
A. Approximate Posterior Gradients for Latent Gaussian Models
A.1. Model & Variational Objective

Consider a latent variable model, pθ(x, z) = pθ(x|z)pθ(z), where the prior on z is a factorized Gaussian density,
pθ(z) = N (z;µp,diagσ

2
x), and the conditional likelihood, pθ(x|z), depends on the type of data (e.g. Bernoulli for

binary observations or Gaussian for continuous observations). We introduce an approximate posterior distribution, q(z|x),
which can be any parametric probability density defined over real values. Here, we assume that q also takes the form of a
factorized Gaussian density, q(z|x) = N (z;µq,diagσ

2
q). The objective during variational inference is to maximize L w.r.t.

the parameters of q(z|x), i.e. µq and σ2
q :

µ∗q ,σ
2∗
q = argmax

µq,σ2
q

L. (1)

To solve this optimization problem, we will use the gradients∇µq
L and∇σ2

q
L, which we now derive. The objective can be

written as:

L = Eq(z|x) [log pθ(x, z)− log q(z|x)] (2)
= Eq(z|x) [log pθ(x|z) + log pθ(z)− log q(z|x)] . (3)

Plugging in pθ(z) and q(z|x):

L = EN (z;µq,diagσ2
q)

[
log pθ(x|z) + logN (z;µp,diagσ

2
p)− logN (z;µq,diagσ

2
q)
]

(4)

Since expectation and differentiation are linear operators, we can take the expectation and derivative of each term individually.

A.2. Gradient of the Log-Prior

We can write the log-prior as:

logN (z;µp, (diagσ
2
p) = −

1

2
log
(
(2π)nz |diagσ2

p|
)
− 1

2
(z− µp)ᵀ(diagσ2

p)
−1(z− µp), (5)

where nz is the dimensionality of z. We want to evaluate the following terms:

∇µqEN (z;µq,diagσ2
q)

[
−1

2
log
(
(2π)nz |diagσ2

p|
)
− 1

2
(z− µp)ᵀ(diagσ2

p)
−1(z− µp)

]
(6)

and

∇σ2
q
EN (z;µq,diagσ2

q)

[
−1

2
log
(
(2π)nz |diagσ2

p|
)
− 1

2
(z− µp)ᵀ(diagσ2

p)
−1(z− µp)

]
. (7)

To take these derivatives, we will use the reparameterization trick (Kingma & Welling, 2014; Rezende et al., 2014) to
re-express z = µq +σq � ε, where ε ∼ N (0, I) is an auxiliary standard Gaussian variable, and � denotes the element-wise
product. We can now perform the expectations over ε, allowing us to bring the gradient operators inside the expectation
brackets. The first term in eqs. 6 and 7 does not depend on µq or σ2

q , so we can write:

EN (ε;0,I)

[
∇µq

(
−1

2
(µq + σq � ε− µp)ᵀ(diagσ2

p)
−1(µq + σq � ε− µp)

)]
(8)

and

EN (ε;0,I)

[
∇σ2

q

(
−1

2
(µq + σq � ε− µp)ᵀ(diagσ2

p)
−1(µq + σq � ε− µp)

)]
. (9)

To simplify notation, we define the following term:

ξ ≡ (diagσ2
p)
−1/2(µq + σq � ε− µp), (10)

allowing us to rewrite eqs. 8 and 9 as:

EN (ε;0,I)

[
∇µq

(
−1

2
ξᵀξ

)]
= EN (ε;0,I)

[
− ∂ξ

ᵀ

∂µq
ξ

]
(11)

and

EN (ε;0,I)

[
∇σ2

q

(
−1

2
ξᵀξ

)]
= EN (ε;0,I)

[
− ∂ξ

ᵀ

∂σ2
q

ξ

]
. (12)

We must now find ∂ξ
∂µq

and ∂ξ
∂σ2

q
:

∂ξ

∂µq
=

∂

∂µq

(
(diagσ2

p)
−1/2(µq + σq � ε− µp)

)
= (diagσ2

p)
−1/2 (13)

and
∂ξ

∂σ2
q

=
∂

∂σ2
q

(
(diagσ2

p)
−1/2(µq + σq � ε− µp)

