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A. Understanding cross entropy loss in fair
adversarial training

As established in the previous sections, we can view the
purpose of the adversary’s objective function as calculat-
ing a test discrepancy between Z0 and Z1 for a particular
adversary h. Since the adversary is trying to maximize its
objective, then a close-to-optimal adversary will have objec-
tiveLAdv(h) close to the statistical distance betweenZ0 and
Z1. Therefore, an optimal adversary can be thought of as
regularizing our representations according to their statistical
distance. It is essential for our model that the adversary is
incentivized to reach as high a test discrepancy as possible,
to fully penalize unfairness in the learned representations
and in classifiers which may be learned from them.

However, this interpretation falls apart if we use (17) (equiv-
alent to cross entropy loss) as the objective LAdv(h), since
it does not calculate the test discrepancy of a given adver-
sary h. Here we discuss the problems raised by dataset
imbalance for a cross-entropy objective.

Firstly, whereas the test discrepancy is the sum of con-
ditional expectations (one for each group), the standard
cross entropy loss is an expectation over the entire dataset.
This means that when the dataset is not balanced (i.e.
P (A = 0) 6= P (A = 1)), the cross entropy objective
will bias the adversary towards predicting the majority class
correctly, at the expense of finding a larger test discrepancy.

A = 0 A = 1

Z = 0 0.92 0.03
Z = 1 0.03 0.02

Table 1. p(Z,A)

Consider the following toy
example: a single-bit rep-
resentation Z is jointly dis-
tributed with sensitive at-
tribute A according to Table
1. Consider the adversary
h that predicts A according
to Â(Z) = T (h(Z)) where
T (·) is a hard threshold at
0.5. Then if h minimizes cross-entropy, then h∗(0) = 0.03

0.95
and h∗(1) = 0.02

0.05 which achieves L(h) = −0.051. Thus
every Z is classified as Â = 0 which yields test discrepancy
dh(Z0,Z1) = 0. However, if we directly optimize the test
discrepancy as we suggest, i.e., LDPAdv(h) = dh(Z0,Z1),
h∗(Z) = Z, which yields LDPAdv(h) = EA=0[1 − h] +
EA=1[h] − 1 = 0.92

0.95 + 0.02
0.05 − 1 ≈ 0.368 (or vice versa).

This shows that the cross-entropy adversarial objective will
not, in the unbalanced case, optimize the test discrepency as
well as the group-normalized `1 objective.

B. Training Details
We used single-hidden-layer neural networks for each of our
encoder, classifier and adversary, with 20 hidden units for
the Health dataset and 8 hidden units for the Adult dataset.
We also used a latent space of dimension 20 for Health and

8 for Adult. We train with LC and LAdv as absolute error,
as discussed in Section 5, as a more natural relaxation of
the binary case for our theoretical results. Our networks
used leaky rectified linear units and were trained with Adam
(Kingma & Ba, 2015) with a learning rate of 0.001 and a
minibatch size of 64, taking one step per minibatch for both
the encoder-classifier and the discriminator. When training
CLASSLEARN in Algorithm 1 from a learned representation
we use a single hidden layer network with half the width of
the representation layer, i.e., g. REPRLEARN (i.e., LAFTR)
was trained for a total of 1000 epochs, and CLASSLEARN
was trained for at most 1000 epochs with early stopping if
the training loss failed to reduce after 20 consecutive epochs.

To get the fairness-accuracy tradeoff curves in Figure 2, we
sweep across a range of fairness coefficients γ ∈ [0.1, 4]. To
evaluate, we use a validation procedure. For each encoder
training run, model checkpoints were made every 50 epochs;
r classifiers are trained on each checkpoint (using r different
random seeds), and epoch with lowest median error +∆ on
validation set was chosen. We used r = 7. Then r more
classifiers are trained on an unseen test set. The median
statistics (taken across those r random seeds) are displayed.

