Xt,(l)Rt,(l) −X\
∥∥

2,∞ ≤

{
(C3 + C5) ρtµr

√
log n

np
+ (C8 + C7)

σ

σmin

√
n log n

p

}∥∥X\
∥∥

2,∞ , (36c)

∥∥Xt,(l)Ĥt,(l) −X\
∥∥ ≤ {2C9ρ

tµr
1
√
np

+ 2C10
σ

σmin

√
n

p

}∥∥X\
∥∥ . (36d)

In particular, (36a) follows from hypotheses (33c) and (33d).

Proof. See Appendix 5.4.

In the sequel, we follow the general recipe outlined in Section 1 to establish the induction hypotheses.
We only need to establish (33b), (33d) and (33e) for the (t+ 1)th iteration, since (33a) and (33c) have been
established in Section 3.1.2. Specifically, we resort to the leave-one-out iterates by showing that: first, the
true and the auxiliary iterates remain exceedingly close throughout; second, the lth leave-one-out sequence
stays incoherent with el due to statistical independence.

• Step 3(a): proximity between the original and the leave-one-out iterates. We demonstrate
that Xt+1 is well approximated by Xt+1,(l), up to proper orthonormal transforms. This is precisely the
induction hypothesis (33d) for the (t+ 1)th iteration.

Lemma 11. Suppose the sample complexity satisfies n2p � κ4µ3r3n log3 n and the noise satisfies (24).
Under the hypotheses (33) for the tth iteration, we have∥∥∥Xt+1Ĥt+1 −Xt+1,(l)Rt+1,(l)

∥∥∥
F
≤ C3ρ

t+1µr

√
log n

np

∥∥X\
∥∥

2,∞ + C7
σ

σmin

√
n log n

p

∥∥X\
∥∥

2,∞ (37)

with probability at least 1 − O(n−10), provided that 0 < η ≤ 2/(25κσmax), 1 − (σmin/5) · η ≤ ρ < 1 and
C7 > 0 is sufficiently large.

Proof. The fact that this difference is well-controlled relies heavily on the benign geometric property of the
Hessian revealed by Lemma 7. Two important remarks are in order: (1) both pointsXtĤt andXt,(l)Rt,(l)

satisfy (26a); (2) the difference XtĤt−Xt,(l)Rt,(l) forms a valid direction for restricted strong convexity.
These two properties together allow us to invoke Lemma 7. See Appendix 5.5.

• Step 3(b): incoherence of the leave-one-out iterates. Given that Xt+1,(l) is sufficiently close to
Xt+1, we turn our attention to establishing the incoherence of this surrogate Xt+1,(l) w.r.t. el. This
amounts to proving the induction hypothesis (33e) for the (t+ 1)th iteration.

Lemma 12. Suppose the sample complexity meets n2p � κ3µ3r3n log3 n and the noise satisfies (24).
Under the hypotheses (33) for the tth iteration, one has∥∥∥(Xt+1,(l)Ĥt+1,(l) −X\

)
l,·

∥∥∥
2
≤ C2ρ

t+1µr
1
√
np

∥∥X\
∥∥

2,∞ + C6
σ

σmin

√
n log n

p

∥∥X\
∥∥

2,∞ (38)

with probability at least 1−O(n−10), as long as 0 < η ≤ 1/σmax, 1− (σmin/3) · η ≤ ρ < 1, C2 � κC9 and
C6 � κC10/

√
log n.
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Proof. The key observation is that Xt+1,(l) is statistically independent from any sample in the lth
row/column of the matrix. Since there are an order of np samples in each row/column, we obtain enough
information that helps establish the desired incoherence property. See Appendix 5.6.

• Step 3(c): combining the bounds. The inequalities (33d) and (33e) taken collectively allow us to
establish the induction hypothesis (33b). Specifically, for every 1 ≤ l ≤ n, write(

Xt+1Ĥt+1 −X\
)
l,· =

(
Xt+1Ĥt+1 −Xt+1,(l)Ĥt+1,(l)

)
l,· +

(
Xt+1,(l)Ĥt+1,(l) −X\

)
l,·,

and the triangle inequality gives∥∥(Xt+1Ĥt+1 −X\
)
l,·

∥∥
2
≤
∥∥Xt+1Ĥt+1 −Xt+1,(l)Ĥt+1,(l)

∥∥
F

+
∥∥(Xt+1,(l)Ĥt+1,(l) −X\

)
l,·

∥∥
2
. (39)

The second term has already been bounded by (38). Since we have established the induction hypotheses
(33c) and (33d) for the (t+1)th iteration, the first term can be bounded by (36a) for the (t+1)th iteration,
i.e. ∥∥∥Xt+1Ĥt+1 −Xt+1,(l)Ĥt+1,(l)

∥∥∥
F
≤ 5κ

∥∥∥Xt+1Ĥt+1 −Xt+1,(l)Rt+1,(l)
∥∥∥

F
.

Plugging the above inequality, (37) and (38) into (39), we have

∥∥∥Xt+1Ĥt+1 −X\
∥∥∥

2,∞
≤ 5κ

(
C3ρ

t+1µr

√
log n

np

∥∥X\
∥∥

2,∞ +
C7

σmin
σ

√
n log n

p

∥∥X\
∥∥

2,∞

)

+ C2ρ
t+1µr

1
√
np

∥∥X\
∥∥

2,∞ +
C6

σmin
σ

√
n log n

p

∥∥X\
∥∥

2,∞

≤ C5ρ
t+1µr

√
log n

np

∥∥X\
∥∥

2,∞ +
C8

σmin
σ

√
n log n

p

∥∥X\
∥∥

2,∞

as long as C5/(κC3+C2) and C8/(κC7+C6) are sufficiently large. This establishes the induction hypothesis
(33b) and finishes the proof.

3.4 The base case: spectral initialization
Finally, we return to check the base case, namely, we aim to show that the spectral initialization satisfies
the induction hypotheses (33a)-(33e) for t = 0. This is accomplished via the following lemma.

Lemma 13. Suppose the sample size obeys n2p� µ2r2n log n, the noise satisfies (24), and κ = σmax/σmin �
1. Then with probability at least 1−O

(
n−10

)
, the claims in (33a)-(33e) hold simultaneously for t = 0.

Proof. This follows by invoking the Davis-Kahan sinΘ theorem [?] as well as the entrywise eigenvector
perturbation analysis in [?]. We defer the proof to Appendix 5.7.

4 Proofs for phase retrieval
Before proceeding, we gather a few simple facts. The standard concentration inequality for χ2 random
variables together with the union bound reveals that the sampling vectors {aj} obey

max
1≤j≤m

‖aj‖2 ≤
√

6n (40)

with probability at least 1−O(me−1.5n). In addition, standard Gaussian concentration inequalities give

max
1≤j≤m

∣∣a>j x\∣∣ ≤ 5
√

log n (41)

with probability exceeding 1−O(mn−10).
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4.1 Proof of Lemma 1
We start with the smoothness bound, namely, ∇2f(x) � O(log n) · In. It suffices to prove the upper bound∥∥∇2f (x)

∥∥ . log n. To this end, we first decompose the Hessian (cf. (6)) into three components as follows:

∇2f (x) =
3

m

m∑
j=1

[(
a>j x

)2 − (a>j x\)2]aja>j︸ ︷︷ ︸
:=Λ1

+
2

m

m∑
j=1

(
a>j x

\
)2
aja

>
j − 2

(
In + 2x\x\>

)
︸ ︷︷ ︸

:=Λ2

+ 2
(
In + 2x\x\>

)
︸ ︷︷ ︸

:=Λ3

,

where we have used yj = (a>j x
\)2. In the sequel, we control the three terms Λ1, Λ2 and Λ3 in reverse order.

• The third term Λ3 can be easily bounded by

‖Λ3‖ ≤ 2
(
‖In‖+ 2

∥∥x\x\>∥∥) = 6.

• The second term Λ2 can be controlled by means of Lemma 19:

‖Λ2‖ ≤ 2δ

for an arbitrarily small constant δ > 0, as long as m ≥ c0n log n for c0 sufficiently large.

• It thus remains to control Λ1. Towards this we discover that

‖Λ1‖ ≤

∥∥∥∥∥∥ 3

m

m∑
j=1

∣∣a>j (x− x\)∣∣ ∣∣a>j (x+ x\
)∣∣aja>j

∥∥∥∥∥∥ . (42)

Under the assumption max1≤j≤m
∣∣a>j (x− x\)∣∣ ≤ C2

√
log n and the fact (41), we can also obtain

max
1≤j≤m

∣∣a>j (x+ x\
)∣∣ ≤ 2 max

1≤j≤m

∣∣a>j x\∣∣+ max
1≤j≤m

∣∣a>j (x− x\)∣∣ ≤ (10 + C2)
√

log n.

Substitution into (42) leads to

‖Λ1‖ ≤ 3C2 (10 + C2) log n ·

∥∥∥∥∥ 1

m

m∑
j=1

aja
>
j

∥∥∥∥∥ ≤ 4C2 (10 + C2) log n,

where the last inequality is a direct consequence of Lemma 18.

Combining the above bounds on Λ1, Λ2 and Λ3 yields∥∥∇2f (x)
∥∥ ≤ ‖Λ1‖+ ‖Λ2‖+ ‖Λ3‖ ≤ 4C2 (10 + C2) log n+ 2δ + 6 ≤ 5C2 (10 + C2) log n,

as long as n is sufficiently large. This establishes the claimed smoothness property.
Next we move on to the strong convexity lower bound. Picking a constant C > 0 and enforcing proper

truncation, we get

∇2f (x) =
1

m

m∑
j=1

[
3
(
a>j x

)2 − yj]aja>j � 3

m

m∑
j=1

(
a>j x

)2
1{|a>j x|≤C} aja

>
j︸ ︷︷ ︸

:=Λ4

− 1

m

m∑
j=1

(
a>j x

\
)2
aja

>
j︸ ︷︷ ︸

:=Λ5

.

We begin with the simpler term Λ5. Lemma 19 implies that with probability at least 1−O(n−10),∥∥Λ5 −
(
In + 2x\x\>

)∥∥ ≤ δ
holds for any small constant δ > 0, as long as m/(n log n) is sufficiently large. This reveals that

Λ5 � (1 + δ) · In + 2x\x\>.
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To bound Λ4, invoke Lemma 20 to conclude that with probability at least 1− c3e−c2m (for some constants
c2, c3 > 0), ∥∥Λ4 − 3

(
β1xx

> + β2‖x‖22In
)∥∥ ≤ δ‖x‖22

for any small constant δ > 0, provided that m/n is sufficiently large. Here,

β1 := E
[
ξ4 1{|ξ|≤C}

]
− E

[
ξ2 1|ξ|≤C

]
and β2 := E

[
ξ2 1|ξ|≤C

]
,

where the expectation is taken with respect to ξ ∼ N (0, 1). By the assumption
∥∥x− x\∥∥

2
≤ 2C1, one has

‖x‖2 ≤ 1 + 2C1,
∣∣∣‖x‖22 − ‖x\‖22∣∣∣ ≤ 2C1 (4C1 + 1) ,

∥∥x\x\> − xx>∥∥ ≤ 6C1 (4C1 + 1) ,

which leads to∥∥Λ4 − 3
(
β1x

\x\> + β2In
)∥∥ ≤ ∥∥Λ4 − 3

(
β1xx

> + β2‖x‖22In
)∥∥+ 3

∥∥(β1x
\x\> + β2In

)
−
(
β1xx

> + β2‖x‖22In
)∥∥

≤ δ‖x‖22 + 3β1

∥∥x\x\> − xx>∥∥+ 3β2

∥∥In − ‖x‖22In∥∥
≤ δ (1 + 2C1)

2
+ 18β1C1 (4C1 + 1) + 6β2C1 (4C1 + 1) .

This further implies

Λ4 � 3
(
β1x

\x\> + β2In
)
−
[
δ (1 + 2C1)

2
+ 18β1C1 (4C1 + 1) + 6β2C1 (4C1 + 1)

]
In.

Recognizing that β1 (resp. β2) approaches 2 (resp. 1) as C grows, we can thus take C1 small enough and C
large enough to guarantee that

Λ4 � 5x\x\> + 2In.

Putting the preceding two bounds on Λ4 and Λ5 together yields

∇2f (x) � 5x\x\> + 2In −
[
(1 + δ) · In + 2x\x\>

]
� (1/2) · In

as claimed.

4.2 Proof of Lemma 2
Using the update rule (cf. (15)) as well as the fundamental theorem of calculus [?, Chapter XIII, Theorem
4.2], we get

xt+1 − x\ = xt − η∇f
(
xt
)
−
[
x\ − η∇f

(
x\
)]

=

[
In − η

∫ 1

0

∇2f (x (τ)) dτ

] (
xt − x\

)
,

where we denote x (τ) = x\ + τ(xt − x\), 0 ≤ τ ≤ 1. Here, the first equality makes use of the fact that
∇f(x\) = 0. Under the condition (7), it is self-evident that for all 0 ≤ τ ≤ 1,∥∥x (τ)− x\

∥∥
2

= ‖τ(xt − x\)‖2 ≤ 2C1 and

max
1≤l≤m

∣∣a>l (x(τ)− x\
)∣∣ ≤ max

1≤l≤m

∣∣a>l τ (xt − x\)∣∣ ≤ C2

√
log n.

This means that for all 0 ≤ τ ≤ 1,

(1/2) · In � ∇2f (x(τ)) � [5C2 (10 + C2) log n] · In

in view of Lemma 1. Picking η ≤ 1/ [5C2 (10 + C2) log n] (and hence ‖η∇2f(x(τ))‖ ≤ 1), one sees that

0 � In − η
∫ 1

0

∇2f (x (τ)) dτ � (1− η/2) · In,

which immediately yields∥∥xt+1 − x\
∥∥

2
≤
∥∥∥∥In − η ∫ 1

0

∇2f (x (τ)) dτ

∥∥∥∥ · ∥∥xt − x\∥∥2
≤ (1− η/2)

∥∥xt − x\∥∥
2
.
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4.3 Proof of Lemma 3
We start with proving (17a). For all 0 ≤ t ≤ T0, invoke Lemma 2 recursively with the conditions (9) to reach∥∥xt − x\∥∥

2
≤ (1− η/2)t

∥∥x0 − x\
∥∥

2
≤ C1(1− η/2)t

∥∥x\∥∥
2
. (43)

This finishes the proof of (17a) for 0 ≤ t ≤ T0 and also reveals that∥∥xT0 − x\
∥∥

2
≤ C1(1− η/2)T0

∥∥x\∥∥
2
� 1

n

∥∥x\∥∥
2
, (44)

provided that η � 1/ log n. Applying the Cauchy-Schwarz inequality and the fact (40) indicate that

max
1≤l≤m

∣∣a>l (xT0 − x\
)∣∣ ≤ max

1≤l≤m
‖al‖2‖xT0 − x\‖2 ≤

√
6n · 1

n
‖x\‖2 � C2

√
log n,

leading to the satisfaction of (7). Therefore, invoking Lemma 2 yields∥∥xT0+1 − x\
∥∥

2
≤ (1− η/2)

∥∥xT0 − x\
∥∥

2
� 1

n
‖x\‖2.

One can then repeat this argument to arrive at for all t > T0∥∥xt − x\∥∥
2
≤ (1− η/2)

t ∥∥x0 − x\
∥∥

2
≤ C1 (1− η/2)

t ∥∥x\∥∥
2
� 1

n
‖x\‖2. (45)

We are left with (17b). It is self-evident that the iterates from 0 ≤ t ≤ T0 satisfy (17b) by assumptions.
For t > T0, we can use the Cauchy-Schhwarz inequality to obtain

max
1≤j≤m

∣∣a>j (xt − x\)∣∣ ≤ max
1≤j≤m

‖aj‖2
∥∥xt − x\∥∥

2
�
√
n · 1

n
≤ C2

√
log n,

where the penultimate relation uses the conditions (40) and (45).

4.4 Proof of Lemma 4
First, going through the same derivation as in (16) and (17) will result in

max
1≤l≤m

∣∣∣a>l (xt,(l) − x\)∣∣∣ ≤ C4

√
log n (46)

for some C4 < C2, which will be helpful for our analysis.
We use the gradient update rules once again to decompose

xt+1 − xt+1,(l) = xt − η∇f
(
xt
)
−
[
xt,(l) − η∇f (l)

(
xt,(l)

)]
= xt − η∇f

(
xt
)
−
[
xt,(l) − η∇f

(
xt,(l)

)]
− η

[
∇f
(
xt,(l)

)
−∇f (l)

(
xt,(l)

)]
= xt − xt,(l) − η

[
∇f

(
xt
)
−∇f

(
xt,(l)

)]
︸ ︷︷ ︸

:=ν
(l)
1

− η 1

m

[(
a>l x

t,(l)
)2 − (a>l x\)2] (a>l xt,(l))al︸ ︷︷ ︸,

:=ν
(l)
2

where the last line comes from the definition of ∇f (·) and ∇f (l) (·).

1. We first control the term ν
(l)
2 , which is easier to deal with. Specifically,

‖ν(l)
2 ‖2 ≤ η

‖al‖2
m

∣∣∣(a>l xt,(l))2 − (a>l x\)2∣∣∣ ∣∣∣a>l xt,(l)∣∣∣
(i)
. C4(C4 + 5)(C4 + 10)η

n log n

m

√
log n

n

(ii)
≤ cη

√
log n

n
,
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for any small constant c > 0. Here (i) follows since (40) and, in view of (41) and (46),∣∣∣(a>l xt,(l))2 − (a>l x\)2∣∣∣ ≤ ∣∣∣a>l (xt,(l) − x\)∣∣∣ (∣∣∣a>l (xt,(l) − x\)∣∣∣+ 2
∣∣a>l x\∣∣) ≤ C4(C4 + 10) log n,

and
∣∣∣a>l xt,(l)∣∣∣ ≤ ∣∣∣a>l (xt,(l) − x\)∣∣∣+

∣∣a>l x\∣∣ ≤ (C4 + 5)
√

log n.