)
= (diagσ2

p)
−1/2 diag

ε

2σq
, (14)

where division is performed element-wise. Plugging eqs. 13 and 14 back into eqs. 11 and 12, we get:

EN (ε;0,I)

[
−
(
(diagσ2

p)
−1/2

)ᵀ
(diagσ2

p)
−1/2(µq + σq � ε− µp)

]
(15)

and

EN (ε;0,I)

[
−
(
diag

ε

2σq

)ᵀ (
(diagσ2

p)
−1/2

)ᵀ
(diagσ2

p)
−1/2(µq + σq � ε− µp)

]
. (16)

Putting everything together, we can express the gradients as:

∇µq
EN (z;µq,diagσ2

q)

[
logN (z;µp,diagσ

2
p)
]
= EN (ε;0,I)

[
−µq + σq � ε− µp

σ2
p

]
, (17)

and

∇σ2
q
EN (z;µq,diagσ2

q)

[
logN (z;µp,diagσ

2
p)
]
= EN (ε;0,I)

[
−
(
diag

ε

2σq

)ᵀ
µq + σq � ε− µp

σ2
p

]
. (18)

A.3. Gradient of the Log-Approximate Posterior

We can write the log-approximate posterior as:

logN (z;µq,diagσ
2
q) = −

1

2
log
(
(2π)nz |diagσ2

q |
)
− 1

2
(z− µq)ᵀ(diagσ2

q)
−1(z− µq), (19)

where nz is the dimensionality of z. Again, we will use the reparameterization trick to re-express the gradients. However,
notice what happens when plugging the reparameterized z = µq + σq � ε into the second term of eq. 19:

−1

2
(µq + σq � ε− µq)ᵀ(diagσ2

q)
−1(µq + σq � ε− µq) = −

1

2

(σq � ε)ᵀ(σq � ε)
σ2
q

= −1

2
εᵀε. (20)

This term does not depend on µq or σ2
q . Also notice that the first term in eq. 19 depends only on σ2

q . Therefore, the gradient
of the entire term w.r.t. µq is zero:

∇µq
EN (z;µq,diagσ2

q)

[
logN (z;µq,diagσ

2
q)
]
= 0. (21)

The gradient w.r.t. σ2
q is

∇σ2
q

(
−1

2
log
(
(2π)nz |diagσ2

q |
))

= −1

2
∇σ2

q

(
log |diagσ2

q |
)
= −1

2
∇σ2

q

∑
j

log σ2
q,j = −

1

2σ2
q

. (22)

Note that the expectation has been dropped, as the term does not depend on the value of the sampled z. Thus, the gradient of
the entire term w.r.t. σ2

q is:

∇σ2
q
EN (z;µq,diagσ2

q)

[
logN (z;µq,diagσ

2
q)
]
= − 1

2σ2
q

. (23)

A.4. Gradient of the Log-Conditional Likelihood

The form of the conditional likelihood will depend on the data, e.g. binary, discrete, continuous, etc. Here, we derive the
gradient for Bernoulli (binary) and Gaussian (continuous) conditional likelihoods.

Bernoulli Output Distribution The log of a Bernoulli output distribution takes the form:

logB(x;µx) = (logµx)
ᵀx+ (log(1− µx))

ᵀ(1− x), (24)

where µx = µx(z, θ) is the mean of the output distribution. We drop the explicit dependence on z and θ to simplify notation.
We want to compute the gradients

∇µqEN (z;µq,diagσ2
q)
[(logµx)

ᵀx+ (log(1− µx))
ᵀ(1− x)] (25)

and
∇σ2

q
EN (z;µq,diagσ2

q)
[(logµx)

ᵀx+ (log(1− µx))
ᵀ(1− x)] . (26)

Again, we use the reparameterization trick to re-express the expectations, allowing us to bring the gradient operators inside
the brackets. Using z = µq + σq � ε, eqs. 25 and 26 become:

EN (ε;0,I)

[
∇µq

((logµx)
ᵀx+ (log(1− µx))

ᵀ(1− x))
]

(27)

and
EN (ε;0,I)

[
∇σ2

q
((logµx)

ᵀx+ (log(1− µx))
ᵀ(1− x))