For the transfer learning experiment, we used γ = 1 for
models requiring a fair regularization coefficient.

We used an `1 loss function for the adversary and classifier
— we found using cross entropy on classifier and `1 on
adversary to be unstable. We experimented with a WGAN-
GP (Gulrajani et al., 2017) type loss (value of difference in
adversary output on the two groups, plus a gradient penalty).
We found these results to not be particularly different from
the `1 results.

C. Transfer Learning Table

Table 2. Results from Figure 3 broken out by task. ∆EO for each
of the 10 transfer tasks is shown, which entails identifying a pri-
mary condition code that refers to a particular medical condition.
Most fair on each task is bolded. All model names are abbreviated
from Figure 3; “TarUnf” is a baseline, unfair predictor learned
directly from the target data without a fairness objective.

TRA. TASK TARUNF TRAUNF TRAFAIR TRAY-AF LAFTR

MSC2A3 0.362 0.370 0.381 0.378 0.281
METAB3 0.510 0.579 0.436 0.478 0.439

ARTHSPIN 0.280 0.323 0.373 0.337 0.188
NEUMENT 0.419 0.419 0.332 0.450 0.199

RESPR4 0.181 0.160 0.223 0.091 0.051
MISCHRT 0.217 0.213 0.171 0.206 0.095
SKNAUT 0.324 0.125 0.205 0.315 0.155
GIBLEED 0.189 0.176 0.141 0.187 0.110
INFEC4 0.106 0.042 0.026 0.012 0.044

TRAUMA 0.020 0.028 0.032 0.032 0.019
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Table 3. Transfer fairness, other metrics. Models are as defined
in Figure 3. MMD is calculated with a Gaussian RBF kernel
(σ = 1). AdvAcc is the accuracy of a separate MLP trained on
the representations to predict the sensitive attribute; due to data
imbalance an adversary predicting 0 on each case obtains accuracy
of approximately 0.74.

MODEL MMD ADVACC

TRANSFER-UNFAIR 1.1× 10−2 0.787
TRANSFER-FAIR 1.4× 10−3 0.784

TRANSFER-Y-ADV (β = 1) 3.4× 10−5 0.787
TRANSFER-Y-ADV (β = 0) 1.1× 10−3 0.786

LAFTR 2.7× 10−5 0.761

Since transfer fairness varied much more than accuracy,
we break out the results of Fig. 3 in Table 2, showing the
fairness outcome of each of the 10 separate transfer tasks.
We note that LAFTR provides the fairest predictions on
7 of the 10 tasks, often by a wide margin, and is never
too far behind the fairest model for each task. The unfair
model TraUnf achieved the best fairness on one task. We
suspect this is due to some of these tasks being relatively
easy to solve without relying on the sensitive attribute by
proxy. Since the equalized odds metric is better aligned with
accuracy than demographic parity (Hardt et al., 2016), high
accuracy classifiers can sometimes achieve good ∆EO if
they do not rely on the sensitive attribute by proxy. Because
the data owner has no knowledge of the downstream task,
however, our results suggest that using LAFTR is safer than
using the raw inputs; LAFTR is relatively fair even when
TraUnf is the most fair, whereas TraUnf is dramatically less
fair than LAFTR on several tasks.

D. Transfer Fairness - Other Metrics
In Table 3 we present alternative fairness metrics of repre-
sentation fairness. We give two metrics: maximum mean
discrepancy (MMD) (Gretton et al., 2007), which is a gen-
eral measure of distributional distance; and adversarial ac-
curacy (if an adversary is given these representations, how
well can it learn to predict the sensitive attribute?). In both
metrics, our representations are more fair than the baselines.
We give two versions of the “Transfer-Y-Adv” adversarial
model (β = 0, 1); note that it has much better MMD when
the reconstruction term is added, but that this does not im-
prove its adversarial accuracy, indicating that our model is
doing something more sophisticated than simply matching
moments of distributions.