And (ii) holds as long as m� n log n.

2. For the term ν
(l)
1 , the fundamental theorem of calculus [?, Chapter XIII, Theorem 4.2] tells us that

ν
(l)
1 =

[
In − η

∫ 1

0

∇2f (x (τ)) dτ

] (
xt − xt,(l)

)
,

where we abuse the notation and denote x (τ) = xt,(l) + τ(xt − xt,(l)). By the induction hypotheses (13)
and the condition (46), one can verify that∥∥x (τ)− x\

∥∥
2
≤ τ

∥∥xt − x\∥∥
2

+ (1− τ)
∥∥xt,(l) − x\∥∥

2
≤ 2C1 and (47)

max
1≤l≤m

∣∣a>l (x (τ)− x\
)∣∣ ≤ τ max

1≤l≤m

∣∣a>l (xt − x\)∣∣+ (1− τ) max
1≤l≤m

∣∣∣a>l (xt,(l) − x\)∣∣∣ ≤ C2

√
log n

for all 0 ≤ τ ≤ 1, as long as C4 ≤ C2. The second line follows directly from (46). To see why (47) holds,
we note that ∥∥xt,(l) − x\∥∥

2
≤
∥∥xt,(l) − xt∥∥

2
+
∥∥xt − x\∥∥

2
≤ C3

√
log n

n
+ C1,

where the second inequality follows from the induction hypotheses (13b) and (13a). This combined with
(13a) gives

∥∥x (τ)− x\
∥∥

2
≤ τC1 + (1− τ)

(
C3

√
log n

n
+ C1

)
≤ 2C1

as long as n is large enough, thus justifying (47). Hence by Lemma 1, ∇2f (x (τ)) is positive definite and
almost well-conditioned. By choosing 0 < η ≤ 1/ [5C2 (10 + C2) log n], we get∥∥ν(l)

1

∥∥
2
≤ (1− η/2)

∥∥xt − xt,(l)∥∥
2
.

3. Combine the preceding bounds on ν(l)
1 and ν(l)

2 as well as the induction bound (13b) to arrive at

∥∥xt+1 − xt+1,(l)
∥∥

2
≤ (1− η/2)

∥∥xt − xt,(l)∥∥
2

+ cη

√
log n

n
≤ C3

√
log n

n
. (48)

This establishes (15) for the (t+ 1)th iteration.

4.5 Proof of Lemma 5
In view of the assumption (4) that

∥∥x0 − x\
∥∥

2
≤
∥∥x0 + x\

∥∥
2
and the fact that x0 =

√
λ1 (Y ) /3 x̃0 for some

λ1 (Y ) > 0 (which we will verify below), it is straightforward to see that∥∥x̃0 − x\
∥∥

2
≤
∥∥x̃0 + x\

∥∥
2
.

One can then invoke the Davis-Kahan sinΘ theorem [?, Corollary 1] to obtain

∥∥x̃0 − x\
∥∥

2
≤ 2
√

2
‖Y − E [Y ]‖

λ1 (E [Y ])− λ2 (E [Y ])
.
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Note that (18) — ‖Y − E[Y ]‖ ≤ δ — is a direct consequence of Lemma 19. Additionally, the fact that
E [Y ] = I + 2x\x\> gives λ1 (E [Y ]) = 3, λ2 (E [Y ]) = 1, and λ1 (E [Y ]) − λ2 (E [Y ]) = 2. Combining this
spectral gap and the inequality ‖Y − E[Y ]‖ ≤ δ, we arrive at∥∥x̃0 − x\

∥∥
2
≤
√

2δ.

To connect this bound with x0, we need to take into account the scaling factor
√
λ1 (Y ) /3. To this end,

it follows from Weyl’s inequality and (18) that

|λ1 (Y )− 3| = |λ1 (Y )− λ1 (E [Y ])| ≤ ‖Y − E [Y ]‖ ≤ δ

and, as a consequence, λ1 (Y ) ≥ 3− δ > 0 when δ ≤ 1. This further implies that∣∣∣∣∣
√
λ1 (Y )

3
− 1

∣∣∣∣∣ =

∣∣∣∣∣∣
λ1(Y )

3 − 1√
λ1(Y )

3 + 1

∣∣∣∣∣∣ ≤
∣∣∣∣λ1 (Y )

3
− 1

∣∣∣∣ ≤ 1

3
δ, (49)

where we have used the elementary identity
√
a−
√
b = (a− b) /(

√
a+
√
b). With these bounds in place, we

can use the triangle inequality to get

∥∥x0 − x\
∥∥

2
=

∥∥∥∥∥
√
λ1 (Y )

3
x̃0 − x\

∥∥∥∥∥
2

=

∥∥∥∥∥
√
λ1 (Y )

3
x̃0 − x̃0 + x̃0 − x\

∥∥∥∥∥
2

≤

∣∣∣∣∣
√
λ1 (Y )

3
− 1

∣∣∣∣∣+
∥∥x̃0 − x\

∥∥
2

≤ 1

3
δ +
√

2δ ≤ 2δ.

4.6 Proof of Lemma 6
To begin with, repeating the same argument as in Lemma 5 (which we omit here for conciseness), we see
that for any fixed constant δ > 0,∥∥∥Y (l) − E

[
Y (l)

]∥∥∥ ≤ δ, ‖x0,(l) − x\‖2 ≤ 2δ,
∥∥x̃0,(l) − x\

∥∥
2
≤
√

2δ, 1 ≤ l ≤ m (50)

holds with probability at least 1 − O(mn−10) as long as m � n log n. The `2 bound on ‖x0 − x0,(l)‖2 is
derived as follows.

1. We start by controlling
∥∥x̃0 − x̃0,(l)

∥∥
2
. Combining (19) and (50) yields∥∥x̃0 − x̃0,(l)
∥∥

2
≤
∥∥x̃0 − x\

∥∥
2

+
∥∥x̃0,(l) − x\

∥∥
2
≤ 2
√

2δ.

For δ sufficiently small, this implies that
∥∥x̃0− x̃0,(l)

∥∥
2
≤
∥∥x̃0 + x̃0,(l)

∥∥
2
, and hence the Davis-Kahan sinΘ

theorem [?] gives

∥∥x̃0 − x̃0,(l)
∥∥

2
≤
∥∥(Y − Y (l)

)
x̃0,(l)

∥∥
2

λ1 (Y )− λ2

(
Y (l)

) ≤ ∥∥(Y − Y (l)
)
x̃0,(l)

∥∥
2
. (51)

Here, the second inequality uses Weyl’s inequality:

λ1

(
Y
)
− λ2

(
Y (l)

)
≥ λ1(E[Y ])−

∥∥Y − E[Y ]
∥∥− λ2(E[Y (l)])−

∥∥Y (l) − E[Y (l)]
∥∥

≥ 3− δ − 1− δ ≥ 1,

with the proviso that δ ≤ 1/2.
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2. We now connect ‖x0 − x0,(l)‖2 with ‖x̃0 − x̃0,(l)‖2. Applying the Weyl’s inequality and (18) yields

|λ1 (Y )− 3| ≤ ‖Y − E[Y ]‖ ≤ δ =⇒ λ1(Y ) ∈ [3− δ, 3 + δ] ⊆ [2, 4] (52)

and, similarly, λ1(Y (l)), ‖Y ‖, ‖Y (l)‖ ∈ [2, 4]. Invoke Lemma 21 to arrive at

1√
3

∥∥x0 − x0,(l)
∥∥

2
≤
∥∥(Y − Y (l)

)
x̃0,(l)

∥∥
2

2
√

2
+

(
2 +

4√
2

)∥∥x̃0 − x̃0,(l)
∥∥

2

≤ 6
∥∥(Y − Y (l)

)
x̃0,(l)

∥∥
2
, (53)

where the last inequality comes from (51).

3. Everything then boils down to controlling
∥∥(Y − Y (l)

)
x̃0,(l)

∥∥
2
. Towards this we observe that

max
1≤l≤m

∥∥(Y − Y (l)
)
x̃0,(l)

∥∥
2

= max
1≤l≤m

1

m

∥∥∥(a>l x\)2 ala>l x̃0,(l)
∥∥∥

2

≤ max
1≤l≤m

(
a>l x

\
)2 ∣∣a>l x̃0,(l)

∣∣∥∥al∥∥2

m
(i)
.

log n ·
√

log n ·
√
n

m

�
√

log n

n
· n log n

m
. (54)

The inequality (i) makes use of the fact maxl
∣∣a>l x\∣∣ ≤ 5

√
log n (cf. (41)), the bound maxl ‖al‖2 ≤

6
√
n (cf. (40)), and maxl

∣∣a>l x̃0,(l)
∣∣ ≤ 5

√
log n (due to statistical independence and standard Gaussian

concentration). As long as m/(n log n) is sufficiently large, substituting the above bound (54) into (53)
leads us to conclude that

max
1≤l≤m

∥∥x0 − x0,(l)
∥∥

2
≤ C3

√
log n

n
(55)

for any constant C3 > 0.

5 Proofs for matrix completion
Before proceeding to the proofs, let us record an immediate consequence of the incoherence property (22):

∥∥X\
∥∥

2,∞ ≤
√
κµ

n

∥∥X\
∥∥

F
≤
√
κµr

n

∥∥X\
∥∥ . (56)

where κ = σmax/σmin is the condition number of M \. This follows since∥∥X\
∥∥

2,∞ =
∥∥∥U \

(
Σ\
)1/2∥∥∥

2,∞
≤
∥∥U \

∥∥
2,∞

∥∥(Σ\
)1/2∥∥

≤
√
µ

n

∥∥U \
∥∥

F

∥∥(Σ\
)1/2∥∥ ≤√µ

n

∥∥U \
∥∥

F

√
κσmin

≤
√
κµ

n

∥∥X\
∥∥

F
≤
√
κµr

n

∥∥X\
∥∥ .

Unless otherwise specified, we use the indicator variable δj,k to denote whether the entry in the location
(j, k) is included in Ω. Under our model, δj,k is a Bernoulli random variable with mean p.
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5.1 Proof of Lemma 7
By the expression of the Hessian in (23), one can decompose

vec (V )
>∇2fclean (X) vec (V ) =

1

2p

∥∥PΩ

(
V X> +XV >

)∥∥2

F
+

1

p

〈
PΩ

(
XX> −M \

)
,V V >

〉
=

1

2p

∥∥PΩ

(
V X> +XV >

)∥∥2

F
− 1

2p

∥∥PΩ

(
V X\> +X\V >

)∥∥2

F︸ ︷︷ ︸
:=α1

+
1

p

〈
PΩ

(
XX> −M \

)
,V V >

〉
︸ ︷︷ ︸

:=α2

+
1

2p

∥∥PΩ

(
V X\> +X\V >

)∥∥2

F
− 1

2

∥∥V X\> +X\V >
∥∥2

F︸ ︷︷ ︸
:=α3

+
1

2

∥∥V X\> +X\V >
∥∥2

F︸ ︷︷ ︸
:=α4

.

The basic idea is to demonstrate that: (1) α4 is bounded both from above and from below, and (2) the first
three terms are sufficiently small in size compared to α4.

1. We start by controlling α4. It is immediate to derive the following upper bound

α4 ≤
∥∥V X\>∥∥2

F
+
∥∥X\V >

∥∥2

F
≤ 2‖X\‖2 ‖V ‖2F = 2σmax ‖V ‖2F .

When it comes to the lower bound, one discovers that

α4 =
1

2

{∥∥V X\>∥∥2

F
+
∥∥X\V >

∥∥2

F
+ 2Tr

(
X\>V X\>V

)}
≥ σmin ‖V ‖2F + Tr

[(
Z +X\ −Z

)>
V
(
Z +X\ −Z

)>
V
]

≥ σmin ‖V ‖2F + Tr
(
Z>V Z>V

)
− 2

∥∥Z −X\
∥∥ ‖Z‖ ‖V ‖2F − ∥∥Z −X\

∥∥2 ‖V ‖2F
≥ (σmin − 5δσmax) ‖V ‖2F + Tr

(
Z>V Z>V

)
, (57)

where the last line comes from the assumptions that∥∥Z −X\
∥∥ ≤ δ ∥∥X\

∥∥ ≤ ∥∥X\
∥∥ and ‖Z‖ ≤

∥∥Z −X\
∥∥+

∥∥X\
∥∥ ≤ 2

∥∥X\
∥∥ .

With our assumption V = Y HY −Z in mind, it comes down to controlling

Tr
(
Z>V Z>V

)
= Tr

[
Z> (Y HY −Z)Z> (Y HY −Z)

]
.

From the definition of HY , we see from Lemma 22 that Z>Y HY (and hence Z> (Y HY −Z)) is a
symmetric matrix, which implies that

Tr
[
Z> (Y HY −Z)Z> (Y HY −Z)

]
≥ 0.

Substitution into (57) gives

α4 ≥ (σmin − 5δσmax) ‖V ‖2F ≥
9

10
σmin ‖V ‖2F ,

provided that κδ ≤ 1/50.

2. For α1, we consider the following quantity∥∥PΩ

(
V X> +XV >

) ∥∥2

F
=
〈
PΩ

(
V X>

)
,PΩ

(
V X>

)〉
+
〈
PΩ

(
V X>

)
,PΩ

(
XV >

)〉
+
〈
PΩ

(
XV >

)
,PΩ

(
V X>

)〉
+
〈
PΩ

(
XV >

)
,PΩ

(
XV >

)〉
= 2

〈
PΩ

(
V X>

)
,PΩ

(
V X>

)〉
+ 2

〈
PΩ

(
V X>

)
,PΩ

(
XV >

)〉
.

Similar decomposition can be performed on
∥∥PΩ

(
V X\> +X\V >

) ∥∥2

F
as well. These identities yield

α1 =
1

p

[〈
PΩ

(
V X>

)
,PΩ

(
V X>

)〉
−
〈
PΩ

(
V X\>) ,PΩ

(
V X\>)〉]︸ ︷︷ ︸

:=β1
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+
1

p

[〈
PΩ

(
V X>

)
,PΩ

(
XV >

)〉
−
〈
PΩ

(
V X\>) ,PΩ

(
X\V >

)〉]
︸ ︷︷ ︸

:=β2

.

For β2, one has

β2 =
1

p

〈
PΩ

(
V
(
X −X\

)>)
,PΩ

((
X −X\

)
V >

)〉
+

1

p

〈
PΩ

(
V
(
X −X\

)>)
,PΩ

(
X\V >

)〉
+

1

p

〈
PΩ

(
V X\>) ,PΩ

((
X −X\

)
V >

)〉
which together with the inequality |〈A,B〉| ≤ ‖A‖F‖B‖F gives

|β2| ≤
1

p

∥∥∥PΩ

(
V
(
X −X\

)>)∥∥∥2

F
+

2

p

∥∥∥PΩ

(
V
(
X −X\

)>)∥∥∥
F

∥∥PΩ

(
X\V >

)∥∥
F
. (58)

This then calls for upper bounds on the following two terms

1
√
p

∥∥∥PΩ

(
V
(
X −X\

)>)∥∥∥
F

and
1
√
p

∥∥PΩ

(
X\V >

)∥∥
F
.

The injectivity of PΩ (cf. [?, Section 4.2] or Lemma 25)—when restricted to the tangent space ofM \—gives:
for any fixed constant γ > 0,

1
√
p

∥∥PΩ

(
X\V >

)∥∥
F
≤ (1 + γ)

∥∥X\V >
∥∥

F
≤ (1 + γ)

∥∥X\
∥∥ ‖V ‖F

with probability at least 1−O
(
n−10

)
, provided that n2p/(µnr log n) is sufficiently large. In addition,

1

p

∥∥∥PΩ

(
V
(
X −X\

)>)∥∥∥2

F
=

1

p

∑
1≤j,k≤n

δj,k

[
Vj,·

(
Xk,· −X\

k,·

)>]2

=
∑

1≤j≤n

Vj,·

1

p

∑
1≤k≤n

δj,k

(
Xk,· −X\

k,·

)> (
Xk,· −X\

k,·

)V >j,·
≤ max

1≤j≤n

∥∥∥∥∥∥1

p

∑
1≤k≤n

δj,k

(
Xk,· −X\

k,·

)> (
Xk,· −X\

k,·

)∥∥∥∥∥∥ ‖V ‖2F
≤

1

p
max

1≤j≤n

∑
1≤k≤n

δj,k


{

max
1≤k≤n

∥∥∥Xk,· −X\
k,·

∥∥∥2

2

}
‖V ‖2F

≤ (1 + γ)n
∥∥X −X\

∥∥2

2,∞ ‖V ‖
2
F ,

with probability exceeding 1 − O
(
n−10

)
, which holds as long as np/ log n is sufficiently large. Taken

collectively, the above bounds yield that for any small constant γ > 0,

|β2| ≤ (1 + γ)n
∥∥X −X\

∥∥2

2,∞ ‖V ‖
2
F + 2

√
(1 + γ)n ‖X −X\‖22,∞ ‖V ‖

2
F · (1 + γ)

2 ‖X\‖2 ‖V ‖2F

.
(
ε2n

∥∥X\
∥∥2

2,∞ + ε
√
n
∥∥X\

∥∥
2,∞

∥∥X\
∥∥) ‖V ‖2F ,

where the last inequality makes use of the assumption ‖X −X\‖2,∞ ≤ ε‖X\‖2,∞. The same analysis can
be repeated to control β1. Altogether, we obtain

|α1| ≤ |β1|+ |β2| .
(
nε2

∥∥X\
∥∥2

2,∞ +
√
nε
∥∥X\

∥∥
2,∞

∥∥X\
∥∥) ‖V ‖2F

(i)
≤
(
nε2

κµr

n
+
√
nε

√
κµr

n

)
σmax ‖V ‖2F

(ii)
≤ 1

10
σmin ‖V ‖2F ,

where (i) utilizes the incoherence condition (56) and (ii) holds with the proviso that ε
√
κ3µr � 1.
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3. To bound α2, apply the Cauchy-Schwarz inequality to get

|α2| =
∣∣∣∣〈V , 1

p
PΩ

(
XX> −M \

)
V

〉∣∣∣∣ ≤ ∥∥∥∥1

p
PΩ

(
XX> −M \

)∥∥∥∥ ‖V ‖2F .
In view of Lemma 30, with probability at least 1−O

(
n−10

)
,∥∥∥∥1

p
PΩ

(
XX> −M \

)∥∥∥∥ ≤ 2nε2
∥∥X\

∥∥2

2,∞ + 4ε
√
n log n

∥∥X\
∥∥

2,∞

∥∥X\
∥∥

≤
(

2nε2
κµr

n
+ 4ε
√
n log n

√
κµr

n

)
σmax ≤

1

10
σmin

as soon as ε
√
κ3µr log n� 1, where we utilize the incoherence condition (56). This in turn implies that

|α2| ≤
1

10
σmin ‖V ‖2F .