]
, (28)

where µx is re-expressed as function of µq,σ2
q , ε, and θ. Distributing the gradient operators yields:

EN (ε;0,I)

[
∂(logµx)

ᵀ

∂µq
x+

∂(log(1− µx))
ᵀ

∂µq
(1− x)

]
(29)

and

EN (ε;0,I)

[
∂(logµx)

ᵀ

∂σ2
q

x+
∂(log(1− µx))

ᵀ

∂σ2
q

(1− x)

]
. (30)

Taking the partial derivatives and combining terms gives:

EN (ε;0,I)

[
∂µx

∂µq

ᵀ x

µx
− ∂µx

∂µq

ᵀ 1− x

1− µx

]
= EN (ε;0,I)

[
∂µx

∂µq

ᵀ x− µx

µx � (1− µx)

]
(31)

and

EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀ x

µx
− ∂µx

∂σ2
q

ᵀ 1− x

1− µx

]
= EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀ x− µx

µx � (1− µx)

]
. (32)

Gaussian Output Density The log of a Gaussian output density takes the form:

logN (x;µx,diagσ
2
x) = −

1

2
log
(
(2π)nx |diagσ2

x|
)
− 1

2
(x− µx)

ᵀ(diagσ2
x)
−1(x− µx), (33)

where µx = µx(z, θ) is the mean of the output distribution and σ2
x = σ2

x(θ) is the variance. We assume σ2
x is not a function

of z to simplify the derivation, however, using σ2
x = σ2

x(z, θ) is possible and would simply result in additional gradient
terms in ∇µq

L and∇σ2
q
L. We want to compute the gradients

∇µq
EN (z;µq,diagσ2

q)

[
−1

2
log
(
(2π)nx |diagσ2

x|
)
− 1

2
(x− µx)

ᵀ(diagσ2
x)
−1(x− µx)

]
(34)

and

∇σ2
q
EN (z;µq,diagσ2

q)

[
−1

2
log
(
(2π)nx |diagσ2

x|
)
− 1

2
(x− µx)

ᵀ(diagσ2
x)
−1(x− µx)

]
. (35)

The first term in eqs. 34 and 35 is zero, since σ2
x does not depend on µq or σ2

q . To take the gradients, we will again use
the reparameterization trick to re-express z = µq + σq � ε. We now implicitly express µx as µx(µq,σ

2
q , θ). We can then

write:

EN (ε;0,I)

[
∇µq

(
−1

2
(x− µx)

ᵀ(diagσ2
x)
−1(x− µx)

)]
(36)

and

EN (ε;0,I)

[
∇σ2

q

(
−1

2
(x− µx)

ᵀ(diagσ2
x)
−1(x− µx)

)]
. (37)

To simplify notation, we define the following term:

ξ ≡ (diagσ2
x)
−1/2(x− µx), (38)

allowing us to rewrite eqs. 36 and 37 as

EN (ε;0,I)

[
∇µq

(
−1

2
ξᵀξ

)]
= EN (ε;0,I)

[
− ∂ξ

ᵀ

∂µq
ξ

]
(39)

and

EN (ε;0,I)

[
∇σ2

q

(
−1

2
ξᵀξ

)]
= EN (ε;0,I)

[
− ∂ξ

ᵀ

∂σ2
q

ξ

]
. (40)

We must now find ∂ξ
∂µq

and ∂ξ
∂σ2

q
:

∂ξ

∂µq
=

∂

∂µq

(
(diagσ2

x)
−1/2(x− µx)

)
= −(diagσ2

x)
−1/2 ∂µx

∂µq
(41)

and
∂ξ

∂σ2
q

=
∂

∂σ2
q

(
(diagσ2

x)
−1/2(x− µx)

)
= −(diagσ2

x)
−1/2 ∂µx

∂σ2
q

. (42)

Plugging these expressions back into eqs. 39 and 40 gives

EN (ε;0,I)

[
∂µx

∂µq

ᵀ

((diagσ2
x)
−1/2)ᵀ(diagσ2

x)
−1/2(x− µx)

]
= EN (ε;0,I)

[
∂µx

∂µq

ᵀx− µx

σ2
x

]
(43)

and

EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀ

((diagσ2
x)
−1/2)ᵀ(diagσ2

x)
−1/2(x− µx)

]
= EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀx− µx

σ2
x

]
. (44)

Despite having different distribution forms, Bernoulli and Gaussian output distributions result in approximate posterior
gradients of a similar form: the Jacobian of the output model multiplied by a weighted error term.

A.5. Summary

Putting the gradient terms from log pθ(x|z), log pθ(z), and log q(z|x) together, we arrive at

Bernoulli Output Distribution:

∇µq
L = EN (ε;0,I)

[
∂µx

∂µq

ᵀ x− µx

µx � (1− µx)
− µq + σq � ε− µp

σ2
p

]
(45)

∇σ2
q
L = EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀ x− µx

µx � (1− µx)
−
(
diag

ε

2σq

)ᵀ
µq + σq � ε− µp

σ2
p

]
− 1

2σ2
q

(46)

Gaussian Output Distribution:

∇µq
L = EN (ε;0,I)

[
∂µx

∂µq

ᵀx− µx

σ2
x

− µq + σq � ε− µp
σ2
p

]
(47)

∇σ2
q
L = EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀx− µx

σ2
x

−
(
diag

ε

2σq

)ᵀ
µq + σq � ε− µp

σ2
p

]
− 1

2σ2
q

(48)

Figure 1. Plate notation for a hierarchical latent variable model consisting of L levels of latent variables. Variables at higher levels provide
empirical priors on variables at lower levels. With data-dependent priors, the model has more flexibility.

A.6. Approximate Posterior Gradients in Hierarchical Latent Variable Models

Hierarchical latent variable models factorize the latent variables over multiple levels, z = {z1, z2, . . . , zL}. Latent variables
at higher levels provide empirical priors on latent variables at lower levels. Here, we assume a first-order Markov graphical
structure, as shown in Figure 1, though more general structures are possible. For an intermediate latent level, we use the
notation q(z`|·) = N (z`;µ`,q,diagσ

2
`,q) and p(z`|z`+1) = N (z`;µ`,p,diagσ

2
`,p) to denote the approximate posterior and

prior respectively. Analogously to the case of a Gaussian output density in a one-level model, the approximate posterior
gradients at an intermediate level ` are:

∇µq,`
L = EN (ε;0,I)

[
∂µ`−1,p
∂µ`,q

ᵀµ`−1,q + σ`−1,q � ε`−1 − µ`−1,p
σ2
`−1,p

− µ`,q + σ`,q � ε` − µ`,p
σ2
`,p

]
, (49)

∇σ2
q
L = EN (ε;0,I)

[
∂µ`−1,p
∂σ2

`,q

ᵀµ`−1,q + σ`−1,q � ε`−1 − µ`−1,p
σ2
`−1,p

−
(
diag

ε`
2σ`,q

)ᵀ
µ`,q + σ`,q � ε` − µ`,p

σ2
`,p

]
− 1

2σ2
`,q

.

(50)

The first terms inside each expectation are “bottom-up” gradients coming from reconstruction errors at the level below. The
second terms inside the expectations are “top-down” gradients coming from priors generated by the level above. The last
term in the variance gradient acts to reduce the entropy of the approximate posterior.

B. Implementing Iterative Inference Models
Here, we provide specific implementation details for these models. Code for reproducing the experiments will be released
online.

B.1. Input Form

Approximate posterior gradients and errors experience distribution shift during inference and training. Using these terms as
inputs to a neural network can slow down and prevent training. For experiments on MNIST, we found the log transformation
method proposed by (Andrychowicz et al., 2016) to work reasonably well: replacing ∇λL with the concatenation of
[α log(|∇λL|+ ε), sign(∇λL)], where α is a scaling constant and ε is a small constant for numerical stability. We also
encode the current estimates of µq and logσ2

q . For experiments on CIFAR-10, we instead used layer normalization (Ba et al.,
2016) to normalize each input to the iterative inference model. This normalizes each input over the non-batch dimension.