Notably, this bound holds uniformly over all X satisfying the condition in Lemma 7, regardless of the
statistical dependence between X and the sampling set Ω.

4. The last term α3 can also be controlled using the injectivity of PΩ when restricted to the tangent space
of M \. Specifically, it follows from the bounds in [?, Section 4.2] or Lemma 25 that

|α3| ≤ γ
∥∥V X\> +X\V >

∥∥2

F
≤ 4γσmax ‖V ‖2F ≤

1

10
σmin ‖V ‖2F

for any γ > 0 such that κγ is a small constant, as soon as n2p� κ2µrn log n.

5. Taking all the preceding bounds collectively yields

vec (V )
>∇2fclean (X) vec (V ) ≥ α4 − |α1| − |α2| − |α3|

≥
(

9

10
− 3

10

)
σmin ‖V ‖2F ≥

1

2
σmin ‖V ‖2F

for all V satisfying our assumptions, and∣∣∣vec (V )
>∇2fclean (X) vec (V )

∣∣∣ ≤ α4 + |α1|+ |α2|+ |α3|

≤
(

2σmax +
3

10
σmin

)
‖V ‖2F ≤

5

2
σmax ‖V ‖2F

for all V . Since this upper bound holds uniformly over all V , we conclude that∥∥∇2fclean (X)
∥∥ ≤ 5

2
σmax

as claimed.

5.2 Proof of Lemma 8
Given that Ĥt+1 is chosen to minimize the error in terms of the Frobenius norm (cf. (23)), we have∥∥∥Xt+1Ĥt+1 −X\

∥∥∥
F
≤
∥∥∥Xt+1Ĥt −X\

∥∥∥
F

=
∥∥∥[Xt − η∇f

(
Xt
)]
Ĥt −X\

∥∥∥
F

(i)
=
∥∥∥XtĤt − η∇f

(
XtĤt

)
−X\

∥∥∥
F

(ii)
=

∥∥∥∥XtĤt − η
[
∇fclean

(
XtĤt

)
− 1

p
PΩ (E)XtĤt

]
−X\

∥∥∥∥
F

22



≤
∥∥∥XtĤt − η∇fclean

(
XtĤt

)
−
(
X\ − η∇fclean

(
X\
))∥∥∥

F︸ ︷︷ ︸
:=α1

+ η

∥∥∥∥1

p
PΩ (E)XtĤt

∥∥∥∥
F︸ ︷︷ ︸

:=α2

, (59)

where (i) follows from the identity ∇f(XtR) = ∇f (Xt)R for any orthonormal matrix R ∈ Or×r, (ii) arises
from the definitions of ∇f (X) and ∇fclean (X) (see (21) and (22), respectively), and the last inequality (59)
utilizes the triangle inequality and the fact that ∇fclean(X\) = 0. It thus suffices to control α1 and α2.

1. For the second term α2 in (59), it is easy to see that

α2 ≤ η
∥∥∥∥1

p
PΩ (E)

∥∥∥∥ ∥∥∥XtĤt
∥∥∥

F
≤ 2η

∥∥∥∥1

p
PΩ (E)

∥∥∥∥∥∥X\
∥∥

F
≤ 2ηCσ

√
n

p
‖X\‖F

for some absolute constant C > 0. Here, the second inequality holds because
∥∥XtĤt

∥∥
F
≤
∥∥XtĤt −

X\
∥∥

F
+
∥∥X\

∥∥
F
≤ 2

∥∥X\
∥∥

F
, following the hypothesis (24a) together with our assumptions on the noise

and the sample complexity. The last inequality makes use of Lemma 27.

2. For the first term α1 in (59), the fundamental theorem of calculus [?, Chapter XIII, Theorem 4.2] reveals

vec
[
XtĤt − η∇fclean

(
XtĤt

)
−
(
X\ − η∇fclean

(
X\
))]

= vec
[
XtĤt −X\

]
− η · vec

[
∇fclean

(
XtĤt

)
−∇fclean

(
X\
)]

=

(
Inr − η

∫ 1

0

∇2fclean (X(τ)) dτ︸ ︷︷ ︸
:=A

)
vec
(
XtĤt −X\

)
, (60)

where we denote X(τ) := X\ + τ(XtĤt −X\). Taking the squared Euclidean norm of both sides of the
equality (60) leads to

(α1)
2

= vec
(
XtĤt −X\

)>
(Inr − ηA)

2
vec
(
XtĤt −X\

)
= vec

(
XtĤt −X\

)> (
Inr − 2ηA+ η2A2

)
vec
(
XtĤt −X\

)
≤
∥∥∥XtĤt −X\

∥∥∥2

F
+ η2 ‖A‖2

∥∥∥XtĤt −X\
∥∥∥2

F
− 2η vec

(
XtĤt −X\

)>
A vec

(
XtĤt −X\

)
, (61)

where in (61) we have used the fact that

vec
(
XtĤt −X\

)>
A2vec

(
XtĤt −X\

)
≤ ‖A‖2

∥∥∥vec
(
XtĤt −X\

)∥∥∥2

2
= ‖A‖2

∥∥∥XtĤt −X\
∥∥∥2

F
.

Based on the condition (24b), it is easily seen that ∀τ ∈ [0, 1],

∥∥X (τ)−X\
∥∥

2,∞ ≤

(
C5µr

√
log n

np
+

C8

σmin
σ

√
n log n

p

)∥∥X\
∥∥

2,∞ .

Taking X = X (τ) ,Y = Xt and Z = X\ in Lemma 7, one can easily verify the assumptions therein
given our sample size condition n2p� κ3µ3r3n log3 n and the noise condition (24). As a result,

vec
(
XtĤt −X\

)>
A vec

(
XtĤt −X\

)
≥ σmin

2

∥∥XtĤt −X\
∥∥2

F
and ‖A‖ ≤ 5

2
σmax.

Substituting these two inequalities into (61) yields

(α1)
2 ≤

(
1 +

25

4
η2σ2

max − σminη

)∥∥XtĤt −X\
∥∥2

F
≤
(

1− σmin

2
η
)∥∥XtĤt −X\

∥∥2

F

as long as 0 < η ≤ (2σmin)/(25σ2
max), which further implies that

α1 ≤
(

1− σmin

4
η
)∥∥XtĤt −X\

∥∥
F
.
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3. Combining the preceding bounds on both α1 and α2 and making use of the hypothesis (24a), we have∥∥∥Xt+1Ĥt+1 −X\
∥∥∥

F
≤
(

1− σmin

4
η
)∥∥∥XtĤt −X\

∥∥∥
F

+ 2ηCσ

√
n

p

∥∥X\
∥∥

F

≤
(

1− σmin

4
η
)(

C4ρ
tµr

1
√
np

∥∥X\
∥∥

F
+ C1

σ

σmin

√
n

p

∥∥X\
∥∥

F

)
+ 2ηCσ

√
n

p

∥∥X\
∥∥

F

≤
(

1− σmin

4
η
)
C4ρ

tµr
1
√
np

∥∥X\
∥∥

F
+

[(
1− σmin

4
η
) C1

σmin
+ 2ηC

]
σ

√
n

p

∥∥X\
∥∥

F

≤ C4ρ
t+1µr

1
√
np

∥∥X\
∥∥

F
+ C1

σ

σmin

√
n

p

∥∥X\
∥∥

F

as long as 0 < η ≤ (2σmin)/(25σ2
max), 1− (σmin/4) · η ≤ ρ < 1 and C1 is sufficiently large. This completes

the proof of the contraction with respect to the Frobenius norm.

5.3 Proof of Lemma 9
To facilitate analysis, we construct an auxiliary matrix defined as follows

X̃t+1 := XtĤt − η 1

p
PΩ

[
XtXt> −

(
M \ +E

)]
X\. (62)

With this auxiliary matrix in place, we invoke the triangle inequality to bound∥∥Xt+1Ĥt+1 −X\
∥∥ ≤ ∥∥Xt+1Ĥt+1 − X̃t+1

∥∥︸ ︷︷ ︸
:=α1

+
∥∥X̃t+1 −X\

∥∥︸ ︷︷ ︸
:=α2

. (63)

1. We start with the second term α2 and show that the auxiliary matrix X̃t+1 is also not far from the truth.
The definition of X̃t+1 allows one to express

α2 =

∥∥∥∥XtĤt − η 1

p
PΩ

[
XtXt> −

(
M \ +E

)]
X\ −X\

∥∥∥∥
≤ η

∥∥∥∥1

p
PΩ (E)

∥∥∥∥∥∥X\
∥∥+

∥∥∥∥XtĤt − η 1

p
PΩ

(
XtXt> −X\X\>)X\ −X\

∥∥∥∥ (64)

≤ η
∥∥∥∥1

p
PΩ (E)

∥∥∥∥∥∥X\
∥∥+

∥∥∥XtĤt − η
(
XtXt> −X\X\>)X\ −X\

∥∥∥︸ ︷︷ ︸
:=β1

+ η

∥∥∥∥1

p
PΩ

(
XtXt> −X\X\>)X\ −

(
XtXt> −X\X\>)X\

∥∥∥∥︸ ︷︷ ︸
:=β2

, (65)

where we have used the triangle inequality to separate the population-level component (i.e. β1), the
perturbation (i.e. β2), and the noise component. In what follows, we will denote

∆t := XtĤt −X\

which, by Lemma 22, satisfies the following symmetry property

Ĥt>Xt>X\ = X\>XtĤt =⇒ ∆t>X\ = X\>∆t. (66)

(a) The population-level component β1 is easier to control. Specifically, we first simplify its expression as

β1 =
∥∥∆t − η

(
∆t∆t> + ∆tX\> +X\∆t>)X\

∥∥
≤
∥∥∆t − η

(
∆tX\> +X\∆t>)X\

∥∥︸ ︷︷ ︸
:=γ1

+ η
∥∥∆t∆t>X\

∥∥︸ ︷︷ ︸
:=γ2

.
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The leading term γ1 can be upper bounded by

γ1 =
∥∥∆t − η∆tΣ\ − ηX\∆t>X\

∥∥ =
∥∥∆t − η∆tΣ\ − ηX\X\>∆t

∥∥
=

∥∥∥∥1

2
∆t
(
Ir − 2ηΣ\

)
+

1

2

(
Ir − 2ηM \

)
∆t

∥∥∥∥ ≤ 1

2

(∥∥Ir − 2ηΣ\
∥∥+

∥∥Ir − 2ηM \
∥∥) ∥∥∆t

∥∥
where the second identity follows from the symmetry property (66). By choosing η ≤ 1/(2σmax), one
has 0 � Ir − 2ηΣ\ � (1− 2ησmin) Ir and 0 � Ir − 2ηM \ � Ir, and further one can ensure

γ1 ≤
1

2
[(1− 2ησmin) + 1]

∥∥∆t
∥∥ = (1− ησmin)

∥∥∆t
∥∥ . (67)

Next, regarding the higher order term γ2, we can easily obtain

γ2 ≤ η
∥∥∆t

∥∥2 ∥∥X\
∥∥ . (68)

The bounds (67) and (68) taken collectively give

β1 ≤ (1− ησmin)
∥∥∆t

∥∥+ η
∥∥∆t

∥∥2 ∥∥X\
∥∥ . (69)

(b) We now turn to the perturbation part β2 by showing that

1

η
β2 =

∥∥∥∥1

p
PΩ

(
∆t∆t> + ∆tX\> +X\∆t>)X\ −

[
∆t∆t> + ∆tX\> +X\∆t>]X\

∥∥∥∥
≤
∥∥∥∥1

p
PΩ

(
∆tX\>)X\ −

(
∆tX\>)X\

∥∥∥∥
F︸ ︷︷ ︸

:=θ1

+

∥∥∥∥1

p
PΩ

(
X\∆t>)X\ −

(
X\∆t>)X\

∥∥∥∥
F︸ ︷︷ ︸

:=θ2

+

∥∥∥∥1

p
PΩ

(
∆t∆t>)X\ −

(
∆t∆t>)X\

∥∥∥∥
F︸ ︷︷ ︸

:=θ3

, (70)

where the last inequality holds due to the triangle inequality as well as the fact that ‖A‖ ≤ ‖A‖F. In
the sequel, we shall bound the three terms separately.
• For the first term θ1 in (70), the lth row of 1

pPΩ

(
∆tX\>)X\ −

(
∆tX\>)X\ is given by

1

p

n∑
j=1

(δl,j − p) ∆t
l,·X

\>
j,·X

\
j,· = ∆t

l,·

1

p

n∑
j=1

(δl,j − p)X\>
j,·X

\
j,·


where, as usual, δl,j = 1{(l,j)∈Ω}. Lemma 28 together with the union bound reveals that∥∥∥∥∥∥1

p

n∑
j=1

(δl,j − p)X\>
j,·X

\
j,·

∥∥∥∥∥∥ .
1

p

(√
p ‖X\‖22,∞ ‖X\‖2 log n+

∥∥X\
∥∥2

2,∞ log n

)

�

√
‖X\‖22,∞σmax log n

p
+
‖X\‖22,∞ log n

p

for all 1 ≤ l ≤ n with high probability. This gives∥∥∥∥∥∥∆t
l,·

1

p

n∑
j=1

(δl,j − p)X\>
j,·X

\
j,·

∥∥∥∥∥∥
2

≤
∥∥∆t

l,·
∥∥

2

∥∥∥∥∥∥1

p

∑
j

(δl,j − p)X\>
j,·X

\
j,·

∥∥∥∥∥∥
.
∥∥∆t

l,·
∥∥

2


√
‖X\‖22,∞σmax log n

p
+
‖X\‖22,∞ log n

p

 ,
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which further reveals that

θ1 =

√√√√√ n∑
l=1

∥∥∥∥∥∥1

p

∑
j

(δl,j − p) ∆t
l,·X

\>
j,·X

\
j,·

∥∥∥∥∥∥
2

2

.
∥∥∆t

∥∥
F


√
‖X\‖22,∞σmax log n

p
+
‖X\‖22,∞ log n

p


(i)
.
∥∥∆t

∥∥
√
‖X\‖22,∞rσmax log n

p
+

√
r‖X\‖22,∞ log n

p


(ii)
.
∥∥∆t

∥∥{√κµr2 log n

np
+
κµr3/2 log n

np

}
σmax

(iii)
≤ γσmin

∥∥∆t
∥∥ ,

for arbitrarily small γ > 0. Here, (i) follows from ‖∆t‖F ≤
√
r ‖∆t‖, (ii) holds owing to the incoher-

ence condition (56), and (iii) follows as long as n2p� κ3µr2n log n.
• For the second term θ2 in (70), denote

A = PΩ

(
X\∆t>)X\ − p

(
X\∆t>)X\,

whose lth row is given by

Al,· = X\
l,·

n∑
j=1

(δl,j − p) ∆t>
j,·X

\
j,·. (71)

Recalling the induction hypotheses (24b) and (24c), we define

∥∥∆t
∥∥

2,∞ ≤ C5ρ
tµr

√
log n

np

∥∥X\
∥∥

2,∞ + C8
σ

σmin

√
n log n

p

∥∥X\
∥∥

2,∞ := ξ (72)

∥∥∆t
∥∥ ≤ C9ρ

tµr
1
√
np

∥∥X\
∥∥+ C10

σ

σmin

√
n

p

∥∥X\
∥∥ := ψ. (73)

With these two definitions in place, we now introduce a “truncation level”

ω := 2pξσmax (74)

that allows us to bound θ2 in terms of the following two terms

θ2 =
1

p

√√√√ n∑
l=1

‖Al,·‖22 ≤
1

p

√√√√ n∑
l=1

‖Al,·‖22 1{‖Al,·‖2≤ω}︸ ︷︷ ︸
:=φ1

+
1

p

√√√√ n∑
l=1

‖Al,·‖22 1{‖Al,·‖2≥ω}︸ ︷︷ ︸
:=φ2

.

We will apply different strategies when upper bounding the terms φ1 and φ2, with their bounds given
in the following two lemmas under the induction hypotheses (24b) and (24c).
Lemma 14. Under the conditions in Lemma 9, there exist some constants c, C > 0 such that with
probability exceeding 1− c exp(−Cnr log n),

φ1 . ξ
√
pσmax‖X\‖22,∞nr log2 n (75)

holds simultaneously for all ∆t obeying (72) and (73). Here, ξ is defined in (72).
Lemma 15. Under the conditions in Lemma 9, with probability at least 1−O

(
n−10

)
,

φ2 . ξ

√
κµr2p log2 n

∥∥X\
∥∥2

(76)

holds simultaneously for all ∆t obeying (72) and (73). Here, ξ is defined in (72).
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The bounds (75) and (76) together with the incoherence condition (56) yield

θ2 .
1

p
ξ
√
pσmax‖X\‖22,∞nr log2 n+

1

p
ξ

√
κµr2p log2 n

∥∥X\
∥∥2

.

√
κµr2 log2 n

p
ξσmax.

• Next, we assert that the third term θ3 in (70) has the same upper bound as θ2. The proof follows by
repeating the same argument used in bounding θ2, and is hence omitted.

Take the previous three bounds on θ1, θ2 and θ3 together to arrive at

β2 ≤ η (|θ1|+ |θ2|+ |θ3|) ≤ ηγσmin

∥∥∆t
∥∥+ C̃η

√
κµr2 log2 n

p
ξσmax

for some constant C̃ > 0.

(c) Substituting the preceding bounds on β1 and β2 into (65), we reach

α2

(i)
≤
(
1− ησmin + ηγσmin + η

∥∥∆t
∥∥∥∥X\

∥∥) ∥∥∆t
∥∥+ η

∥∥∥∥1

p
PΩ (E)

∥∥∥∥∥∥X\
∥∥

+ C̃η

√
κµr2 log2 n

p
σmax

(
C5ρ

tµr

√
log n

np

∥∥X\
∥∥

2,∞ + C8
σ

σmin

√
n log n

p

∥∥X\
∥∥

2,∞

)
(ii)
≤
(

1− σmin

2
η
)∥∥∆t

∥∥+ η

∥∥∥∥1

p
PΩ (E)

∥∥∥∥∥∥X\
∥∥

+ C̃η

√
κµr2 log2 n

p
σmax

(
C5ρ

tµr

√
log n

np

∥∥X\
∥∥

2,∞ + C8
σ
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∥∥ (77)

for some constant C > 0. Here, (i) uses the definition of ξ (cf. (72)), (ii) holds if γ is small enough
and ‖∆t‖

∥∥X\
∥∥� σmin, and (iii) follows from Lemma 27 as well as the incoherence condition (56). An

immediate consequence of (77) is that under the sample size condition and the noise condition of this
lemma, one has ∥∥X̃t+1 −X\

∥∥∥∥X\
∥∥ ≤ σmin/2 (78)

if 0 < η ≤ 1/σmax.

2. We then move on to the first term α1 in (63), which can be rewritten as

α1 =
∥∥Xt+1ĤtR1 − X̃t+1

∥∥,
with

R1 =
(
Ĥt
)−1

Ĥt+1 := arg min
R∈Or×r

∥∥Xt+1ĤtR−X\
∥∥

F
. (79)

(a) First, we claim that X̃t+1 satisfies

Ir = arg min
R∈Or×r

∥∥X̃t+1R−X\
∥∥

F
, (80)

meaning that X̃t+1 is already rotated to the direction that is most “aligned” with X\. This important
property eases the analysis. In fact, in view of Lemma 22, (80) follows if one can show that X\>X̃t+1 is
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symmetric and positive semidefinite. First of all, it follows from Lemma 22 thatX\>XtĤt is symmetric
and, hence, by definition,

X\>X̃t+1 = X\>XtĤt − η

p
X\>PΩ

[
XtXt> −

(
M \ +E

)]
X\

is also symmetric. Additionally,∥∥X\>X̃t+1 −M \
∥∥ ≤ ∥∥X̃t+1 −X\

∥∥ ∥∥X\
∥∥ ≤ σmin/2,

where the second inequality holds according to (78). Weyl’s inequality guarantees that

X\>X̃t+1 � 1

2
σminIr,

thus justifying (80) via Lemma 22.

(b) With (79) and (80) in place, we resort to Lemma 24 to establish the bound. Specifically, takeX1 = X̃t+1

and X2 = Xt+1Ĥt, and it comes from (78) that∥∥X1 −X\
∥∥∥∥X\

∥∥ ≤ σmin/2.

Moreover, we have
‖X1 −X2‖

∥∥X\
∥∥ =

∥∥Xt+1Ĥt − X̃t+1
∥∥∥∥X\

∥∥,
in which

Xt+1Ĥt − X̃t+1 =

(
Xt − η 1

p
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)
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]
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(
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)
.

This allows one to derive∥∥Xt+1Ĥt − X̃t+1
∥∥ ≤ η ∥∥∥∥1

p
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∥∥ (81)

for some absolute constant C > 0. Here the last inequality follows from Lemma 27 and Lemma 30. As
a consequence,

‖X1 −X2‖
∥∥X\

∥∥ ≤ η(2n
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∥∥ .
Under our sample size condition and the noise condition (24) and the induction hypotheses (24), one
can show

‖X1 −X2‖
∥∥X\

∥∥ ≤ σmin/4.

Apply Lemma 24 and (81) to reach

α1 ≤ 5κ
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3. Combining the above bounds on α1 and α2, we arrive at
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p
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∥∥ ,

with the proviso that ρ ≥ 1− (σmin/3) · η, κ is a constant, and n2p� µ3r3n log3 n.

5.3.1 Proof of Lemma 14

In what follows, we first assume that the δj,k’s are independent, and then use the standard decoupling trick
to extend the result to symmetric sampling case (i.e. δj,k = δk,j).

To begin with, we justify the concentration bound for any ∆t independent of Ω, followed by the standard
covering argument that extends the bound to all ∆t. For any ∆t independent of Ω, one has

B := max
1≤j≤n

∥∥∥X\
l,· (δl,j − p) ∆t>

j,·X
\
j,·

∥∥∥
2
≤
∥∥X\

∥∥2

2,∞ ξ

and V :=

∥∥∥∥∥∥E
 n∑
j=1

(δl,j − p)2
X\
l,·∆

t>
j,·X

\
j,·

(
X\
l,·∆

t>
j,·X

\
j,·

)>∥∥∥∥∥∥
≤ p

∥∥∥X\
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2
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t
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≤ p

∥∥∥X\
l,·

∥∥∥2

2

∥∥X\
∥∥2

2,∞ ψ2

≤ 2p
∥∥X\

∥∥2

2,∞ ξ2σmax,

where ξ and ψ are defined respectively in (72) and (73). Here, the last line makes use of the fact that∥∥X\
∥∥

2,∞ ψ � ξ
∥∥X\

∥∥ = ξ
√
σmax, (82)

as long as n is sufficiently large. Apply the matrix Bernstein inequality [?, Theorem 6.1.1] to get

P
{
‖Al,·‖2 ≥ t

}
≤ 2r exp

(
− ct2

2pξ2σmax ‖X\‖22,∞ + t · ‖X\‖22,∞ ξ

)

≤ 2r exp

(
− ct2

4pξ2σmax ‖X\‖22,∞

)

for some constant c > 0, provided that
t ≤ 2pσmaxξ.

This upper bound on t is exactly the truncation level ω we introduce in (74). With this in mind, we can
easily verify that

‖Al,·‖2 1{‖Al,·‖2≤ω}

is a sub-Gaussian random variable with variance proxy not exceeding O
(
pξ2σmax

∥∥X\
∥∥2

2,∞ log r
)
. Therefore,

invoking the concentration bounds for quadratic functions [?, Theorem 2.1] yields that for some constants
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C0, C > 0, with probability at least 1− C0e
−Cnr logn,

φ2
1 =

n∑
l=1

‖Al,·‖22 1{‖Al,·‖2≤ω} . pξ2σmax‖X\‖22,∞nr log2 n.

Now that we have established an upper bound on any fixed matrix ∆t (which holds with exponentially
high probability), we can proceed to invoke the standard epsilon-net argument to establish a uniform bound
over all feasible ∆t. This argument is fairly standard, and is thus omitted; see [?, Section 2.3.1] or the proof
of Lemma 29. In conclusion, we have that with probability exceeding 1− C0e

− 1
2Cnr logn,

φ1 =

√√√√ n∑
l=1

‖Al,·‖22 1{‖Al,·‖2≤ω} .
√
pξ2σmax‖X\‖22,∞nr log2 n (83)

holds simultaneously for all ∆t ∈ Rn×r obeying the conditions of the lemma.
In the end, we comment on how to extend the bound to the symmetric sampling pattern where δj,k = δk,j .

Recall from (71) that the diagonal element δl,l cannot change the `2 norm of Al,· by more than
∥∥X\

∥∥2

2,∞ ξ.
As a result, changing all the diagonals {δl,l} cannot change the quantity of interest (i.e. φ1) by more than
√
n
∥∥X\

∥∥2

2,∞ ξ. This is smaller than the right hand side of (83) under our incoherence and sample size
conditions. Hence from now on we ignore the effect of {δl,l} and focus on off-diagonal terms. The proof then
follows from the same argument as in [?, Theorem D.2]. More specifically, we can employ the construction
of Bernoulli random variables introduced therein to demonstrate that the upper bound in (83) still holds if
the indicator δi,j is replaced by (τi,j + τ ′i,j)/2, where τi,j and τ ′i,j are independent copies of the symmetric
Bernoulli random variables. Recognizing that sup∆t φ1 is a norm of the Bernoulli random variables τi,j ,
one can repeat the decoupling argument in [?, Claim D.3] to finish the proof. We omit the details here for
brevity.

5.3.2 Proof of Lemma 15

Observe from (71) that

‖Al,·‖2 ≤
∥∥X\

∥∥
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∥∥∥∥∥∥
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where ψ is as defined in (73) and Gl (·) is as defined in Lemma 28. Here, the last inequality follows from
Lemma 28, namely, for some constant C > 0, the following holds with probability at least 1−O(n−10)∥∥∥∥∥∥∥
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where we also use the incoherence condition (56) and the sample complexity condition n2p � κµrn log n.
Hence, the event

‖Al,·‖2 ≥ ω = 2pσmaxξ

together with (84) and (85) necessarily implies that∥∥∥∥∥∥
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j=1
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∥∥ ,

where the last inequality follows from the bound (82). As a result, with probability at least 1−O(n−10) (i.e.
when (86) holds for all l’s) we can upper bound φ2 by

φ2 =

√√√√ n∑
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where the indicator functions are now specified with respect to ‖Gl (∆
t)‖.

Next, we divide into multiple cases based on the size of ‖Gl (∆
t)‖. By Lemma 29, for some constants

c1, c2 > 0, with probability at least 1− c1 exp (−c2nr log n),

n∑
l=1
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for any k ≥ 0 and any α & log n. We claim that it suffices to consider the set of sufficiently large k obeying

√
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√
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otherwise we can use (82) to obtain
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which contradicts the event ‖Al,·‖2 ≥ ω. Consequently, we divide all indices into the following sets
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{

1 ≤ l ≤ n :
∥∥Gl
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(89)

defined for each integer k obeying (88). Under the condition (88), it follows from (87) that
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meaning that the cardinality of Sk satisfies
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or |Sk| ≤
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which decays exponentially fast as k increases. Therefore, when restricting attention to the set of indices
within Sk, we can obtain√∑
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where (i) follows from the bound (85) and the constraint (89) in Sk, (ii) is a consequence of (88) and (iii)
uses the incoherence condition (56).

Now that we have developed an upper bound with respect to each Sk, we can add them up to yield the
final upper bound. Note that there are in total no more than O (log n) different sets, i.e. Sk = ∅ if k ≥ c1 log n
for c1 sufficiently large. This arises since

‖Gl(∆
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leading to φ2 . ξ
√
ακµr2p log n
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∥∥2. The proof is finished by taking α = c log n for some sufficiently

large constant c > 0.

5.4 Proof of Lemma 10
1. To obtain (36a), we invoke Lemma 24. Setting X1 = XtĤt and X2 = Xt,(l)Rt,(l), we get
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where (i) follows from (33c) and (ii) holds as long as n2p � κ2µ2r2n and the noise satisfies (24). In
addition,
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where (i) utilizes (33d), (ii) follows since
∥∥X\

∥∥
2,∞ ≤

∥∥X\
∥∥, and (iii) holds if n2p� κ2µ2r2n log n and the

noise satisfies (24). With these in place, Lemma 24 immediately yields (36a).

2. The first inequality in (36b) follows directly from the definition of Ĥt,(l). The second inequality is con-
cerned with the estimation error of Xt,(l)Rt,(l) with respect to the Frobenius norm. Combining (33a),
(33d) and the triangle inequality yields∥∥∥Xt,(l)Rt,(l) −X\
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∥∥∥XtĤt −Xt,(l)Rt,(l)

∥∥∥
F
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where the last step holds true as long as n� κµ log n.

3. To obtain (36c), we use (33d) and (33b) to get∥∥∥Xt,(l)Rt,(l) −X\
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∥∥ ,

where the second inequality uses the incoherence of X\ (cf. (56)) and the last inequality holds as long as
n� κ3µr log n.

5.5 Proof of Lemma 11
From the definition of Rt+1,(l) (see (35)), we must have∥∥∥Xt+1Ĥt+1 −Xt+1,(l)Rt+1,(l)

∥∥∥
F
≤
∥∥∥Xt+1Ĥt −Xt+1,(l)Rt,(l)

∥∥∥
F
.

The gradient update rules in (21) and (32) allow one to express

Xt+1Ĥt −Xt+1,(l)Rt,(l) =
[
Xt − η∇f

(
Xt
)]
Ĥt −

[
Xt,(l) − η∇f (l)

(
Xt,(l)

)]
Rt,(l)

= XtĤt − η∇f
(
XtĤt

)
−
[
Xt,(l)Rt,(l) − η∇f (l)

(
Xt,(l)Rt,(l)

)]
=
(
XtĤt −Xt,(l)Rt,(l)

)
− η

[
∇f(XtĤt)−∇f

(
Xt,(l)Rt,(l))

]
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− η
[
∇f
(
Xt,(l)Rt,(l)

)
−∇f (l)

(
Xt,(l)Rt,(l)

)]
,

where we have again used the fact that ∇f (Xt)R = ∇f(XtR) for any orthonormal matrix R ∈ Or×r
(similarly for ∇f (l)

(
Xt,(l)

)
). Relate the right-hand side of the above equation with ∇fclean (X) to reach
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(
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)
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[
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)
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:=B
(l)
4

, (91)

where we have used the following relationship between ∇f (l) (X) and ∇f (X):

∇f (l) (X) = ∇f (X)− 1

p
PΩl

[
XX> −

(
M \ +E

)]
X + Pl

(
XX> −M \

)
X (92)

for all X ∈ Rn×r with PΩl and Pl defined respectively in (29) and (30). In the sequel, we control the four
terms in reverse order.

1. The last term B
(l)
4 is controlled via the following lemma.

Lemma 16. Suppose that the sample size obeys n2p > Cµ2r2n log2 n for some sufficiently large constant
C > 0. Then with probability at least 1−O

(
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)
, the matrix B(l)

4 as defined in (91) satisfies∥∥∥B(l)
4

∥∥∥
F
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√
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2,∞ .

2. The third term B
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3 can be bounded as follows∥∥∥B(l)

3

∥∥∥
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,

where the second inequality comes from Lemma 27.

3. For the second term B
(l)
2 , we have the following lemma.

Lemma 17. Suppose that the sample size obeys n2p � µ2r2n log n. Then with probability exceeding
1−O

(
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)
, the matrix B(l)

2 as defined in (91) satisfies∥∥∥B(l)
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F
. η
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4. Regarding the first term B
(l)
1 , apply the fundamental theorem of calculus [?, Chapter XIII, Theorem 4.2]

to get

vec
(
B

(l)
1

)
=

(
Inr − η

∫ 1

0

∇2fclean (X(τ)) dτ

)
vec
(
XtĤt −Xt,(l)Rt,(l)

)
, (94)

where we abuse the notation and denote X(τ) := Xt,(l)Rt,(l) + τ
(
XtĤt −Xt,(l)Rt,(l)

)
. Going through

the same derivations as in the proof of Lemma 8 (see Appendix 5.2), we get∥∥B(l)
1

∥∥
F
≤
(

1− σmin

4
η
)∥∥∥XtĤt −Xt,(l)Rt,(l)

∥∥∥
F

(95)

with the proviso that 0 < η ≤ (2σmin)/(25σ2
max).
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Applying the triangle inequality to (91) and invoking the preceding four bounds, we arrive at∥∥∥Xt+1Ĥt+1 −Xt+1,(l)Rt+1,(l)
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for some absolute constant C̃ > 0. Here the last inequality holds as long as σ
√
n/p� σmin, which is satisfied

under our noise condition (24). This taken collectively with the hypotheses (33d) and (36c) leads to∥∥∥Xt+1Ĥt+1 −Xt+1,(l)Rt+1,(l)
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as long as C7 > 0 is sufficiently large, where we have used the sample complexity assumption n2p �
κ4µ2r2n log n and the step size 0 < η ≤ 1/(2σmax) ≤ 1/(2σmin). This finishes the proof.