Algorithm 1 Iterative Amortized Inference

Input: data x, generative model pθ(x, z), inference model f
Initialize t = 0
Initialize∇φ = 0
Initialize q(z|x) with λ0

repeat
Sample z ∼ q(z|x)
Evaluate Lt = L(x,λt; θ)
Calculate∇λLt and∇φLt
Update λt+1 = ft(∇λLt,λt;φ)
t = t+ 1
∇φ = ∇φ +∇φLt

until L converges
θ = θ + αθ∇θL
φ = φ+ αφ∇φ

B.2. Output Form

For the output of these models, we use a gated updating scheme, where approximate posterior parameters are updated
according to

λt+1 = gt � λt + (1− gt)� ft(∇λL,λt;φ). (51)

Here, � represents element-wise multiplication and gt = gt(∇λL,λt;φ) ∈ [0, 1] is the gating function for λ at time t,
which we combine with the iterative inference model ft. We found that this yielded improved performance and stability
over the additive updating scheme used in (Andrychowicz et al., 2016).

B.3. Training

To train iterative inference models for latent Gaussian models, we use stochastic estimates of∇φL from the reparameteriza-
tion trick. We accumulate these gradient estimates during inference, then update both φ and θ jointly. We train using a fixed
number of inference iterations.

C. Experiment Details
Inference model and generative model parameters (φ and θ) were trained jointly using the adam optimizer (Kingma & Ba,
2014). The learning rate was set to 0.0002 for both sets of parameters and all other optimizer parameters were set to their
default values. Learning rates were decayed exponentially by a factor of 0.999 each epoch. All models utilized exponential
linear unit (ELU) activation functions (Clevert et al., 2015), although we found other non-linearities to work as well. Unless
otherwise stated, all inference models were symmetric to their corresponding generative models. Iterative inference models
for all experiments were implemented as feed-forward networks to make comparison with standard inference models easier.

C.1. Two-Dimensional Latent Gaussian Models

We trained models with 2 latent dimensions and a point estimate approximate posterior. That is, q(z|x) = δ(z = µq) is
a Dirac delta function at the point µq = (µ1, µ2). We trained these models on binarized MNIST. The generative models
consisted of a neural network with 2 hidden layers, each with 512 units. The output of the generative model was the mean of
a Bernoulli distribution. The optimization surface of each model was evaluated on a grid of range [-5, 5] in increments of
0.05 for each latent variable. The iterative inference model shown in Figure 3 encodes x, εx, and εz.

C.2. L During Inference

We trained one-level models on MNIST using iterative inference models that encode gradients (∇λL) for 16 iterations. We
compared against stochastic gradient descent (SGD), SGD with momentum, RMSProp, and Adam, using learning rates in
{0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001} and taking the best result. In addition to performance over iterations, we also compared
the optimization techniques on the basis of wall clock time. Despite requiring more time per inference iteration, we observed

that the iterative inference model still outperformed the conventional optimization techniques.

C.3. Reconstructions Over Inference Iterations

We trained iterative inference models on MNIST, Omniglot, and SVHN by encoding approximate posterior gradients (∇λL)
for 16 iterations. For CIFAR-10, we trained an iterative inference model by encoding errors for 10 inference iterations. For
MNIST and Omniglot, we used a generative model architecture with 2 hidden layers, each with 512 units, a latent space
of size 64, and a symmetric iterative inference model. For SVHN and CIFAR-10, we used 3 hidden layers in the iterative
inference and 1 in the generative model, with 2,048 units at each hidden layer and a latent space of size 1,024.

C.4. Gradient Magnitudes

While training iterative inference models, we recorded approximate posterior gradient magnitudes at each inference
iteration. We observed that, on average, the magnitudes decreased during inference optimization. This decrease was more
prevalent for the approximate posterior mean gradients. For Figure 6, we trained an iterative inference model on RCV1 by
encoding gradients (∇λL) for 16 inference iterations. The generative model contained a latent variable of size 512 and 2
fully-connected layers of 512 units each. The inference model was symmetric.

C.5. Additional Inference Iterations

We used an architecture of 2 hidden layers, each with 512 units, for the output model and inference models. The latent
variable contained 64 dimensions. We trained all models for 1,500 epochs. We were unable to run multiple trials for each
experimental set-up, but on a subset of runs for standard and iterative inference models, we observed that final performance
had a standard deviation less than 0.1 nats, below the difference in performance between models trained with different
numbers of inference iterations.