5.5.1 Proof of Lemma 16

By the unitary invariance of the Frobenius norm, one has∥∥∥B(l)
4

∥∥∥
F

=
η

p

∥∥∥PΩl (E)Xt,(l)
∥∥∥

F
,

where all nonzero entries of the matrix PΩl (E) reside in the lth row/column. Decouple the effects of the lth
row and the lth column of PΩl (E) to reach

p

η

∥∥∥B(l)
4

∥∥∥
F
≤

∥∥∥∥∥∥∥
n∑
j=1

δl,jEl,jX
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j,·︸ ︷︷ ︸
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l,·
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:=α

, (96)
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where δl,j := 1{(l,j)∈Ω} indicates whether the (l, j)-th entry is observed. Since Xt,(l) is independent of
{δl,j}1≤j≤n and {El,j}1≤j≤n, we can treat the first term as a sum of independent vectors {uj}. It is easy to
verify that ∥∥∥‖uj‖2∥∥∥

ψ1

≤
∥∥∥Xt,(l)

∥∥∥
2,∞
‖δl,jEl,j‖ψ1

. σ
∥∥∥Xt,(l)

∥∥∥
2,∞

,

where ‖ · ‖ψ1 denotes the sub-exponential norm [?, Section 6]. Further, one can calculate
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∥∥∥∥∥∥E
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X
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∥∥∥∥∥∥ = pσ2
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F
.

Invoke the matrix Bernstein inequality [?, Proposition 2] to discover that with probability at least 1 −
O
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)
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.
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where the third inequality follows from
∥∥Xt,(l)

∥∥2

F
≤ n

∥∥Xt,(l)
∥∥2

2,∞, and the last inequality holds as long as
np� log2 n.

Additionally, the remaining term α in (96) can be controlled using the same argument, giving rise to

α . σ
√
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We then complete the proof by observing that∥∥Xt,(l)
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where the last inequality follows by combining (36c), the sample complexity condition n2p � µ2r2n log n,
and the noise condition (24).

5.5.2 Proof of Lemma 17

For notational simplicity, we denote

C := Xt,(l)Xt,(l)> −M \ = Xt,(l)Xt,(l)> −X\X\>. (98)

Since the Frobenius norm is unitarily invariant, we have
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.

Again, all nonzero entries of the matrix W reside in its lth row/column. We can deal with the lth row and
the lth column of W separately as follows
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where δl,j := 1{(l,j)∈Ω} and the second line relies on the fact that
∑
j:j 6=l (δl,j − p)

2 � np. It follows that
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Here, (i) is a consequence of (97). In addition, (ii) follows from∥∥∥Xt,(l)
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where the last inequality comes from (36b), the sample complexity condition n2p � µ2r2n log n, and the
noise condition (24). The matrix Bernstein inequality [?, Theorem 6.1.1] reveals that∥∥∥∥∥∥
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as soon as np� log n.
To finish up, we make the observation that
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where the last line arises from (97). This combined with (99) gives
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where (i) comes from (100), and (ii) makes use of the incoherence condition (56).
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5.6 Proof of Lemma 12
We first introduce an auxiliary matrix

X̃t+1,(l) := Xt,(l)Ĥt,(l) − η
[

1

p
PΩ−l

[
Xt,(l)Xt,(l)> −

(
M \ +E

)]
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(
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X\. (101)

With this in place, we can use the triangle inequality to obtain∥∥∥∥(Xt+1,(l)Ĥt+1,(l) −X\
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In what follows, we bound the two terms α1 and α2 separately.

1. Regarding the second term α2 of (102), we see from the definition of X̃t+1,(l) (see (101)) that(
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where we also utilize the definitions of PΩ−l and Pl in (30). For notational convenience, we denote
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Here, the last line follows from the fact that
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as long as np � µ2r2 and σ
√

(n log n) /p � σmin. By taking 0 < η ≤ 1/σmax, we have 0 � Ir − ηΣ\ �
(1− ησmin) Ir, and hence can obtain

α2 ≤ (1− ησmin)
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An immediate consequence of the above two inequalities and (36d) is

α2 ≤ ‖X\‖2,∞. (107)

2. The first term α1 of (102) can be equivalently written as
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∥∥∥∥(Xt+1,(l)Ĥt,(l)R1 − X̃t+1,(l)
)
l,·

∥∥∥∥
2

,
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where

R1 =
(
Ĥt,(l)

)−1
Ĥt+1,(l) := arg min

R∈Or×r

∥∥∥Xt+1,(l)Ĥt,(l)R−X\
∥∥∥

F
,

Simple algebra yields

α1 ≤
∥∥∥∥(Xt+1,(l)Ĥt,(l) − X̃t+1,(l)

)
l,·
R1

∥∥∥∥
2

+
∥∥∥X̃t+1,(l)

l,·

∥∥∥
2
‖R1 − Ir‖

≤
∥∥∥∥(Xt+1,(l)Ĥt,(l) − X̃t+1,(l)

)
l,·
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2︸ ︷︷ ︸

:=β1

+2
∥∥X\

∥∥
2,∞ ‖R1 − Ir‖︸ ︷︷ ︸

:=β2

.

Here, to bound the the second term we have used∥∥∥X̃t+1,(l)
l,·

∥∥∥
2
≤
∥∥∥X̃t+1,(l)

l,· −X\
l,·

∥∥∥
2

+
∥∥∥X\

l,·

∥∥∥
2

= α2 +
∥∥∥X\

l,·

∥∥∥
2
≤ 2

∥∥X\
∥∥

2,∞ ,

where the last inequality follows from (107). It remains to upper bound β1 and β2. For both β1 and β2,
a central quantity to control is Xt+1,(l)Ĥt,(l) − X̃t+1,(l). By the definition of X̃t+1,(l) in (101) and the
gradient update rule for Xt+1,(l) (see (32)), one has

Xt+1,(l)Ĥt,(l) − X̃t+1,(l)

=

{
Xt,(l)Ĥt,(l) − η

[
1

p
PΩ−l

[
Xt,(l)Xt,(l)> −

(
M \ +E

)]
+ Pl

(
Xt,(l)Xt,(l)> −M \

)]
Xt,(l)Ĥt,(l)

}
−
{
Xt,(l)Ĥt,(l) − η

[
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p
PΩ−l

[
Xt,(l)Xt,(l)> −

(
M \ +E

)]
+ Pl

(
Xt,(l)Xt,(l)> −M \

)]
X\

}
= −η

[
1

p
PΩ−l

(
Xt,(l)Xt,(l)> −X\X\>

)
+ Pl

(
Xt,(l)Xt,(l)> −X\X\>

)]
∆t,(l) +

η

p
PΩ−l (E) ∆t,(l).

(108)

It is easy to verify that ∥∥∥∥1

p
PΩ−l (E)

∥∥∥∥ (i)
≤
∥∥∥∥1

p
PΩ (E)

∥∥∥∥ (ii)
. σ

√
n

p

(iii)
≤ δ

2
σmin

for δ > 0 sufficiently small. Here, (i) uses the elementary fact that the spectral norm of a submatrix is
no more than that of the matrix itself, (ii) arises from Lemma 27 and (iii) is a consequence of the noise
condition (24). Therefore, in order to control (108), we need to upper bound the following quantity

γ :=

∥∥∥∥1

p
PΩ−l

(
Xt,(l)Xt,(l)> −X\X\>

)
+ Pl

(
Xt,(l)Xt,(l)> −X\X\>

)∥∥∥∥ . (109)

To this end, we make the observation that

γ ≤
∥∥∥∥1

p
PΩ

(
Xt,(l)Xt,(l)> −X\X\>

)∥∥∥∥︸ ︷︷ ︸
:=γ1

+

∥∥∥∥1

p
PΩl

(
Xt,(l)Xt,(l)> −X\X\>

)
− Pl

(
Xt,(l)Xt,(l)> −X\X\>

)∥∥∥∥︸ ︷︷ ︸
:=γ2

, (110)

where PΩl is defined in (29). An application of Lemma 30 reveals that

γ1 ≤ 2n
∥∥∥Xt,(l)Rt,(l) −X\

∥∥∥2

2,∞
+ 4
√
n log n

∥∥∥Xt,(l)Rt,(l) −X\
∥∥∥

2,∞

∥∥X\
∥∥ ,
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where Rt,(l) ∈ Or×r is defined in (35). Let C = Xt,(l)Xt,(l)> −X\X\> as in (98), and one can bound
the other term γ2 by taking advantage of the triangle inequality and the symmetry property:

γ2 ≤
2

p

√√√√ n∑
j=1

(δl,j − p)2
C2
l,j

(i)
.
√
n

p
‖C‖∞

(ii)
.
√
n

p

∥∥∥Xt,(l)Rt,(l) −X\
∥∥∥

2,∞

∥∥X\
∥∥

2,∞ ,

where (i) comes from the standard Chernoff bound
∑n
j=1 (δl,j − p)2 � np, and in (ii) we utilize the bound

established in (100). The previous two bounds taken collectively give

γ ≤ 2n
∥∥∥Xt,(l)Rt,(l) −X\

∥∥∥2

2,∞
+ 4
√
n log n

∥∥∥Xt,(l)Rt,(l) −X\
∥∥∥

2,∞

∥∥X\
∥∥

+ C̃

√
n

p

∥∥∥Xt,(l)Rt,(l) −X\
∥∥∥

2,∞

∥∥X\
∥∥

2,∞ ≤
δ

2
σmin (111)

for some constant C̃ > 0 and δ > 0 sufficiently small. The last inequality follows from (36c), the incoherence
condition (56) and our sample size condition. In summary, we obtain∥∥∥Xt+1,(l)Ĥt,(l) − X̃t+1,(l)

∥∥∥ ≤ η(γ +

∥∥∥∥1

p
PΩ−l (E)

∥∥∥∥)∥∥∥∆t,(l)
∥∥∥ ≤ ηδσmin

∥∥∥∆t,(l)
∥∥∥ , (112)

for δ > 0 sufficiently small. With the estimate (112) in place, we can continue our derivation on β1 and
β2.

(a) With regard to β1, in view of (108) we can obtain

β1
(i)
= η

∥∥∥∥(Xt,(l)Xt,(l)> −X\X\>
)
l,·

∆t,(l)

∥∥∥∥
2

≤ η
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)
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∥∥∥∥
2

∥∥∥∆t,(l)
∥∥∥

(ii)
= η

∥∥∥∥∥
[
∆t,(l)

(
Xt,(l)Ĥt,(l)

)>
+X\∆t,(l)>

]
l,·
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2

∥∥∥∆t,(l)
∥∥∥

≤ η
(∥∥∥∆t,(l)

l,·

∥∥∥
2

∥∥∥Xt,(l)
∥∥∥+

∥∥∥X\
l,·

∥∥∥
2

∥∥∥∆t,(l)
∥∥∥)∥∥∥∆t,(l)

∥∥∥
≤ η

∥∥∥∆t,(l)
l,·

∥∥∥
2

∥∥∥Xt,(l)
∥∥∥∥∥∥∆t,(l)

∥∥∥+ η
∥∥∥X\

l,·

∥∥∥
2

∥∥∥∆t,(l)
∥∥∥2

, (113)

where (i) follows from the definitions of PΩ−l and Pl (see (30) and note that all entries in the lth row
of PΩ−l(·) are identically zero), and the identity (ii) is due to the definition of ∆t,(l) in (104).

(b) For β2, we first claim that
Ir := arg min

R∈Or×r

∥∥∥X̃t+1,(l)R−X\
∥∥∥

F
, (114)

whose justification follows similar reasonings as that of (80), and is therefore omitted. In particular, it
gives rise to the facts that X\>X̃t+1,(l) is symmetric and(

X̃t+1,(l)
)>
X\ � 1

2
σminIr. (115)

We are now ready to invoke Lemma 23 to bound β2. We abuse the notation and denote C :=(
X̃t+1,(l)

)>
X\ and E :=

(
Xt+1,(l)Ĥt,(l) − X̃t+1,(l)

)>
X\. We have

‖E‖ ≤ 1

2
σmin ≤ σr (C) .

The first inequality arises from (112), namely,

‖E‖ ≤
∥∥∥Xt+1,(l)Ĥt,(l) − X̃t+1,(l)

∥∥∥∥∥X\
∥∥ ≤ ηδσmin

∥∥∥∆t,(l)
∥∥∥∥∥X\

∥∥
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(i)
≤ ηδσmin

∥∥X\
∥∥2 (ii)
≤ 1

2
σmin,

where (i) holds since
∥∥∆t,(l)

∥∥ ≤ ∥∥X\
∥∥ and (ii) holds true for δ sufficiently small and η ≤ 1/σmax. Invoke

Lemma 23 to obtain

β2 = ‖R1 − Ir‖ ≤
2

σr−1 (C) + σr (C)
‖E‖

≤ 2

σmin

∥∥∥Xt+1,(l)Ĥt,(l) − X̃t+1,(l)
∥∥∥∥∥X\

∥∥ (116)

≤ 2δη
∥∥∥∆t,(l)

∥∥∥∥∥X\
∥∥ , (117)

where (116) follows since σr−1 (C) ≥ σr (C) ≥ σmin/2 from (115), and the last line comes from (112).

(c) Putting the previous bounds (113) and (117) together yields

α1 ≤ η
∥∥∥∆t,(l)

l,·

∥∥∥
2

∥∥∥Xt,(l)
∥∥∥ ∥∥∥∆t,(l)
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2
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+ 4δη
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∥∥ . (118)

3. Combine (102), (106) and (118) to reach∥∥∥∥(Xt+1,(l)Ĥt+1,(l) −X\
)
l,·
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2

≤ (1− ησmin)
∥∥∥∆t,(l)

l,·

∥∥∥
2

+ 2η
∥∥X\

∥∥
2,∞

∥∥∥∆t,(l)
∥∥∥∥∥X\

∥∥
+ η

∥∥∥∆t,(l)
l,·

∥∥∥
2

∥∥∥Xt,(l)
∥∥∥ ∥∥∥∆t,(l)

∥∥∥+ η
∥∥∥X\

l,·

∥∥∥
2

∥∥∥∆t,(l)
∥∥∥2

+ 4δη
∥∥X\

∥∥
2,∞

∥∥∥∆t,(l)
∥∥∥∥∥X\

∥∥
(i)
≤
(

1− ησmin + η
∥∥∥Xt,(l)

∥∥∥∥∥∥∆t,(l)
∥∥∥)∥∥∥∆t,(l)

l,·

∥∥∥
2

+ 4η
∥∥X\

∥∥
2,∞

∥∥∥∆t,(l)
∥∥∥∥∥X\

∥∥
(ii)
≤
(

1− σmin

2
η
)(

C2ρ
tµr

1
√
np

+
C6

σmin
σ

√
n log n

p

)∥∥X\
∥∥

2,∞

+ 4η
∥∥X\

∥∥∥∥X\
∥∥

2,∞

(
2C9ρ

tµr
1
√
np

∥∥X\
∥∥+

2C10

σmin
σ

√
n

p

∥∥X\
∥∥)

(iii)
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Here, (i) follows since
∥∥∆t,(l)

∥∥ ≤ ∥∥X\
∥∥ and δ is sufficiently small, (ii) invokes the hypotheses (33e) and

(36d) and recognizes that

∥∥∥Xt,(l)
∥∥∥∥∥∥∆t,(l)

∥∥∥ ≤ 2
∥∥X\

∥∥(2C9µr
1
√
np

∥∥X\
∥∥+

2C10

σmin
σ

√
n log n

np

∥∥X\
∥∥) ≤ σmin

2

holds under the sample size and noise condition, while (iii) is valid as long as 1 − (σmin/3) · η ≤ ρ < 1,
C2 � κC9 and C6 � κC10/

√
log n.

5.7 Proof of Lemma 13
For notational convenience, we define the following two orthonormal matrices

Q := arg min
R∈Or×r

∥∥U0R−U \
∥∥

F
and Q(l) := arg min

R∈Or×r

∥∥U0,(l)R−U \
∥∥

F
.

The problem of finding Ĥt (see (23)) is called the orthogonal Procrustes problem [?]. It is well-known that
the minimizer Ĥt always exists and is given by

Ĥt = sgn
(
Xt>X\

)
.
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Here, the sign matrix sgn(B) is defined as

sgn(B) := UV > (119)

for any matrix B with singular value decomposition B = UΣV >, where the columns of U and V are left
and right singular vectors, respectively.

Before proceeding, we make note of the following perturbation bounds on M0 and M (l) (as defined in
Algorithm 2 and Algorithm 2, respectively):∥∥M0 −M \

∥∥ (i)
≤
∥∥∥∥1

p
PΩ

(
M \

)
−M \

∥∥∥∥+
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(iii)
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np
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σmax +

σ
√
σmin

√
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}∥∥X\
∥∥ (iv)
� σmin, (120)

for some universal constant C > 0. Here, (i) arises from the triangle inequality, (ii) utilizes Lemma 26 and
Lemma 27, (iii) follows from the incoherence condition (56) and (iv) holds under our sample complexity
assumption that n2p� µ2r2n and the noise condition (24). Similarly, we have∥∥∥M (l) −M \

∥∥∥ .

{
µr

√
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np

√
σmax +

σ
√
σmin

√
n

p

}∥∥X\
∥∥� σmin. (121)

Combine Weyl’s inequality, (120) and (121) to obtain∥∥Σ0 −Σ\
∥∥ ≤ ∥∥M0 −M \

∥∥� σmin and
∥∥∥Σ(l) −Σ\

∥∥∥ ≤ ∥∥∥M (l) −M \
∥∥∥� σmin, (122)

which further implies

1

2
σmin ≤ σr

(
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≤ σ1

(
Σ0
)
≤ 2σmax and

1

2
σmin ≤ σr

(
Σ(l)

)
≤ σ1

(
Σ(l)

)
≤ 2σmax. (123)

We start by proving (33a), (33b) and (33c). The key decomposition we need is the following

X0Ĥ0 −X\ = U0
(
Σ0
)1/2 (

Ĥ0 −Q
)

+U0
[(

Σ0
)1/2

Q−Q
(
Σ\
)1/2]

+
(
U0Q−U \

) (
Σ\
)1/2

. (124)

1. For the spectral norm error bound in (33c), the triangle inequality together with (124) yields∥∥∥X0Ĥ0 −X\
∥∥∥ ≤ ∥∥∥(Σ0
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∥∥ ,

where we have also used the fact that ‖U0‖ = 1. Recognizing that
∥∥M0 −M \

∥∥ � σmin (see (120)) and
the assumption σmax/σmin . 1, we can apply Lemma 34, Lemma 33 and Lemma 32 to obtain∥∥Ĥ0 −Q

∥∥ .
1

σmin
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These taken collectively imply the advertised upper bound∥∥X0Ĥ0 −X\
∥∥ .
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where we also utilize the fact that
∥∥ (Σ0

)1/2 ∥∥ ≤ √2σmax (see (123)) and the bounded condition number
assumption, i.e. σmax/σmin . 1. This finishes the proof of (33c).
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2. With regard to the Frobenius norm bound in (33a), one has∥∥∥X0Ĥ0 −X\
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Here (i) arises from (33c) and (ii) holds true since σmax/σmin � 1 and
√
r
√
σmin ≤

∥∥X\
∥∥

F
, thus completing

the proof of (33a).

3. The proof of (33b) follows from similar arguments as used in proving (33c). Combine (124) and the triangle
inequality to reach∥∥∥X0Ĥ0 −X\
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Plugging in the estimates (120), (123), (125a) and (125b) results in∥∥∥X0Ĥ0 −X\
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It remains to study the component-wise error of U0. To this end, it has already been shown in [?, Lemma
14] that
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under our assumptions. These combined with the previous inequality give∥∥∥X0Ĥ0 −X\
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where the last relation is due to the observation that
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4. We now move on to proving (33e). Recall that Q(l) = arg minR∈Or×r
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∥∥Ĥ0,(l) −Q(l)
∥∥+

∥∥∥(X0,(l)Q(l) −X\
)
l,·

∥∥∥
2
. (127)

Note that X\
l,· = M \

l,·U
\
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)−1/2 and, by construction of M (l),
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which further implies that∥∥∥(X0,(l)Q(l) −X\
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In order to control this, we first see that∥∥∥(Σ(l)
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∥∥∥ =
∥∥∥(Σ(l)

)−1/2
[
Q(l)

(
Σ\
)1/2 − (Σ(l)

)1/2
Q(l)

] (
Σ\
)−1/2

∥∥∥
.

1

σmin

∥∥∥Q(l)
(
Σ\
)1/2 − (Σ(l)

)−1/2
Q(l)

∥∥∥
.

1

σ
3/2
min

∥∥∥M (l) −M \
∥∥∥ ,

where the penultimate inequality uses (123) and the last inequality arises from Lemma 33. Additionally,
Lemma 32 gives ∥∥∥U0,(l)Q(l) −U \

∥∥∥ .
1

σmin

∥∥∥M (l) −M \
∥∥∥ .

Plugging the previous two bounds into (128), we reach∥∥∥(X0,(l)Q(l) −X\
)
l,·

∥∥∥
2
.

1

σ
3/2
min

∥∥∥M (l) −M \
∥∥∥ ∥∥M \

∥∥
2,∞ .

{
µr

√
1

np
+

σ

σmin

√
n

p

}∥∥X\
∥∥

2,∞ .

where the last relation follows from
∥∥M \

∥∥
2,∞ =

∥∥X\X\>
∥∥

2,∞ ≤
√
σmax

∥∥X\
∥∥

2,∞ and the estimate (121).

Note that this also implies that
∥∥∥X0,(l)

l,·

∥∥∥
2
≤ 2

∥∥X\
∥∥

2,∞. To see this, one has by the unitary invariance of∥∥∥(·)l,·
∥∥∥

2
, ∥∥∥X0,(l)

l,·

∥∥∥
2

=
∥∥∥X0,(l)

l,· Q(l)
∥∥∥

2
≤
∥∥∥(X0,(l)Q(l) −X\

)
l,·

∥∥∥
2

+
∥∥∥X\

l,·

∥∥∥
2
≤ 2

∥∥X\
∥∥

2,∞ .

Substituting the above bounds back to (127) yields in∥∥∥(X0,(l)Ĥ0,(l) −X\
)
l,·

∥∥∥
2
.
∥∥X\

∥∥
2,∞

∥∥∥Ĥ0,(l) −Q(l)
∥∥∥+

{
µr

√
1

np
+

σ

σmin

√
n

p

}∥∥X\
∥∥

2,∞

.

{
µr

√
1

np
+

σ

σmin

√
n

p

}∥∥X\
∥∥

2,∞ ,

where the second line relies on Lemma 34, the bound (121), and the condition σmax/σmin � 1. This
establishes (33e).

5. Our final step is to justify (33d). Define B := arg minR∈Or×r
∥∥U0,(l)R−U0

∥∥
F
. From the definition of

R0,(l) (cf. (35)), one has ∥∥∥X0Ĥ0 −X0,(l)R0,(l)
∥∥∥

F
≤
∥∥∥X0,(l)B −X0

∥∥∥
F
.

Recognizing that

X0,(l)B −X0 = U0,(l)
[(

Σ(l)
)1/2

B −B
(
Σ0
)1/2]

+
(
U0,(l)B −U0

) (
Σ0
)1/2

,

we can use the triangle inequality to bound∥∥∥X0,(l)B −X0
∥∥∥

F
≤
∥∥∥(Σ(l)

)1/2
B −B

(
Σ0
)1/2∥∥∥

F
+
∥∥∥U0,(l)B −U0

∥∥∥
F

∥∥∥(Σ0
)1/2∥∥∥ .

In view of Lemma 33 and the bounds (120) and (121), one has∥∥∥(Σ(l)
)−1/2

B −BΣ1/2
∥∥∥

F
.

1
√
σmin

∥∥∥(M0 −M (l)
)
U0,(l)

∥∥∥
F
.
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From Davis-Kahan’s sinΘ theorem [?] we see that∥∥∥U0,(l)B −U0
∥∥∥

F
.

1

σmin

∥∥∥(M0 −M (l)
)
U0,(l)

∥∥∥
F
.

These estimates taken together with (123) give∥∥∥X0,(l)B −X0
∥∥∥

F
.

1
√
σmin

∥∥∥(M0 −M (l)
)
U0,(l)

∥∥∥
F
.

It then boils down to controlling
∥∥(M0 −M (l)

)
U0,(l)

∥∥
F
. Quantities of this type have showed up multiple

times already, and hence we omit the proof details for conciseness (see Appendix 5.5). With probability
at least 1−O

(
n−10

)
,∥∥∥(M0 −M (l)

)
U0,(l)

∥∥∥
F
.

{
µr

√
log n

np
σmax + σ

√
n log n

p

}∥∥∥U0,(l)
∥∥∥

2,∞
.

If one further has ∥∥∥U0,(l)
∥∥∥

2,∞
.
∥∥U \

∥∥
2,∞ .

1
√
σmin

∥∥X\
∥∥

2,∞ , (129)

then taking the previous bounds collectively establishes the desired bound∥∥∥X0Ĥ0 −X0,(l)R0,(l)
∥∥∥

F
.

{
µr

√
log n

np
+

σ

σmin

√
n log n

p

}∥∥X\
∥∥

2,∞ .

Proof of Claim (129). Denote byM (l),zero the matrix derived by zeroing out the lth row/column ofM (l),
and U (l),zero ∈ Rn×r containing the leading r eigenvectors of M (l),zero. On the one hand, [?, Lemma 4
and Lemma 14] demonstrate that

max
1≤l≤n

‖U (l),zero‖2,∞ . ‖U \‖2,∞.

On the other hand, by the Davis-Kahan sin Θ theorem [?] we obtain∥∥∥U0,(l)sgn
(
U0,(l)>U (l),zero

)
−U (l),zero

∥∥∥
F
.

1

σmin

∥∥∥(M (l) −M (l),zero
)
U (l),zero

∥∥∥
F
, (130)

where sgn(A) denotes the sign matrix of A. For any j 6= l, one has(
M (l) −M (l),zero

)
j,·
U (l),zero =

(
M (l) −M (l),zero

)
j,l
U

(l),zero
l,· = 01×r,

since the lth row of U (l),zero
l,· is identically zero by construction. In addition,∥∥∥∥(M (l) −M (l),zero

)
l,·
U (l),zero

∥∥∥∥
2

=
∥∥∥M \

l,·U
(l),zero

∥∥∥
2
≤
∥∥M \

∥∥
2,∞ ≤ σmax

∥∥U \
∥∥

2,∞ .

As a consequence, one has∥∥∥(M (l) −M (l),zero
)
U (l),zero

∥∥∥
F

=

∥∥∥∥(M (l) −M (l),zero
)
l,·
U (l),zero

∥∥∥∥
2

≤ σmax

∥∥U \
∥∥

2,∞ ,

which combined with (130) and the assumption σmax/σmin � 1 yields∥∥∥U0,(l)sgn
(
U0,(l)>U (l),zero

)
−U (l),zero

∥∥∥
F
.
∥∥U \

∥∥
2,∞

The claim (129) then follows by combining the above estimates:∥∥∥U0,(l)
∥∥∥

2,∞
=
∥∥∥U0,(l)sgn

(
U0,(l)>U (l),zero

)∥∥∥
2,∞

≤ ‖U (l),zero‖2,∞ +
∥∥∥U0,(l)sgn

(
U0,(l)>U (l),zero

)
−U (l),zero

∥∥∥
F
. ‖U \‖2,∞,

where we have utilized the unitary invariance of ‖·‖2,∞.
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6 Technical lemmas

6.1 Technical lemmas for phase retrieval
6.1.1 Matrix concentration inequalities

Lemma 18. Suppose that aj
i.i.d.∼ N (0, In) for every 1 ≤ j ≤ m. Fix any small constant δ > 0. With

probability at least 1− C2e
−c2m, one has ∥∥∥∥∥∥ 1

m

m∑
j=1

aja
>
j − In

∥∥∥∥∥∥ ≤ δ,
as long as m ≥ c0n for some sufficiently large constant c0 > 0. Here, C2, c2 > 0 are some universal constants.

Proof. This is an immediate consequence of [?, Corollary 5.35].

Lemma 19. Suppose that aj
i.i.d.∼ N (0, In), for every 1 ≤ j ≤ m. Fix any small constant δ > 0. With

probability at least 1−O(n−10), we have∥∥∥∥∥∥ 1

m

m∑
j=1

(
a>j x

\
)2
aja

>
j −

(
‖x\‖22In + 2x\x\>

)∥∥∥∥∥∥ ≤ δ‖x\‖22,
provided that m ≥ c0n log n for some sufficiently large constant c0 > 0.

Proof. This is adapted from [?, Lemma 7.4].

Lemma 20. Suppose that aj
i.i.d.∼ N (0, In), for every 1 ≤ j ≤ m. Fix any small constant δ > 0 and any

constant C > 0. Suppose m ≥ c0n for some sufficiently large constant c0 > 0. Then with probability at least
1− C2e

−c2m, ∥∥∥∥∥∥ 1

m

m∑
j=1

(
a>j x

)2
1{|a>j x|≤C} aja

>
j −

(
β1xx

> + β2‖x‖22In
)∥∥∥∥∥∥ ≤ δ‖x‖22, ∀x ∈ Rn

holds for some absolute constants c2, C2 > 0, where

β1 := E
[
ξ4 1{|ξ|≤C}

]
− E

[
ξ2 1|ξ|≤C

]
and β2 = E

[
ξ2 1|ξ|≤C

]
with ξ being a standard Gaussian random variable.

Proof. This is supplied in [?, supplementary material].

6.1.2 Matrix perturbation bounds

Lemma 21. Let λ1(A), u be the leading eigenvalue and eigenvector of a symmetric matrix A, respectively,
and λ1(Ã), ũ be the leading eigenvalue and eigenvector of a symmetric matrix Ã, respectively. Suppose that
λ1(A), λ1(Ã), ‖A‖, ‖Ã‖ ∈ [C1, C2] for some C1, C2 > 0. Then,∥∥∥∥√λ1(A) u−

√
λ1(Ã) ũ

∥∥∥∥
2

≤
∥∥(A− Ã)u∥∥

2

2
√
C1

+

(√
C2 +

C2√
C1

)
‖u− ũ‖2 .

Proof. Observe that

∥∥∥∥√λ1(A) u−
√
λ1(Ã) ũ

∥∥∥∥
2

≤
∥∥∥∥√λ1(A) u−

√
λ1(Ã) u

∥∥∥∥
2

+

∥∥∥∥√λ1(Ã) u−
√
λ1(Ã) ũ

∥∥∥∥
2
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≤
∣∣∣∣√λ1 (A)−

√
λ1(Ã)

∣∣∣∣+

√
λ1(Ã) ‖u− ũ‖2 , (131)

where the last inequality follows since ‖u‖2 = 1. Using the identity
√
a−
√
b = (a− b)/(

√
a+
√
b), we have

∣∣∣∣√λ1 (A)−
√
λ1(Ã)

∣∣∣∣ =

∣∣∣λ1

(
A
)
− λ1(Ã)

∣∣∣∣∣∣∣√λ1 (A) +

√
λ1(Ã)

∣∣∣∣ ≤
∣∣∣λ1

(
A
)
− λ1(Ã)

∣∣∣
2
√
C1

,

where the last inequality comes from our assumptions on λ1(A) and λ1(Ã). This combined with (131) yields

∥∥∥∥√λ1(A) u−
√
λ1(Ã) ũ

∥∥∥∥
2

≤

∣∣∣λ1

(
A
)
− λ1(Ã)

∣∣∣
2
√
C1

+
√
C2 ‖u− ũ‖2 . (132)

To control
∣∣∣λ1

(
A
)
− λ1(Ã)

∣∣∣, use the relationship between the eigenvalue and the eigenvector to obtain∣∣∣λ1(A)− λ1(Ã)
∣∣∣ =

∣∣∣u>Au− ũ>Ãũ∣∣∣
≤
∣∣∣u>(A− Ã)u∣∣∣+

∣∣∣u>Ãu− ũ>Ãu∣∣∣+
∣∣∣ũ>Ãu− ũ>Ãũ∣∣∣

≤
∥∥(A− Ã)u∥∥

2
+ 2 ‖u− ũ‖2

∥∥Ã∥∥,
which together with (132) gives∥∥∥∥√λ1(A) u−

√
λ1(Ã) ũ

∥∥∥∥
2

≤
∥∥(A− Ã)u∥∥

2
+ 2 ‖u− ũ‖2

∥∥Ã∥∥
2
√
C1

+
√
C2 ‖u− ũ‖2

≤
∥∥(A− Ã)u∥∥

2

2
√
C1

+

(
C2√
C1

+
√
C2

)
‖u− ũ‖2

as claimed.

6.2 Technical lemmas for matrix completion
6.2.1 Orthogonal Procrustes problem

The orthogonal Procrustes problem is a matrix approximation problem which seeks an orthogonal matrix R
to best “align” two matrices A and B. Specifically, for A,B ∈ Rn×r, define R̂ to be the minimizer of

minimizeR∈Or×r ‖AR−B‖F . (133)

The first lemma is concerned with the characterization of the minimizer R̂ of (133).

Lemma 22. For A,B ∈ Rn×r, R̂ is the minimizer of (133) if and only if R̂>A>B is symmetric and
positive semidefinite.

Proof. This is an immediate consequence of [?, Theorem 2].

Let A>B = UΣV > be the singular value decomposition of A>B ∈ Rr×r. It is easy to check that
R̂ := UV > satisfies the conditions that R̂>A>B is both symmetric and positive semidefinite. In view of
Lemma 22, R̂ = UV > is the minimizer of (133). In the special case when C := A>B is invertible, R̂ enjoys
the following equivalent form:

R̂ = Ĥ (C) := C
(
C>C

)−1/2
, (134)

where Ĥ (·) is an Rr×r-valued function on Rr×r. This motivates us to look at the perturbation bounds for
the matrix-valued function Ĥ (·), which is formulated in the following lemma.
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Lemma 23. Let C ∈ Rr×r be a nonsingular matrix. Then for any matrix E ∈ Rr×r with ‖E‖ ≤ σmin (C)
and any unitarily invariant norm |||·|||, one has∣∣∣∣∣∣∣∣∣Ĥ (C +E)− Ĥ (C)

∣∣∣∣∣∣∣∣∣ ≤ 2

σr−1 (C) + σr (C)
|||E|||,

where Ĥ (·) is defined above.

Proof. This is an immediate consequence of [?, Theorem 2.3].

With Lemma 23 in place, we are ready to present the following bounds on two matrices after “aligning”
them with X\.

Lemma 24. Instate the notation in Section 3.2. Suppose X1,X2 ∈ Rn×r are two matrices such that∥∥X1 −X\
∥∥∥∥X\

∥∥ ≤ σmin/2, (135a)

‖X1 −X2‖
∥∥X\

∥∥ ≤ σmin/4. (135b)

Denote

R1 := argmin
R∈Or×r

∥∥X1R−X\
∥∥

F
and R2 := argmin

R∈Or×r

∥∥X2R−X\
∥∥

F
.

Then the following two inequalities hold true:

‖X1R1 −X2R2‖ ≤ 5κ ‖X1 −X2‖ and ‖X1R1 −X2R2‖F ≤ 5κ ‖X1 −X2‖F .

Proof. Before proving the claims, we first gather some immediate consequences of the assumptions (135).
Denote C = X>1 X

\ and E = (X2 −X1)
>
X\. It is easily seen that C is invertible since

∥∥C −X\>X\
∥∥ ≤ ∥∥X1 −X\

∥∥∥∥X\
∥∥ (i)
≤ σmin/2

(ii)
=⇒ σr (C) ≥ σmin/2, (136)

where (i) follows from the assumption (135a) and (ii) is a direct application of Weyl’s inequality. In addition,
C +E = X>2 X

\ is also invertible since

‖E‖ ≤ ‖X1 −X2‖
∥∥X\

∥∥ (i)
≤ σmin/4

(ii)
< σr (C) ,

where (i) arises from the assumption (135b) and (ii) holds because of (136). When both C and C +E are
invertible, the orthonormal matrices R1 and R2 admit closed-form expressions as follows

R1 = C
(
C>C

)−1/2
and R2 = (C +E)

[
(C +E)

>
(C +E)

]−1/2

.