C.6. Additional Latent Samples

We used an architecture of 2 hidden layers, each with 512 units, for the output model and inference models. The latent
variable contained 64 dimensions. Each model was trained by drawing the corresponding number of samples from the
approximate posterior distribution to obtain ELBO estimates and gradients. Iterative inference models were trained by
encoding the data (x) and the approximate posterior gradients (∇λL) for 5 inference iterations. All models were trained for
1,500 epochs.

C.7. Comparison with Standard Inference Models

C.7.1. MNIST

For MNIST, one-level models consisted of a latent variable of size 64, and the inference and generative networks both
consisted of 2 hidden layers, each with 512 units. Hierarchical models consisted of 2 levels with latent variables of size 64
and 32 in hierarchically ascending order. At each level, the inference and generative networks consisted of 2 hidden layers,
with 512 units at the first level and 256 units at the second level. At the first level of latent variables, we also used a set
of deterministic units, also of size 64, in both the inference and generative networks. Hierarchical models included batch
normalization layers at each hidden layer of the inference and generative networks; we found this beneficial for training both
standard and iterative inference models. Both encoder and decoder networks in the hierarchical model utilized highway skip
connections at each layer at both levels. Iterative models were trained by encoding data and errors for 5 inference iterations.

C.7.2. CIFAR-10

For CIFAR-10, one-level models consisted of a latent variable of size 1,024, an encoder network with 3 hidden layers of
2,048 units, and a decoder network with 1 hidden layer with 2,048 units. We found this set-up performed better than a
symmetric encoder and decoder for both standard and iterative inference models. Hierarchical models were the same as the
one-level model, adding another latent variable of size 512, with another 3 layer encoder of with 1,024 units and a 1 layer
decoder with 1,024 units. Both encoder and decoder networks in the hierarchical model utilized highway skip connections
at each layer at both levels. Models were all trained for 150 epochs. We annealed the KL-divergence term during the first 50
epochs when training hierarchical models. Iterative inference models were trained by encoding the data and gradients for 5

inference iterations.

C.7.3. RCV1

We followed the same processing procedure as (Krishnan et al., 2017), encoding data using normalized TF-IDF features.
For encoder and decoder, we use 2-layer networks, each with 2,048 units and ELU non-linearities. We use a latent variable
of size 1,024. The iterative inference model was trained by encoding gradients for 10 steps. Both models were trained using
5 approximate posterior samples at each iteration. We evaluate the models by reporting perplexity on the test set (Table 2).
Perplexity, P , is defined as

P ≡ exp(− 1

N

∑
i

1

Ni
log p(x(i))), (52)

where N is the number of examples and Ni is the total number of word counts in example i. We evaluate perplexity by
estimating each log p(x(i)) with 5,000 importance weighted samples. We also report an upper bound on perplexity using L.

References
Andrychowicz, Marcin, Denil, Misha, Gomez, Sergio, Hoffman, Matthew W, Pfau, David, Schaul, Tom, and de Freitas,

Nando. Learning to learn by gradient descent by gradient descent. In Advances in Neural Information Processing Systems,
pp. 3981–3989, 2016.

Ba, Jimmy Lei, Kiros, Jamie Ryan, and Hinton, Geoffrey E. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Clevert, Djork-Arné, Unterthiner, Thomas, and Hochreiter, Sepp. Fast and accurate deep network learning by exponential
linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, Diederik P and Welling, Max. Stochastic gradient vb and the variational auto-encoder. In Second International
Conference on Learning Representations, ICLR, 2014.

Krishnan, Rahul G, Liang, Dawen, and Hoffman, Matthew. On the challenges of learning with inference networks on sparse,
high-dimensional data. arXiv preprint arXiv:1710.06085, 2017.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wierstra, Daan. Stochastic backpropagation and approximate inference in
deep generative models. Proceedings of the 31st International Conference on Machine Learning, pp. 1278–1286, 2014.

Figure 2. Reconstructions over inference iterations (left to right) for examples from (top to bottom) MNIST, Omniglot, SVHN, and
CIFAR-10. Corresponding data examples are shown on the right of each panel.