Moreover, we have the following bound on ‖X1‖:

‖X1‖
(i)
≤
∥∥X1 −X\

∥∥+
∥∥X\

∥∥ (ii)
≤ σmin

2 ‖X\‖
+
∥∥X\

∥∥ ≤ σmax

2 ‖X\‖
+
∥∥X\

∥∥ (iii)
≤ 2

∥∥X\
∥∥ , (137)

where (i) is the triangle inequality, (ii) uses the assumption (135a) and (iii) arises from the fact that
∥∥X\

∥∥ =√
σmax.
With these in place, we turn to establishing the claimed bounds. We will focus on the upper bound

on ‖X1R1 −X2R2‖F, as the bound on ‖X1R1 −X2R2‖ can be easily obtained using the same argument.
Simple algebra reveals that

‖X1R1 −X2R2‖F = ‖(X1 −X2)R2 +X1 (R1 −R2)‖F
≤ ‖X1 −X2‖F + ‖X1‖ ‖R1 −R2‖F
≤ ‖X1 −X2‖F + 2

∥∥X\
∥∥ ‖R1 −R2‖F , (138)
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where the first inequality uses the fact that ‖R2‖ = 1 and the last inequality comes from (137). An
application of Lemma 23 leads us to conclude that

‖R1 −R2‖F ≤
2

σr (C) + σr−1 (C)
‖E‖F

≤ 2

σmin

∥∥∥(X2 −X1)
>
X\
∥∥∥

F
(139)

≤ 2

σmin
‖X2 −X1‖F

∥∥X\
∥∥ , (140)

where (139) utilizes (136). Combine (138) and (140) to reach

‖X1R1 −X2R2‖F ≤ ‖X1 −X2‖F +
4

σmin
‖X2 −X1‖F

∥∥X\
∥∥2

≤ (1 + 4κ) ‖X1 −X2‖F ,

which finishes the proof by noting that κ ≥ 1.

6.2.2 Matrix concentration inequalities

This section collects various measure concentration results regarding the Bernoulli random variables {δj,k}1≤j,k≤n,
which is ubiquitous in the analysis for matrix completion.

Lemma 25. Fix any small constant δ > 0, and suppose that m � δ−2µnr log n. Then with probability
exceeding 1−O

(
n−10

)
, one has

(1− δ)‖B‖F ≤
1
√
p
‖PΩ(B)‖F ≤ (1 + δ)‖B‖F

holds simultaneously for all B ∈ Rn×n lying within the tangent space of M \.

Proof. This result has been established in [?, Section 4.2] for asymmetric sampling patterns (where each
(i, j), i 6= j is included in Ω independently). It is straightforward to extend the proof and the result to
symmetric sampling patterns (where each (i, j), i ≥ j is included in Ω independently). We omit the proof
for conciseness.

Lemma 26. Fix a matrix M ∈ Rn×n. Suppose n2p ≥ c0n log n for some sufficiently large constant c0 > 0.
With probability at least 1−O

(
n−10

)
, one has∥∥∥∥1

p
PΩ (M)−M

∥∥∥∥ ≤ C√n

p
‖M‖∞ ,

where C > 0 is some absolute constant.

Proof. See [?, Lemma 3.2]. Similar to Lemma 25, the result therein was provided for the asymmetric sampling
patterns but can be easily extended to the symmetric case.

Lemma 27. Recall from Section 3.2 that E ∈ Rn×n is the symmetric noise matrix. Suppose the sample size
obeys n2p ≥ c0n log2 n for some sufficiently large constant c0 > 0. With probability at least 1 − O

(
n−10

)
,

one has ∥∥∥∥1

p
PΩ (E)

∥∥∥∥ ≤ Cσ√n

p
,

where C > 0 is some universal constant.

Proof. See [?, Lemma 11].

49



Lemma 28. Fix some matrix A ∈ Rn×r with n ≥ 2r and some 1 ≤ l ≤ n. Suppose {δl,j}1≤j≤n are
independent Bernoulli random variables with means {pj}1≤j≤n no more than p. Define

Gl (A) :=
[
δl,1A

>
1,·, δl,2A

>
2,·, · · · , δl,nA>n,·

]
∈ Rr×n.

Then one has

Median [‖Gl (A)‖] ≤

√
p ‖A‖2 +

√
2p ‖A‖22,∞ ‖A‖

2
log (4r) +

2 ‖A‖22,∞
3

log (4r)

and for any constant C ≥ 3, with probability exceeding 1− n−(1.5C−1)∥∥∥∥∥∥
n∑
j=1

(δl,j − p)A>j,·Aj,·

∥∥∥∥∥∥ ≤ C
(√

p ‖A‖22,∞ ‖A‖
2

log n+ ‖A‖22,∞ log n

)
,

and

‖Gl (A)‖ ≤

√
p ‖A‖2 + C

(√
p ‖A‖22,∞ ‖A‖

2
log n+ ‖A‖22,∞ log n

)
.

Proof. By the definition of Gl (A) and the triangle inequality, one has

‖Gl (A)‖2 =
∥∥∥Gl (A)Gl (A)

>
∥∥∥ =

∥∥∥∥∥∥
n∑
j=1

δl,jA
>
j,·Aj,·

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
n∑
j=1

(δl,j − pj)A>j,·Aj,·

∥∥∥∥∥∥+ p ‖A‖2 .

Therefore, it suffices to control the first term. It can be seen that
{

(δl,j − pj)A>j,·Aj,·
}

1≤j≤n are i.i.d.
zero-mean random matrices. Letting

L := max
1≤j≤n

∥∥(δl,j − pj)A>j,·Aj,·
∥∥ ≤ ‖A‖22,∞

and V :=

∥∥∥∥∥∥
n∑
j=1

E
[
(δl,j − pj)2

A>j,·Aj,·A
>
j,·Aj,·

]∥∥∥∥∥∥ ≤ E
[
(δl,j − pj)2

]
‖A‖22,∞

∥∥∥∥∥∥
n∑
j=1

A>j,·Aj,·

∥∥∥∥∥∥ ≤ p ‖A‖22,∞ ‖A‖2
and invoking matrix Bernstein’s inequality [?, Theorem 6.1.1], one has for all t ≥ 0,

P


∥∥∥∥∥∥
n∑
j=1

(δl,j − pj)A>j,·Aj,·

∥∥∥∥∥∥ ≥ t
 ≤ 2r · exp

(
−t2/2

p ‖A‖22,∞ ‖A‖
2

+ ‖A‖22,∞ · t/3

)
. (141)

We can thus find an upper bound on Median
[∥∥∥∑n

j=1 (δl,j − pj)A>j,·Aj,·

∥∥∥] by finding a value t that ensures
the right-hand side of (141) is smaller than 1/2. Using this strategy and some simple calculations, we get

Median

∥∥∥∥∥∥
n∑
j=1

(δl,j − pj)A>j,·Aj,·

∥∥∥∥∥∥
 ≤√2p ‖A‖22,∞ ‖A‖

2
log (4r) +

2 ‖A‖22,∞
3

log (4r)

and for any C ≥ 3,∥∥∥∥∥∥
n∑
j=1

(δl,j − pj)A>j,·Aj,·

∥∥∥∥∥∥ ≤ C
(√

p ‖A‖22,∞ ‖A‖
2

log n+ ‖A‖22,∞ log n

)

holds with probability at least 1− n−(1.5C−1). As a consequence, we have

Median [‖Gl (A)‖] ≤

√
p ‖A‖2 +

√
2p ‖A‖22,∞ ‖A‖

2
log (4r) +

2 ‖A‖22,∞
3

log (4r),
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and with probability exceeding 1− n−(1.5C−1),

‖Gl (A)‖2 ≤ p ‖A‖2 + C

(√
p ‖A‖22,∞ ‖A‖

2
log n+ ‖A‖22,∞ log n

)
.

This completes the proof.

Lemma 29. Let {δl,j}1≤l≤j≤n be i.i.d. Bernoulli random variables with mean p and δl,j = δj,l. For any
∆ ∈ Rn×r, define

Gl (∆) :=
[
δl,1∆

>
1,·, δl,2∆

>
2,·, · · · , δl,n∆>n,·

]
∈ Rr×n.

Suppose the sample size obeys n2p � κµrn log2 n. Then for any k > 0 and α > 0 large enough, with
probability at least 1− c1e−αCnr logn/2,

n∑
l=1

1{‖Gl(∆)‖≥4
√
pψ+2

√
krξ} ≤

2αn log n

k

holds simultaneously for all ∆ ∈ Rn×r obeying

‖∆‖2,∞ ≤ C5ρ
tµr

√
log n

np

∥∥X\
∥∥

2,∞ + C8σ

√
n log n

p

∥∥X\
∥∥

2,∞ := ξ

and ‖∆‖ ≤ C9ρ
tµr

1
√
np

∥∥X\
∥∥+ C10σ

√
n

p

∥∥X\
∥∥ := ψ,

where c1, C5, C8, C9, C10 > 0 are some absolute constants.

Proof. For simplicity of presentation, we will prove the claim for the asymmetric case where {δl,j}1≤l,j≤n
are independent. The results immediately carry over to the symmetric case as claimed in this lemma. To
see this, note that we can always divide Gl(∆) into

Gl(∆) = Gupper
l (∆) +Glower

l (∆),

where all nonzero components of Gupper
l (∆) come from the upper triangular part (those blocks with l ≤ j

), while all nonzero components of Glower
l (∆) are from the lower triangular part (those blocks with l > j).

We can then look at {Gupper
l (∆) | 1 ≤ l ≤ n} and {Gupper

l (∆) | 1 ≤ l ≤ n} separately using the argument
we develop for the asymmetric case. From now on, we assume that {δl,j}1≤l,j≤n are independent.

Suppose for the moment that ∆ is statistically independent of {δl,j}. Clearly, for any ∆, ∆̃ ∈ Rn×r,∣∣∣∥∥Gl (∆)
∥∥− ∥∥Gl(∆̃)

∥∥∣∣∣ ≤ ∥∥∥Gl (∆)−Gl

(
∆̃
)∥∥∥ ≤ ∥∥∥Gl (∆)−Gl

(
∆̃
)∥∥∥

F

≤

√√√√ n∑
j=1

∥∥∥∆j,· − ∆̃j,·

∥∥∥2

2

:= d
(
∆, ∆̃

)
,

which implies that ‖Gl (∆)‖ is 1-Lipschitz with respect to the metric d (·, ·). Moreover,

max
1≤j≤n

‖δl,j∆j,·‖2 ≤ ‖∆‖2,∞ ≤ ξ

according to our assumption. Hence, Talagrand’s inequality [?, Proposition 1] reveals the existence of some
absolute constants C, c > 0 such that for all λ > 0

P {‖Gl (∆)‖ −Median [‖Gl (∆)‖] ≥ λξ} ≤ C exp
(
−cλ2

)
. (142)

We then proceed to control Median [‖Gl (∆)‖]. A direct application of Lemma 28 yields

Median [‖Gl (∆)‖] ≤
√

2pψ2 +
√
p log (4r)ξψ +

2ξ2

3
log (4r) ≤ 2

√
pψ,
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where the last relation holds since pψ2 � ξ2 log r, which follows by combining the definitions of ψ and ξ, the
sample size condition np � κµr log2 n, and the incoherence condition (56). Thus, substitution into (142)
and taking λ =

√
kr give

P
{
‖Gl (∆)‖ ≥ 2

√
pψ +

√
krξ
}
≤ C exp (−ckr) (143)

for any k ≥ 0. Furthermore, invoking [?, Corollary A.1.14] and using the bound (143), one has

P

(
n∑
l=1

1{‖Gl(∆)‖≥2
√
pψ+
√
krξ} ≥ tnC exp (−ckr)

)
≤ 2 exp

(
− t log t

2
nC exp (−ckr)

)
for any t ≥ 6. Choose t = α log n/ [kC exp (−ckr)] ≥ 6 to obtain

P

(
n∑
l=1

1{‖Gl(∆)‖≥2
√
pψ+
√
krξ} ≥

αn log n

k

)
≤ 2 exp

(
−αC

2
nr log n

)
. (144)

So far we have demonstrated that for any fixed ∆ obeying our assumptions,
∑n
l=1 1{‖Gl(∆)‖≥2

√
pψ+
√
krξ}

is well controlled with exponentially high probability. In order to extend the results to all feasible ∆, we
resort to the standard ε-net argument. Clearly, due to the homogeneity property of ‖Gl (∆)‖, it suffices to
restrict attention to the following set:

S = {∆ | min {ξ, ψ} ≤ ‖∆‖ ≤ ψ} , (145)

where ψ/ξ . ‖X\‖/‖X\‖2,∞ .
√
n. We then proceed with the following steps.

1. Introduce the auxiliary function

χl(∆) =


1, if ‖Gl (∆)‖ ≥ 4

√
pψ + 2

√
krξ,

‖Gl(∆)‖−2
√
pψ−
√
krξ

2
√
pψ+
√
krξ

, if ‖Gl (∆)‖ ∈ [2
√
pψ +

√
krξ, 4

√
pψ + 2

√
krξ],

0, else.

Clearly, this function is sandwiched between two indicator functions

1{‖Gl(∆)‖≥4
√
pψ+2

√
krξ} ≤ χl(∆) ≤ 1{‖Gl(∆)‖≥2

√
pψ+
√
krξ} .

Note that χl is more convenient to work with due to continuity.

2. Consider an ε-net Nε [?, Section 2.3.1] of the set S as defined in (145). For any ε = 1/nO(1), one can find
such a net with cardinality log |Nε| . nr log n. Apply the union bound and (144) to yield

P

(
n∑
l=1

χl(∆) ≥ αn log n

k
, ∀∆ ∈ Nε

)
≤ P

(
n∑
l=1

1{‖Gl(∆)‖≥2
√
pψ+
√
krξ} ≥

αn log n

k
, ∀∆ ∈ Nε

)

≤ 2|Nε| exp

(
−αC

2
nr log n

)
≤ 2 exp

(
−αC

4
nr log n

)
,

as long as α is chosen to be sufficiently large.

3. One can then use the continuity argument to extend the bound to all ∆ outside the ε-net, i.e. with
exponentially high probability,

n∑
l=1

χl(∆) ≤ 2αn log n

k
, ∀∆ ∈ S

=⇒
n∑
l=1

1{‖Gl(∆)‖≥4
√
pψ+2

√
krξ} ≤

n∑
l=1

χl(∆) ≤ 2αn log n

k
, ∀∆ ∈ S

This is fairly standard (see, e.g. [?, Section 2.3.1]) and is thus omitted here.
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We have thus concluded the proof.

Lemma 30. Suppose the sample size obeys n2p ≥ Cκµrn log n for some sufficiently large constant C > 0.
Then with probability at least 1−O

(
n−10

)
,∥∥∥∥1

p
PΩ

(
XX> −X\X\>)∥∥∥∥ ≤ 2nε2

∥∥X\
∥∥2

2,∞ + 4ε
√
n log n

∥∥X\
∥∥

2,∞

∥∥X\
∥∥

holds simultaneously for all X ∈ Rn×r satisfying∥∥X −X\
∥∥

2,∞ ≤ ε
∥∥X\

∥∥
2,∞ , (146)

where ε > 0 is any fixed constant.

Proof. To simplify the notations hereafter, we denote ∆ := X −X\. With this notation in place, one can
decompose

XX> −X\X\> = ∆X\> +X\∆> + ∆∆>,

which together with the triangle inequality implies that∥∥∥∥1

p
PΩ

(
XX> −X\X\>)∥∥∥∥ ≤ ∥∥∥∥1

p
PΩ

(
∆X\>)∥∥∥∥+

∥∥∥∥1

p
PΩ

(
X\∆>

)∥∥∥∥+

∥∥∥∥1

p
PΩ

(
∆∆>

)∥∥∥∥
=

∥∥∥∥1

p
PΩ

(
∆∆>

)∥∥∥∥︸ ︷︷ ︸
:=α1

+2

∥∥∥∥1

p
PΩ

(
∆X\>)∥∥∥∥︸ ︷︷ ︸

:=α2

. (147)

In the sequel, we bound α1 and α2 separately.

1. Recall from [?, Theorem 2.5] the elementary inequality that

‖C‖ ≤
∥∥|C|∥∥, (148)

where |C| := [|ci,j |]1≤i,j≤n for any matrix C = [ci,j ]1≤i,j≤n. In addition, for any matrix D := [di,j ]1≤i,j≤n
such that |di,j | ≥ |ci,j | for all i and j, one has

∥∥|C|∥∥ ≤ ∥∥|D|∥∥. Therefore
α1 ≤

∥∥∥∥1

p
PΩ

(∣∣∆∆>
∣∣)∥∥∥∥ ≤ ‖∆‖22,∞ ∥∥∥∥1

p
PΩ

(
11>

)∥∥∥∥ .
Lemma 26 then tells us that with probability at least 1−O(n−10),∥∥∥∥1

p
PΩ

(
11>

)
− 11>

∥∥∥∥ ≤ C√n

p
(149)

for some universal constant C > 0, as long as p � log n/n. This together with the triangle inequality
yields ∥∥∥∥1

p
PΩ

(
11>

)∥∥∥∥ ≤ ∥∥∥∥1

p
PΩ

(
11>

)
− 11>

∥∥∥∥+
∥∥11>

∥∥ ≤ C√n

p
+ n ≤ 2n, (150)

provided that p� 1/n. Putting together the previous bounds, we arrive at

α1 ≤ 2n ‖∆‖22,∞ . (151)

2. Regarding the second term α2, apply the elementary inequality (148) once again to get∥∥PΩ

(
∆X\>)∥∥ ≤ ∥∥PΩ

(∣∣∆X\>∣∣)∥∥ ,
which motivates us to look at

∥∥PΩ

(∣∣∆X\>
∣∣)∥∥ instead. A key step of this part is to take advantage of

the `2,∞ norm constraint of PΩ

(∣∣∆X\>
∣∣). Specifically, we claim for the moment that with probability

exceeding 1−O(n−10), ∥∥PΩ

(∣∣∆X\>∣∣)∥∥2

2,∞ ≤ 2pσmax ‖∆‖22,∞ := θ (152)
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holds under our sample size condition. In addition, we also have the following trivial `∞ norm bound∥∥PΩ

(∣∣∆X\>∣∣)∥∥
∞ ≤ ‖∆‖2,∞

∥∥X\
∥∥

2,∞ := γ. (153)

In what follows, for simplicity of presentation, we will denote

A := PΩ

(∣∣∆X\>∣∣) . (154)

(a) To facilitate the analysis of ‖A‖, we first introduce k0 + 1 = 1
2 log (κµr) auxiliary matrices2 Bs ∈ Rn×n

that satisfy

‖A‖ ≤ ‖Bk0‖+

k0−1∑
s=0

‖Bs‖ . (155)

To be precise, each Bs is defined such that

[Bs]j,k =

{
1
2s γ, if Aj,k ∈ ( 1

2s+1 γ,
1
2s γ],

0, else,
for 0 ≤ s ≤ k0 − 1 and

[Bk0 ]j,k =

{
1

2k0
γ, if Aj,k ≤ 1

2k0
γ,

0, else,

which clearly satisfy (155); in words, Bs is constructed by rounding up those entries of A within a
prescribed magnitude interval. Thus, it suffices to bound ‖Bs‖ for every s. To this end, we start with
s = k0 and use the definition of Bk0 to get

‖Bk0‖
(i)
≤ ‖Bk0‖∞

√
(2np)

2
(ii)
≤ 4np

1
√
κµr
‖∆‖2,∞

∥∥X\
∥∥

2,∞

(iii)
≤ 4
√
np ‖∆‖2,∞

∥∥X\
∥∥ ,

where (i) arises from Lemma 31, with 2np being a crude upper bound on the number of nonzero entries
in each row and each column. This can be derived by applying the standard Chernoff bound on Ω. The
second inequality (ii) relies on the definitions of γ and k0. The last one (iii) follows from the incoherence
condition (56). Besides, for any 0 ≤ s ≤ k0 − 1, by construction one has

‖Bs‖22,∞ ≤ 4θ = 8pσmax ‖∆‖22,∞ and ‖Bs‖∞ =
1

2s
γ,

where θ is as defined in (152). Here, we have used the fact that the magnitude of each entry of Bs is at
most 2 times that of A. An immediate implication is that there are at most

‖Bs‖22,∞
‖Bs‖2∞

≤
8pσmax ‖∆‖22,∞(

1
2s γ
)2 := kr

nonzero entries in each row of Bs and at most

kc = 2np

nonzero entries in each column of Bs, where kc is derived from the standard Chernoff bound on Ω.
Utilizing Lemma 31 once more, we discover that

‖Bs‖ ≤ ‖Bs‖∞
√
krkc =

1

2s
γ
√
krkc =

√
16np2σmax ‖∆‖22,∞ = 4

√
np ‖∆‖2,∞

∥∥X\
∥∥

for each 0 ≤ s ≤ k0 − 1. Combining all, we arrive at

‖A‖ ≤
k0−1∑
s=0

‖Bs‖+ ‖Bk0‖ ≤ (k0 + 1) 4
√
np ‖∆‖2,∞

∥∥X\
∥∥

2For simplicity, we assume 1
2
log (κµr) is an integer. The argument here can be easily adapted to the case when 1

2
log (κµr)

is not an integer.
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≤ 2
√
np log (κµr) ‖∆‖2,∞

∥∥X\
∥∥

≤ 2
√
np log n ‖∆‖2,∞

∥∥X\
∥∥ ,

where the last relation holds under the condition n ≥ κµr. This further gives

α2 ≤
1

p
‖A‖ ≤ 2

√
n log n ‖∆‖2,∞

∥∥X\
∥∥ . (156)

(b) In order to finish the proof of this part, we need to justify the claim (152). Observe that∥∥∥[PΩ

(∣∣∆X\>∣∣)]
l,·

∥∥∥2

2
=
∑n

j=1

(
∆l,·X

\>
j,· δl,j

)2

= ∆l,·

(∑n

j=1
δl,jX

\>
j,·X

\
j,·

)
∆>l,·

≤ ‖∆‖22,∞
∥∥∥∑n

j=1
δl,jX

\>
j,·X

\
j,·

∥∥∥ (157)

for every 1 ≤ l ≤ n, where δl,j indicates whether the entry with the index (l, j) is observed or not.
Invoke Lemma 28 to yield∥∥∥∑n

j=1
δl,jX

\>
j,·X

\
j,·

∥∥∥ =
∥∥∥[δl,1X\>

1,· , δl,2X
\>
2,· , · · · , δl,nX\>

n,·

]∥∥∥2

≤ pσmax + C

(√
p ‖X\‖22,∞ ‖X\‖2 log n+

∥∥X\
∥∥2

2,∞ log n

)
≤

(
p+ C

√
pκµr log n

n
+ C

κµr log n

n

)
σmax

≤ 2pσmax, (158)

with high probability, as soon as np� κµr log n. Combining (157) and (158) yields∥∥∥[PΩ

(∣∣∆X\>∣∣)]
l,·

∥∥∥2

2
≤ 2pσmax ‖∆‖22,∞ , 1 ≤ l ≤ n

as claimed in (152).

3. Taken together, the preceding bounds (147), (151) and (156) yield∥∥∥∥1

p
PΩ

(
XX> −X\X\>)∥∥∥∥ ≤ α1 + 2α2 ≤ 2n ‖∆‖22,∞ + 4

√
n log n ‖∆‖2,∞

∥∥X\
∥∥ .

The proof is completed by substituting the assumption ‖∆‖2,∞ ≤ ε
∥∥X\

∥∥
2,∞ .

In the end of this subsection, we record a useful lemma to bound the spectral norm of a sparse Bernoulli
matrix.

Lemma 31. Let A ∈ {0, 1}n1×n2 be a binary matrix, and suppose that there are at most kr and kc nonzero
entries in each row and column of A, respectively. Then one has ‖A‖ ≤

√
kckr.

Proof. This immediately follows from the elementary inequality ‖A‖2 ≤ ‖A‖1→1‖A‖∞→∞ (see [?, equa-
tion (1.11)]), where ‖A‖1→1 and ‖A‖∞→∞ are the induced 1-norm (or maximum absolute column sum
norm) and the induced ∞-norm (or maximum absolute row sum norm), respectively.

6.2.3 Matrix perturbation bounds

Lemma 32. Let M ∈ Rn×n be a symmetric matrix with the top-r eigendecomposition UΣU>. Assume∥∥M −M \
∥∥ ≤ σmin/2 and denote

Q̂ := argmin
R∈Or×r

∥∥UR−U \
∥∥

F
.

Then there is some numerical constant c3 > 0 such that∥∥UQ̂−U \
∥∥ ≤ c3

σmin

∥∥M −M \
∥∥ .
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Proof. Define Q = U>U \. The triangle inequality gives∥∥UQ̂−U \
∥∥ ≤ ∥∥U(Q̂−Q)∥∥+

∥∥UQ−U \
∥∥ ≤ ∥∥Q̂−Q∥∥+

∥∥UU>U \ −U \
∥∥ . (159)

[?, Lemma 3] asserts that ∥∥Q̂−Q∥∥ ≤ 4
(∥∥M −M \

∥∥ /σmin

)2
as long as

∥∥M −M \
∥∥ ≤ σmin/2. For the remaining term in (159), one can use U \>U \ = Ir to obtain∥∥UU>U \ −U \

∥∥ =
∥∥UU>U \ −U \U \>U \

∥∥ ≤ ∥∥UU> −U \U \>∥∥ ,
which together with the Davis-Kahan sinΘ theorem [?] reveals that∥∥UU>U \ −U \

∥∥ ≤ c2
σmin

∥∥M −M \
∥∥

for some constant c2 > 0. Combine the estimates on
∥∥Q̂−Q∥∥, ∥∥UU>U \ −U \

∥∥ and (159) to reach

∥∥UQ̂−U \
∥∥ ≤ ( 4

σmin

∥∥M −M \
∥∥)2

+
c2
σmin

∥∥M −M \
∥∥ ≤ c3

σmin

∥∥M −M \
∥∥

for some numerical constant c3 > 0, where we have utilized the fact that
∥∥M −M \

∥∥ /σmin ≤ 1/2.

Lemma 33. Let M ,M̃ ∈ Rn×n be two symmetric matrices with top-r eigendecompositions UΣU> and
ŨΣ̃Ũ>, respectively. Assume

∥∥M −M \
∥∥ ≤ σmin/4 and

∥∥M̃ −M \
∥∥ ≤ σmin/4, and suppose σmax/σmin is

bounded by some constant c1 > 0, with σmax and σmin the largest and the smallest singular values of M \,
respectively. If we denote

Q := argmin
R∈Or×r

∥∥UR− Ũ∥∥
F
,

then there exists some numerical constant c3 > 0 such that∥∥∥Σ1/2Q−QΣ̃1/2
∥∥∥ ≤ c3√

σmin

∥∥M̃ −M
∥∥ and

∥∥∥Σ1/2Q−QΣ̃1/2
∥∥∥

F
≤ c3√

σmin

∥∥∥(M̃ −M
)
U
∥∥∥

F
.

Proof. Here, we focus on the Frobenius norm; the bound on the operator norm follows from the same
argument, and hence we omit the proof. Since ‖·‖F is unitarily invariant, we have∥∥∥Σ1/2Q−QΣ̃1/2

∥∥∥
F

=
∥∥∥Q>Σ1/2Q− Σ̃1/2

∥∥∥
F
,

where Q>Σ1/2Q and Σ̃1/2 are the matrix square roots of Q>ΣQ and Σ̃, respectively. In view of the matrix
square root perturbation bound [?, Lemma 2.1],∥∥∥Σ1/2Q−QΣ̃1/2

∥∥∥
F
≤ 1

σmin

[
(Σ)

1/2 ]
+ σmin

[
(Σ̃)1/2

] ∥∥∥Q>ΣQ− Σ̃
∥∥∥

F
≤ 1
√
σmin

∥∥∥Q>ΣQ− Σ̃
∥∥∥

F
, (160)

where the last inequality follows from the lower estimates

σmin (Σ) ≥ σmin

(
Σ\
)
− ‖M −M \‖ ≥ σmin/4

and, similarly, σmin(Σ̃) ≥ σmin/4. Recognizing that Σ = U>MU and Σ̃ = Ũ>M̃Ũ , one gets∥∥∥Q>ΣQ− Σ̃
∥∥∥

F
=
∥∥∥(UQ)>M(

UQ
)
− Ũ>M̃Ũ

∥∥∥
F

≤
∥∥∥(UQ)>M(

UQ
)
−
(
UQ

)>
M̃
(
UQ

)∥∥∥
F

+
∥∥∥(UQ)>M̃(

UQ
)
− Ũ>M̃

(
UQ

)∥∥∥
F

+
∥∥∥Ũ>M̃(

UQ
)
− Ũ>M̃Ũ

∥∥∥
F
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≤
∥∥∥(M̃ −M

)
U
∥∥∥

F
+ 2
∥∥UQ− Ũ∥∥

F

∥∥M̃∥∥ ≤ ∥∥∥(M̃ −M
)
U
∥∥∥

F
+ 4σmax

∥∥UQ− Ũ∥∥
F
, (161)

where the last relation holds due to the upper estimate∥∥M̃∥∥ ≤ ∥∥M \
∥∥+

∥∥M̃ −M \
∥∥ ≤ σmax + σmin/4 ≤ 2σmax.

Invoke the Davis-Kahan sinΘ theorem [?] to obtain∥∥UQ− Ũ∥∥
F
≤ c2

σr (M)− σr+1(M̃)

∥∥∥(M̃ −M
)
U
∥∥∥

F
≤ 2c2
σmin

∥∥∥(M̃ −M
)
U
∥∥∥

F
, (162)

for some constant c2 > 0, where the last inequality follows from the bounds

σr (M) ≥ σr
(
M \

)
− ‖M −M \‖ ≥ 3σmin/4,

σr+1(M̃) ≤ σr+1

(
M \

)
+ ‖M̃ −M \‖ ≤ σmin/4.

Combine (160), (161), (162) and the fact σmax/σmin ≤ c1 to reach∥∥∥Σ1/2Q−QΣ̃1/2
∥∥∥

F
≤ c3√

σmin

∥∥∥(M̃ −M
)
U
∥∥∥

F

for some constant c3 > 0.

Lemma 34. Let M ∈ Rn×n be a symmetric matrix with the top-r eigendecomposition UΣU>. Denote
X = UΣ1/2 and X\ = U \(Σ\)1/2, and define

Q̂ := argmin
R∈Or×r

∥∥UR−U \
∥∥

F
and Ĥ := argmin

R∈Or×r

∥∥XR−X\
∥∥

F
.

Assume
∥∥M −M \

∥∥ ≤ σmin/2, and suppose σmax/σmin is bounded by some constant c1 > 0. Then there
exists a numerical constant c3 > 0 such that∥∥Q̂− Ĥ∥∥ ≤ c3

σmin

∥∥M −M \
∥∥ .

Proof. We first collect several useful facts about the spectrum of Σ. Weyl’s inequality tells us that
∥∥Σ−Σ\

∥∥ ≤∥∥M −M \
∥∥ ≤ σmin/2, which further implies that

σr (Σ) ≥ σr
(
Σ\
)
−
∥∥Σ−Σ\

∥∥ ≥ σmin/2 and ‖Σ‖ ≤
∥∥Σ\

∥∥+
∥∥Σ−Σ\

∥∥ ≤ 2σmax.

Denote
Q = U>U \ and H = X>X\.

Simple algebra yields

H = Σ1/2Q
(
Σ\
)1/2

= Σ1/2
(
Q− Q̂

) (
Σ\
)1/2

+
(
Σ1/2Q̂− Q̂Σ1/2

) (
Σ\
)1/2︸ ︷︷ ︸

:=E

+ Q̂
(
ΣΣ\

)1/2︸ ︷︷ ︸
:=A

.

It can be easily seen that σr−1 (A) ≥ σr (A) ≥ σmin/2, and

‖E‖ ≤
∥∥Σ1/2

∥∥ · ∥∥Q− Q̂∥∥ · ∥∥(Σ\
)1/2∥∥+

∥∥∥Σ1/2Q̂− Q̂Σ1/2
∥∥∥ · ∥∥(Σ\

)1/2∥∥
≤ 2σmax

∥∥Q− Q̂∥∥︸ ︷︷ ︸
:=α

+
√
σmax

∥∥∥Σ1/2Q̂− Q̂Σ1/2
∥∥∥︸ ︷︷ ︸

:=β

,

which can be controlled as follows.
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• Regarding α, use [?, Lemma 3] to reach

α =
∥∥Q− Q̂∥∥ ≤ 4

∥∥M −M \
∥∥2
/σ2

min.

• For β, one has

β
(i)
=
∥∥∥Q̂>Σ1/2Q̂−Σ1/2

∥∥∥ (ii)
≤ 1

2σr
(
Σ1/2

) ∥∥∥Q̂>ΣQ̂−Σ
∥∥∥ (iii)

=
1

2σr
(
Σ1/2

) ∥∥∥ΣQ̂− Q̂Σ
∥∥∥ ,

where (i) and (iii) come from the unitary invariance of ‖·‖, and (ii) follows from the matrix square root
perturbation bound [?, Lemma 2.1]. We can further take the triangle inequality to obtain∥∥∥ΣQ̂− Q̂Σ

∥∥∥ =
∥∥∥ΣQ−QΣ + Σ(Q̂−Q)− (Q̂−Q)Σ

∥∥∥
≤ ‖ΣQ−QΣ‖+ 2 ‖Σ‖

∥∥Q− Q̂∥∥
=
∥∥U (M −M \

)
U \> +Q

(
Σ\ −Σ

)∥∥+ 2 ‖Σ‖
∥∥Q− Q̂∥∥

≤
∥∥U (M −M \

)
U \>∥∥+

∥∥Q (Σ\ −Σ
)∥∥+ 2 ‖Σ‖

∥∥Q− Q̂∥∥
≤ 2

∥∥M −M \
∥∥+ 4σmaxα,

where the last inequality uses the Weyl’s inequality ‖Σ\−Σ‖ ≤ ‖M−M \‖ and the fact that ‖Σ‖ ≤ 2σmax.

• Rearrange the previous bounds to arrive at

‖E‖ ≤ 2σmaxα+
√
σmax

1
√
σmin

(
2
∥∥M −M \

∥∥+ 4σmaxα
)
≤ c2

∥∥M −M \
∥∥

for some numerical constant c2 > 0, where we have used the assumption that σmax/σmin is bounded.

Recognizing that Q̂ = sgn (A) (see definition in (119)), we are ready to invoke Lemma 23 to deduce that∥∥∥Q̂− Ĥ∥∥∥ ≤ 2

σr−1 (A) + σr (A)
‖E‖ ≤ c3

σmin

∥∥M −M \
∥∥

for some constant c3 > 0.
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